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Abstract

Objectives Acute respiratory distress syndrome (ARDS) constitutes a major factor determining the clinical outcome in

polytraumatized patients. Early prediction of ARDS is crucial for timely supportive therapy to reduce morbidity and mortality.

The objective of this study was to develop and test a machine learning—based method for the early prediction of ARDS derived

from the first computed tomography scan of polytraumatized patients after admission to the hospital.

Materials and methods One hundred twenty-three patients (86 male and 37 female, age 41.2 £ 16.4) with an injury severity score

(ISS) of 16 or higher (31.9 + 10.9) were prospectively included and received a CT scan within 1 h after the accident. The lungs,

including air pockets and pleural effusions, were automatically segmented using a deep learning—based algorithm. Subsequently, we

extracted radiomics features from within the lung and trained an ensemble of gradient boosted trees (GBT) to predict future ARDS.

Results Cross-validated ARDS prediction resulted in an area under the curve (AUC) of 0.79 for the radiomics score compared to

0.66 for ISS, and 0.68 for the abbreviated injury score of the thorax (AIS-thorax). Prediction using the radiomics score yielded an

fl-score of 0.70 compared to 0.53 for ISS and 0.57 for AIS-thorax. The radiomics score achieved a sensitivity and specificity of

0.80 and 0.76.

Conclusions This study proposes a radiomics-based algorithm for the prediction of ARDS in polytraumatized patients at the time

of admission to hospital with an accuracy that competes and surpasses conventional scores despite the heterogeneous, and

therefore more realistic, scanning protocols.

Key Points

* Early prediction of acute respiratory distress syndrome in polytraumatized patients is possible, even when using heterogenous
data.

* Radiomics-based prediction resulted in an area under the curve of 0.79 compared to 0.66 for the injury severity score, and 0.68
for the abbreviated injury score of the thorax.

* Highlighting the most relevant lung regions for prediction facilitates the understanding of machine learning—based prediction.
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Introduction

Blunt thoracic trauma is a common injury mechanism in
polytraumatized patients and of those, two-thirds may suffer
from parenchymal lung injury [1]. The relevance of parenchy-
mal injuries (lung contusion and laceration) lies in the in-
creased risk of developing acute respiratory distress syndrome
(ARDS) and, consequently, the resulting deterioration of clin-
ical outcome [2—5]. Whereas lung contusion and the resulting
damage of the alveolar epithelial cells are a direct factor in the
genesis of ARDS [6-8], systemic inflammatory response me-
diators are important indirect pathomechanisms [9]. Predictive
factors at admission to the hospital after blunt trauma for the
development of ARDS comprise parenchymal lung injuries
such as lung contusions, hypotension, necessity of blood
transfusion, age higher than 65 years, and an injury severity
score (ISS) higher than 25 [10, 11]. Depending on the spe-
cifics of the study cohort, incidence and mortality may range
from 5.8 to 21.5 % and 12.2 to 24.9 % respectively, with a
decrease of both incidence and mortality in the last years
[12—17]. Furthermore, there is also a considerable socio-
economic impact due to impaired cognitive and physical func-
tion after convalescence [18]. Currently, the accuracy of early
prediction methods has an area under the curve (AUC) of 0.72
to 0.82 for trauma score [11, 19] and 0.67 to 0.75 for comput-
ed tomography (CT) volumetric methods [20, 21]. Early pre-
diction of ARDS in polytraumatized patients may enable
timely supportive therapy, such as adjusting ventilation for
lung protection, restricting the administration of transfusions,
or starting the administration of antibiotics [22, 23], and, thus,
reduce complications or prevent the development of ARDS
altogether.

