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Motivation: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (coronavirus dis-
ease, 2019; COVID-19) is associated with adverse outcomes in patients. It has been observed that lethal-
ity seems to be related to the age of patients. While ageing has been extensively demonstrated to be
accompanied by some modifications at the gene expression level, a possible link with COVID-19 manifes-
tation still need to be investigated at the molecular level.
Objectives: This study aims to shed out light on a possible link between the increased COVID-19 lethal-

ity and the molecular changes that occur in elderly people.
Methods: We considered public datasets of ageing-related genes and their expression at the tissue

level. We selected human proteins interacting with viral ones that are known to be related to the ageing
process. Finally, we investigated changes in the expression level of coding genes at the tissue, gender and
age level.
Results: We observed a significant intersection between some SARS-CoV-2 interactors and ageing-

related genes, suggesting that those genes are particularly affected by COVID-19 infection. Our analysis
evidenced that virus infection particularly involves ageing molecular mechanisms centred around pro-
teins EEF2, NPM1, HMGA1, HMGA2, APEX1, CHEK1, PRKDC, and GPX4. We found that HMGA1 and
NPM1 have different expressions in the lung of males, while HMGA1, APEX1, CHEK1, EEF2, and NPM1
present changes in expression in males due to ageing effects.
Conclusion: Our study generated a mechanistic framework to clarify the correlation between COVID-

19 incidence in elderly patients and molecular mechanisms of ageing. We also provide testable hypothe-
ses for future investigation and pharmacological solutions tailored to specific age ranges.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

At the end of 2019 in Wuhan (China), medical facilities reported
acute pneumonia cases with an unknown origin. Further analysis
revealed that a novel coronavirus, named severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), was responsible for that
disease, subsequently called coronavirus disease 2019 (COVID-
19) [1,2]. The clinical manifestations spanned from asymptomatic
infection to severe pneumonia and a severe state of inflammation
(molecularly characterised by a cytokine storm) leading to a fatal
outcome [3–8].
Starting from China, the virus spread in almost all other coun-
tries globally, causing infections and deaths. On 11th March
2020, the World Health Organisation (WHO) declared SARS-CoV-
2 as a pandemic. Current data revealed that the impact of
COVID-19 presents certain peculiar aspects in different nations
that have been deeply investigated [9,10]. Some authors hypothe-
sised that virus mutations were responsible for these differences
[11–14]. Nevertheless, many independent studies agreed that the
mutations might not have a primary role in explaining these differ-
ences [15–17].

Despite the lack of the individuation of the causes, there was a
substantial agreement on the fact that the variation of the
observed case fatality rate (CFR), i.e. the fraction of confirmed cases
leading to fatal outcomes, ranging from 0 to 20% and beyond at
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Fig. 1. Workflow of the experiment. We downloaded public available interaction
data from previous studies. We built the integrated human/SARS-CoV-2 interac-
tome. In parallel, we downloaded the list of genes annotated with ageing keywords
as in MSigDB database. Then, for each SARS-CoV-2 protein, we calculated the
probability that it contains human interactors annotated with ageing keyword. We
obtained a list of SARS-CoV-2 proteins containing a significant number of
interactors related to ageing. Then we calculated the intersection of these sets
(core interactors) obtaining a list of eight human proteins. For each core interactor,
we also considered the expression at tissue level extracting data from GTEx
database. We verified that there exist a significant fraction of interacting partners of
SARS-CoV-2 that are involved in ageing and that are particularly expressed in lung
and in adipose tissue.
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country level, needs to be deeply investigated [18–20]. Among the
other differences, we focused on observing that the infection is sig-
nificantly more lethal in older people [21–25]. This consideration
has also guided the optimisation of vaccination strategy [26].

Some studies have focused on the possible link between
increased mortality rate and some characteristics of older people
[27,28]. In addition, these studies suggested the potential effect
of the virus as a trigger activating the decompensation of other
chronic conditions [29–32]. Akbar et al., [33], discussed a possible
link between the increased chronic inflammatory status occurring
during ageing (termed ”inflammaging” [34,35]), and COVID-19
manifestation that causes the rise of inflammation.