CT of the chest is a widespread and essential tool in the
primary diagnostic process of trauma patients after admission
to the hospital [24]. The initial traumatic injury results in focal
or diffuse alveolar hemorrhage [25] followed by a lung edema
and interstitial alterations in the affected parenchyma [26].
While these imaging findings may prove difficult to interpret
at the beginning, and only become more prominent in the
ensuing 24 to 48 h [27], early information from the first CT
scan would help to decide on the abovementioned pivotal
therapeutic decisions. Furthermore, the patient’s condition
may prevent a transport to the CT scanner and multiple expo-
sures to ionizing radiation of the often young population of
polytraumatized patients carry an increased risk of inducing
oncological disease in survivors. Therefore, novel methods to
raise as much information as possible from the first scan after
admission to the hospital are crucial.

The European Society of Radiology endorses the extrac-
tion of quantitative biomarkers from medical images that in-
form on disease detection, characterization, monitoring, and
assessment of response to treatment [28]. One method to ex-
tract information from images that is not entirely accessible for
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the human eye is radiomics [29], for which an increasing
number of applications emerge in non-oncologic chest CT
[30].

It was the aim of this study to develop and test a radiomics-
based computational method for the early prediction of ARDS
based on the initial CT scan in a cohort of prospectively in-
cluded patients with chest trauma.

Methods
Data collection and study population

The imaging and clinical data acquired for this study were
collected in the framework of a prospective study which
aimed to evaluate manual volumetry of parenchymal lung
injury in initial and follow-up CT scans to predict ARDS in
polytraumatized patients [31]. In total, 123 of the previously
reported patients were evaluated. The previous study reported
on the usefulness of a follow-up chest CT scan for manual
volumetry of lung parenchymal injuries compared to the ini-
tial scan at admission whereas the present study evaluated the
possibility of machine learning—based prediction of ARDS in
the initial scan.

The patients were included over a timeframe of 4 years.
Inclusion criteria were 18 years or older, ISS of 16 or higher,
direct transport to the study hospital (level I trauma center)
with a CT scan within 1 h after the trauma, and admission to
the intensive care unit. Informed consent was gained from
the patient or legal representative. Exclusion criteria were
death within 48 h (this was a methodological necessity of
the original publication [31]), burning injury, oncological
disease, and chronic inflammatory lung disease. The Berlin
Definition [7] was used to define ARDS based on oxygen-
ation, chest imaging, timing, and origin of edema. The CT-
independent methods of establishing ARDS were partial
pressure of arterial oxygen (PaO,) < 300 mm Hg with pos-
itive end-expiratory pressure (PEEP) or continuous positive
airway pressure > 5 cm H,O, respiratory failure not fully
explained by cardiac failure or fluid overload, and a devel-
opment within 1 week of the trauma.

One hundred sixteen patients received intravenously ad-
ministered contrast agent; for 7 patients, the administration
of contrast agent was not possible. In patients who were he-
modynamically unstable when reaching the emergency room
(n = 6), we performed an arterial phase with a field of view
ranging from the skull base to the proximal femur (bolus
tracking technique at the aortic arch with a threshold of 100
Hounsfield units (HU) and 10-s delay; 120 ml in total with a
flow of 4.5 ml/s for 31 s followed by 3.3 ml/s for 18 s),
followed by a venous phase over the abdomen. All other pa-
tients received a venous phase over the chest and abdomen
(120 ml in total with a flow of 3 ml/s over 55 s).
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Machine learning algorithm for ARDS prediction

Figure 1 gives an overview of the machine learning algorithm
for the prediction of ARDS.

First, we segmented the lung with a convolutional neural
network (CNN) approach to automatically delineate the lung
including pleural effusions and air pockets (pneumothorax)
[32]. Visual inspection by a radiologist showed a good fit of
the segmentations to the thoracic cavity, excluding the
mediastinum.

After lung segmentation in all cases, we learned a visual
vocabulary to represent the appearance variability in the study
cohort. Specifically, we extracted 83 2D radiomics features on
a grid from axial slices throughout the lung with 1-cm distance
between the locations and within a kernel diameter of 2.4 cm.

For the extraction of radiomics data, we have relied on
pyradiomics, an open-source python package for the extrac-
tion of radiomics features [28]. Note that the pyradiomics

We calculated first-order statistics and features on gray
level co-occurrence, gray level run length, gray level size
zone, and gray level dependence matrices. To ensure compa-
rable radiomics feature across scans with variable voxel
sizes, the image volumes were resampled to a voxel resolu-
tion of 0.8 x 0.8 x 2 mm [33]; voxel intensities were clipped
at - 990 and 200 HU. The extraction of texture features relies
on the reduction of image intensities to a reduced number of
discrete values. We quantized intensities into 40 bins (30 HU
bin-width) for the calculation of the texture matrices. In ad-
dition to visual features, we calculated reference locations for
each feature vector with three spatial coordinates (1) anterior-
posterior, (2) inferior-superior, and the (3) distance to the
lung border. Radiomics feature vectors together with the ref-
erence coordinate randomly sampled from all cases (N =
24600 spatio-visual vectors) were used to learn a spatio-
visual vocabulary, i.e., the feature vectors were clustered into
20 classes using k-means, each class describing a visual

libraries are research tools and not approved for clinical use. pattern.
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Fig. 1 Overview—from CT scan to ARDS prediction: a We performed a
machine learning-based segmentation of the lung, including effusion and
air pockets. b From within the lung-mask, we extracted 2D radiomics
features in a grid pattern over a kernel. In addition, we calculated the
reference locations (anterior-posterior, inferior-superior, and the distance
transform) to retrieve localized spatio-visual feature vectors for each lo-
cation as illustrated in ¢. d A spatio-visual vocabulary sampled from
feature vectors of the full dataset was learned. e After the vocabulary
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had been learned, a single patient is represented by his vocabulary histo-
gram and statistical features calculated on the HU histogram of the full
lung. f We trained a GBT ensemble on a training set of feature represen-
tations to distinguish cases that will develop ARDS in the future and cases
that will not. g After training, prediction for a novel case is performed
fully automated, from raw DICOM images, lung segmentation, and fea-
ture extraction to ARDS risk score. ARDS, acute respiratory distress
syndrome; GBT, gradient boosted tree
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Subsequently, we calculated the vocabulary occurrence
feature vectors for each single case. That is, the proportions
of each of the vocabulary classes in a case form a quantized
radiomics (QR) feature vector capturing the composition of
lung appearance patterns. In addition to these 20 values, we
calculated 10 statistical features on all HU values within the
lung: volume, mean, median, mean-average-deviation, vari-
ance, energy, % of HU > 300, > 200, > 100, and > 0.

Finally, we used these 30 lung features for machine
learning—based prediction of whether the patient would devel-
op ARDS or not by training a Gradient Boosted Tree (GBT)
ensemble classifier [34] with 1k decision trees as provided by
the scikit-learn library [35]. After training, ARDS risk predic-
tion is performed fully automated, including lung segmentation
and feature extraction without any human interaction required.

To estimate the predictive capabilities of the machine learn-
ing model on unseen data, we performed stratified k-fold
cross-validation, a resampling procedure used to evaluate
models on a limited data sample. In our study, 40 subsets of
the original cases were obtained by randomization, and then
every subset was validated against the remaining 39 subsets as
training data, repeating this procedure 40 folds. Each fold in
our study was composed of 39 ARDS cases, 81 (- 1) non-
ARDS in the training and one ARDS, 2 (+ 1) non-ARDS
cases in the test set. During each fold, the training data were
used to optimize the model parameters while the test data were
only used to report the prediction score.

The prediction performance was analyzed with a receiver
operating characteristic (ROC) curve and additional predic-
tion metrics (sensitivity, specificity, precision, and fl score)
at the cutoffs yielded by the highest Youden index.

In addition to the supervised prediction experiments, we
performed unsupervised cluster analysis based on the feature
vectors. Statistically, a x> test was used to analyze the rela-
tionship between future ARDS status and the two main clus-
ters formed by the radiomics feature expression. We report
box plots and two-tailed ¢ tests to compare the non-ARDS
and ARDS groups with respect to their risk scores (radiomics
risk score, AIS, and ISS).

We performed statistical association tests to investigate po-
tential spurious relationships between factors that may influ-
ence image appearance and future ARDS status. Specifically,
we tested for associations between future ARDS and contrast
agent administration, scanner model, slice thickness, recon-
struction kernel, and dose. Furthermore, we calculated the
evaluation scores (AUC, sensitivity, specificity, precision,
and f1 score) for subsets of the population with homogeneous
image parameters less influenced by these potential biases.

Statistical analysis

All statistical measures and tests were performed with the
scipy statistics package (v 1.3.1) [36]. To test the associations
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between factors that may influence image appearance and
future ARDS status, the Fisher exact tests have been per-
formed for categorical variables (contrast agent administra-
tion, scanner model, slice thickness, and reconstruction ker-
nel) and a two-tailed ¢ test has been performed for dose (mAs).

Results

In total, 123 patients with different blunt accident mechanisms
(most common causes were pedestrian vs. vehicles (23.4%),
fall from 3 m or higher (25.9%), and motor vehicle accidents
(38.8%)) were included. Death occurred in five of the includ-
ed patients (4%), of whom three died from ARDS, one from
multi-organ failure of different etiology, and one from brain
injury. Detailed demographic characteristics of the study pop-
ulation are shown in Table 1, an overview of technical spec-
ifications of the CT scans is shown in Table 2, and thoracic
injury patterns are listed in Table 3.

One hundred one (77.7%) of the 123 patients had an ab-
breviated injury scale (AIS) of the thorax of 3 or higher, indi-
cating a severe thoracic injury [37], of which 93 (71.5% of
101) had a parenchymal lung injury.

To investigate feature expression patterns, we performed
unsupervised clustering revealing groups of patients with sim-
ilar feature patterns (Fig. 2). We compared the two main clus-
ters of patients with their future ARDS status and found a
significant association (p = 0.012, y? test).

Forty-fold cross-validation of ARDS prediction resulted in
an AUC of 0.79 for the GBT-based radiomics score compared

Table 1 Characteristics of the study population

Patient characteristics Mean =+ Std;

number (%)

Male/female 86/37
Age 412+ 164
ISS 31.9+10.9
AIS-thorax 0 11
AlS-thorax 1 3
AlS-thorax 2 13
AlS-thorax 3 38
AlS-thorax 4 33
AlS-thorax 5 25
Patients arriving intubated at the trauma center 68 (55.3%)
Patients with a chest tube insertion at the site of 15 (12.2%)
injury 41 (33.3%)
Patients with a chest tube insertion at the hospital 3 (2.4%)
Patients needing extracorporeal membrane 40 (32.5%)

oxygenation (ECMO)
Patients developing acute respiratory distress
syndrome (ARDS)

1SS injury severity score, AIS-thorax abbreviated injury score of the
thorax
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Table 2  Technical specifications of the CT scans Table 3  Thoracic injury patterns in the study population
Value Number of cases Pathology Location Frequency Frequency in
per side total
Slice thickness (mm) L5 38
20 37 Lung contusion Unilateral 51 (41.5%) 82 (66.7%)
10 A1 Bilateral 31 (25.2%)
5. 0 . Lung laceration Unilateral 21 (17.1%) 22 (17.9%)
) ) ’ Bilateral 1 (0.8%)
In-plane pixel spacing (mm) 0.56%0.56 to 0.98x0.98 123 Pneumothorax Unilateral 43 (35.0%) 49 (39.8%)
Tube voltage (kV) 120 122 Bilateral 6 (4.9%)
140 1 Hematothorax Unilateral 7 (5.7%) 9 (7.3%)
Exposure (mAs) 39 to 467 123 Bilateral 2 (1.6%)
Scanner Sensation 16 3 Hematopneumothorax Unilateral 7 (5.7%) 8 (6.5%)
Sensation 4 11 Bilateral 1 (0.8%)
Sensation Cardiac 64 6 Rib fractures 1 r%b 16 (13.0%) 87 (70.7%)
. 2 ribs 7 (5.7%)
Sensation Open 102 .
. > 3 ribs 64 (52.0%)
SOMATOM Definition 1 .
. Flail chest 21 (17.1%)
Convolution kernel B60s 3
B60E 5 Sternum fracture 25 (20.3%)
B70 | Thoracic spine fracture 37 (30.1%)
s Extensive surgical emphysema 21 (17.1%)
B70f 114 L .
Aortic dissection 7 (5.7%)
Contrast phase Non-contrast 7 . .
. Diaphragmatic rupture 2 (1.6%)
Arterial 6 Lo
Pneumomediastinum 6 (4.9%)
Venous 110

mm millimeter, £V kilovolt, mAs milliampere second

to 0.66 for ISS, and 0.68 for the AIS-thorax score (Fig. 3).
Additional prediction metrics such as sensitivity, specificity,
precision, and f1 score can be found in Table 4 (cutoffs at the
highest Youden index are plotted in Fig. 3). Prediction using
the radiomics score yielded an fl score of 0.70 compared to
0.53 for ISS and 0.57 for AIS-thorax. The radiomics score
achieved a sensitivity/specificity of 0.80/0.76. The features
with the highest relative importance for classification yielded
by the GBT ensemble during training were quantized
radiomics feature 17 (QR17), HU > 0, and variance, with
HU > 0 and variance showing positive correlation with future
ARDS and QR17 showing a negative correlation. In Fig. 4,
we illustrate the most relevant features HU > 0 and QR17 in
cases with a high radiomics risk score for ARDS and cases
with a low risk score.

Table 5 lists the relationships between factors that may
influence image appearance and future ARDS status. The re-
sults indicate that the correlation between the scanner model
and slice thickness with future ARDS status may not likely
have occurred randomly. To assess the results less influenced
by these potential biases, we performed an evaluation of the
prediction model on two subgroups with homogeneous pa-
rameters: (subgroup 1) only cases scanned during the venous
phase, scanner model S5 (see Table 5) and a high-frequency
reconstruction algorithm (kernel B70f) and (subgroup 2) only

cases with either slice thickness 2 mm or 3 mm. The results
show that the model remains predictive on a level nearly the
same as the whole dataset, indicating a negligible influence of
the tested factors with an f1 score of 0.70 for the full popula-
tion, 0.67 for subgroup 1, and 0.69 for subgroup 2 (also see
Table 4).

Discussion

The early recognition of a developing ARDS in the hours and
days after trauma is critical for timely initiation of adequate
treatment (such as adjusting ventilation for lung protection,
preventing aspiration, restricting the administration of trans-
fusions, or administration of antibiotics) which may decrease
the incidence rate of full ARDS [22, 23]. In the present study,
we could demonstrate that a fully automated machine
learning— and radiomics-based approach can identify
polytraumatized patients with an increased risk of developing
ARDS with higher accuracy than established scores by utiliz-
ing the first CT scan at the time of admission.

Currently, trauma scores such as the ISS or thoracic trauma
severity (TTS) score can be used to estimate the risk of de-
layed ARDS after trauma [11, 19, 38]. However, the ISS is a
combined score of different body regions and, thus, is prone to
error due to the lack of weighting of different regions. With
the proposed radiomics-based approach, a more specific
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Fig. 2 Feature heatmap and unsupervised clustering: Clustered feature
expressions and their association with injury severity scores, the machine
learning—based radiomics risk score, and the future ARDS status. Each
column represents one patient sorted after agglomerative clustering. A x>
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representation of the lung’s injuries could be achieved.
Indeed, the accuracies for the prediction of ARDS are at a
similar level or higher than what was achieved in several
studies using trauma scores (this study: AUC of 0.79, ISS:
AUC of 0.72 [11], TTS: AUC of 0.82 [19]). However, an-
other study could show better results for the ISS with an
AUC of 0.88 [12]. Additionally, the ISS score in our study
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Fig. 3 Quantitative results: This receiver operating characteristic (ROC)
curve shows the superior performance of radiomics-based prediction of
acute respiratory distress syndrome (ARDS) compared to conventional
trauma scores. In addition, the ROC curves for the three most relevant
features as reported by the GBT ensemble are shown and the scores and
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clusters formed by the radiomics feature expressions and the future
ARDS status

showed markedly worse performance (AUC of 0.66) than
the ISS scores in all of the aforementioned studies. A pos-
sible reason can be found in the different inclusion criteria:
whereas the previous study included all patients regardless
of ISS score, our study only included patients with an ISS
score of 16 or higher. In a cohort that includes low ISS
scores, the performance in predicting ARDS will be higher
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Table 4 Results for the prediction of acute respiratory distress syndrome

Prediction based on Sensitivity Specificity Precision f1 score AUC
ISS 0.68 0.59 0.44 0.53 0.66
AIS 0.70 0.64 0.48 0.57 0.68
Radiomics score (whole dataset) 0.80 0.76 0.62 0.70 0.79
Radiomics score (subgroup 1) 0.81 0.79 0.57 0.67 0.79
Radiomics score (subgroup 2) 0.81 0.71 0.59 0.69 0.75
Rib fractures (yes/no) 0.75 0.31 0.34 0.47

1SS injury severity score, AIS abbreviated injury scale (for thorax), AUC area under the curve, subgroup 1 only cases scanned during a venous phase,

scanner model S5, and kernel B70f, subgroup 2 only cases with 2-mm or 3-mm slice thickness

as low ISS scores will lead to more true-negative cases [12].
In our study, the accuracy is reduced by patients that are
more heavily injured, but not injured enough to easily pre-
dict the occurrence of ARDS. Thus, a radiomics-based ap-
proach may help in further stratifying a more heavily injured
patient cohort for which the ISS score has reduced predictive
capabilities.

One reason for this may be the importance of direct lung
injury as an independent risk factor for the development of

Cases with high radiomics risk-score

ARDS, in particular forms of parenchymal lung injuries such
as lung contusions or lacerations [11]. Parenchymal lung in-
juries cause localized and generalized inflammatory reactions
that may lead to ARDS [39, 40]. Consequently, both studies
involving CT and ultrasound have found a positive correlation
of the extent of lung contusions with the development of
ARDS [20, 21, 31, 41, 42].

However, manual volumetry of parenchymal lung inju-
ries is a very time-consuming task and not fit for clinical

Cases with low radiomics risk-score

Fig. 4 Visualization of predictive features: Here, the two most relevant
visual features for ARDS prediction (QR17 and HU > 0) as reported by
the GBT ensemble are visualized. On the left side, the four cases which

received the highest risk score are shown and on the right side the four
cases which received the lowest risk score. In addition, a 3D visualization
of the locations of the features is shown in two representative cases
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Table 5 Assessment of potential technical biases
Contrast Scanner model Slice thickness (mm) Kernel Dose (mAs)
n a v Sel  Sc2  Se3  Se4 Sc5 15 2 3 5 B60f B60s B70s B70f Mean std
No ARDS 4 3 76 0 0 6 3 74 31 22 29 1 2 1 1 79 189 57
future ARDS 3 3 34 1 3 5 3 28 7 15 12 6 3 2 0 35 188 65

0.681 0.389 0.348 0.325 0.033 0.335 0.389 0.011
Fisher Fisher

p value
Test

0.036 0.217 0.685 0.005 0.328 0.247 0.149 1.000 0.92
Fisher Fisher t test

ARDS acute respiratory distress syndrome, # no contrast, a arterial phase; v venous phase, Sc/ SOMATOM Definition, Sc2 Sensation 16, Sc3 Sensation
4, Sc4 Sensation Cardiac 64, Sc5 Sensation Open, mAs milliampere second, s7d standard deviation, Fisher Fisher exact test

application, especially in the time-critical setting of trau-
ma care. Finally, disregarding other pulmonary or pleu-
ral pathologies after trauma (e.g., hemothorax) could
reduce the accuracy for predicting ARDS. A study in-
vestigating chest injury patterns after blunt trauma has
shown pleural collections to be present in ~ 30% of all
cases and in 83% of fatal cases [43]. A hemothorax is
important for the prognosis of morbidity or mortality
after trauma in two ways: on the one hand, by indicat-
ing bleeding from lung laceration or due to vessel inju-
ry and, on the other hand, by constituting a risk factor
for the development of restrictive and infectious pleural
processes, and consequently, respiratory failure [44].
Considering the relevance of a hemothorax, we included
pleural effusions as part of the lung segmentations. The
visualization of predictive features (see Fig. 4) suggests
a high relevance for increased densities in the posterior
pleural space, attributable to hemothorax, and for in-
creased lung parenchymal densities, such as in paren-
chymal lung injuries.

Increased lung densities can represent one or several
underlying pathologies (i.e., parenchymal lung injuries,
edema, bleeding from another lung region, atelectasis).
A clear statement about the densities’ etiology from
images alone is often not possible for radiologists.
Consequently, a study that applied a semiautomatic
method based on thresholds of elevated lung density
resulted in a better prediction of ARDS occurrence than
human readers [45]. The advantage of a radiomics-based
approach is the possibility of providing additional infor-
mation beyond what human vision is capable of by not
only assessing density thresholds, but by including com-
plex statistical relationships of voxels [29]. Feature im-
portance analysis showed that a generic threshold (HU
> 0) has high relevance and a positive association with
future ARDS status. However, one of the fine-grained
appearance classes (QR17) showed high relevance and a
negative association. Visual inspection indicates that this
feature encodes a form of inconspicuous parenchyma
texture.
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In trauma, both pulmonary and extrapulmonary risk factors
influence the course of ARDS development, and, with an
accuracy of 71%, it is possible to assign an extrapulmonary
origin to a typical, more symmetric pattern of ARDS in chest
CT [46]. It would be interesting to assess the performance of a
radiomics analysis to discriminate between ARDS of pulmo-
nary and extrapulmonary origin. Regarding the prediction of
ARDS based on lung alterations that occur during or immedi-
ately after the trauma, it seems unlikely that our proposed
approach can reliably predict ARDS of extrapulmonary origin
as CT images of lung parenchymal changes are the sole input
of the method.

One known extrapulmonary predictor of ARDS is rib
fracture [47]. Whereas our method focused on a
radiomics-based approach to extract information from pa-
renchymal and pleural pathologies, adding rib fractures as
a categorical or ordinal variable might increase the accu-
racy of ARDS prediction. Automated rib fracture detec-
tion on a per case basis (i.e., are rib fractures present or
not in a patient) already exists and could be considered an
addition in further research [48]. Extrapulmonary predic-
tors, such as cardiopulmonary or hematologic disease [47]
or administration of fluids and transfusions [11], provide
further relevant information. However, the clinical utility
is hampered as in trauma patients it may be impossible to
raise a comprehensive history or clinical parameters may
only be available later on. Still, relevant information for
the prediction of ARDS can be extracted from the elec-
tronic health record within the first 6 h after admission to
the hospital by using a machine learning—based approach
[49].

In addition to a risk estimation in an acute setting, a
radiomics-based lung score could also be utilized for
monitoring intensive care unit (ICU) patients. The com-
plex course of disease progression and extensive data of
ICU patients render the correct interpretation of a pa-
tient’s state a challenging task for clinicians. A recent
study has shown the possibility of integrating various
clinical parameters by a machine learning—based algo-
rithm to predict complications (i.e., bleeding, renal
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failure, and mortality) of ICU patients at a level higher
than conventional clinical risk models [50]. Such algo-
rithms have the potential to take a pivotal supportive role
in prediction, diagnosis, and monitoring of ICU patients
and, furthermore, are expandable by adding other forms
of data. Whereas a conventional model may struggle in-
corporating laboratory data and vital functions with med-
ical imaging information, a machine learning model is
able to include radiomics features as additional data.

We recognize several limitations of this study. We ex-
cluded patients with an ISS of 15 or lower; therefore, we
can only assess the predictive capabilities of the proposed
algorithm in a collective with major injuries and an in-
creased risk of ARDS. However, the relatively low pre-
dictive value of ISS scores in this study’s dataset of
polytraumatized patients compared to collectives that in-
cluding less severe injuries (0.66 vs. 0.72 in [11]) indi-
cates a more challenging setting. Furthermore, our cohort
may be biased toward “late” ARDS (occurring > 48 h
after trauma) compared to “early” ARDS (< 48 h) due
to the exclusion of patients who died within 48 h.

To eliminate possible biases through heterogeneous scan-
ner parameters, a completely standardized protocol on the
same scanner would be preferential. In real clinical situations,
particularly across different institutions, such preconditions
are rarely met. Some of the scanner parameters that may in-
fluence radiomics features in this study are different flow rates
and time after contrast agent administration [51], as well as
reconstruction kernel, dose, slice thickness, and scanner type
[52]. This is relevant because a machine learning model might
learn to differentiate patients within the study population
based on technical features, rather than the pathological fea-
tures. In this study, 3 of 7 (43%) patients with a non-contrast
CT, 3 of 6 (50%) patients with an arterial phase CT, and 34 of
110 (31%) patients with a venous phase CT developed ARDS.
We tested for such potential biases, assessed the predictive
performance in a more homogeneous subgroup, and came to
the conclusion that the influence on the model’s predictive
performance is negligible in our dataset (see the “Results”
section, Tables 4 and 5). Interestingly, a correlation between
a specific scanner and future ARDS occurrence may be due to
the fact that more severely injured patients get transferred to a
different scanner when the primary emergency room scanner
is occupied, whereas less severely injured patients are kept on
hold until the primary scanner is vacant again. Such organiza-
tional specifics should be kept in mind as a potential selection
bias.

The features with the highest predictive capability were
markedly increased densities in the posterior region of the
thorax. While the timing of acquisition after injection of con-
trast agent may lead to a diffuse increase in HU of the lung,
which theoretically might be learned by the algorithm, the
visualization of relevant features suggests that the prediction

of ARDS was based on regional abnormalities, rather than the
systematic enhancement.

Furthermore, a standardization of inspiration depth is
not possible for patients who experience severe chest pain
or those who are intubated and with critical vital param-
eters, making respiration-based changes in lung density
another potential source of noise. In the same manner,
the elapsed time between trauma and CT scan may lead
to alterations in lung densities as these may change rap-
idly depending on their etiology (e.g., bleeding, edema,
atelectasis). In this study, all scans were conducted within
one hour after the trauma.

Generally, a radiomics-based algorithm is agnostic towards
predefined concepts of biology and pathology. Therefore, pat-
terns and relationships discovered by such an approach are not
directly attributable to common radiological patterns.
However, they facilitate hypothesis generation for future stud-
ies through the discovery of novel patterns and their visual or
statistical relationships.

In summary, we propose a radiomics-based algorithm for the
prediction of ARDS in polytraumatized patients at the time of
admission to hospital with an accuracy that competes and sur-
passes conventional scores despite the heterogeneous, and there-
fore more realistic, scanning protocols. Due to the generic nature
of radiomics features, this algorithm may constitute a foundation
for future, more complex models that integrate medical imaging
information with clinical parameters. Furthermore, patterns iden-
tified as predictive signatures for ARDS may serve as a basis for
hypotheses regarding underlying biological mechanisms.
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