Previous studies have also shown that the understanding of
modification of molecular mechanisms related to the ageing pro-
cess (i.e. modification of gene expression and modulation of regu-
latory mechanisms) may reveal important insights about ageing
[36]. Many studies contributed to identifying such ageing-related
diseases despite the lack of having experimental data [37–
39,35,40]. Computational predictions have also been made in
[36,41] giving both candidate genes and networks [42,43].

Consequently, the study of the intersection between SARS-CoV-
2 and ageing-related molecular alterations could augment the
understanding of COVID-19, thus improving treatment options
[44]. Bhattacharyya et al. presented a first analysis based on some
preliminary public data reinforcing the rationale that such a possi-
ble link exists [45]. The expression of the two human receptors
TMPRSS2 and ACE2, which are recognised by the SARS-CoV-2 pro-
tein Spike, increases with age in mammals [46], further suggesting
a molecular cause for the more severe COVID-19 symptoms with
age.

Six functional open reading frames (ORFs) in the SARS-CoV-2
genome encodes for the four main structural proteins, the Spike
(S), Envelope (E), Membrane (M), and the Nucleocapsid (N), and
ORF1a/ORF1b, which contain information for the replicase–tran-
scriptase complex formed by 16 non-structural proteins (NSP1–
NSP16). The SARS-CoV-2 genome also contains 9 accessory factors
from sub-genomic ORFs (Orf3a, 3b, 6, 7a, 7b, 8, 9b, 9c and 10) [47].
We investigated the relationships and interactions between these
viral components and age-related factors and observed a signifi-
cant overlap between SARS-CoV-2 and ageing group genes’ interac-
tors, considering possible regulatory mechanisms that may be
altered [48,43,49].

Starting from these considerations, we hypothesised that SARS-
CoV-2 interacting proteins (and genes) might show an overlap with
human ageing-related genes higher than chance. Therefore, the
infection may affects these mechanisms that can be already
impaired in older adults, causing severe outcomes. We down-
loaded public available interaction data from Guzzi et al. [50]
and Gordon et al. [51]. Then we considered the interacting partners
that were annotated as ageing genes in MSigDB database [52] ad
we also considered the expression at tissue and sex levels extract-
ing data from the GTEx database [53]. We identified a significant
fraction of interacting partners of SARS-CoV-2 involved in ageing.
These genes are also expressed in the lung, and their expression
is modulated by age and sex, (while we also observed that these
genes are expressed in adipose tissue as reported in Supplemen-
tary Material). The workflow of the experiment is depicted in Fig. 1.
2. Methods

SARS-CoV-2 Interaction Map. We considered the SARS-CoV-2
protein interaction map provided by Gordon et al., [51], and by
Guzzi et al., [50]. Both works provided data about 26 of the 29
SARS-CoV-2 proteins behaviour in human cells by identifying the
human proteins that are physically associated with each of the
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SARS-CoV-2 proteins using affinity-purification mass spectrome-
try. They found high-confidence protein–protein interactions
between SARS-CoV-2 and human proteins; they also provided data
about possible interactions with an associated reliability score. We
considered both high and low confidence interactions.

Databases. We first defined and labelled genes related to the
ageing process as ageing. Then, we considered data provided from
the GTEx dataset containing genes positively and negatively corre-
lated with human age [53]. We gathered data from the GenAge
dataset that derived human genes by projecting sequence ortho-
logs in model organisms. We also considered the MSigDB gene
set collections, which summarised gene information associated
with ageing collected from 70 different studies. We selected data-
sets reporting experiments from Homo sapiens since orthologs’ pro-
jection may produce not reliable results for ageing as described in
[36].

We used the Search Tool for the Retrieval of Interacting Genes
Proteins database (STRING) [54] that is a freely available repository
storing both physical and functional association among proteins.
Users may search the database through a web interface by specify-
ing a protein identifier or inserting the primary sequence. We
queried the database using the identifiers of the nodes of each sub-
network. We used medium confidence as the minimum confidence
score for each interaction and all for the sources of interactions. We
searched the GTEx Portal [55] using the previously described list of
gens. We obtained the expression of those genes in a heat map that
shows expression across all GTEx tissues. Gene Ontology analysis
was performed by using Gene Ontology web portal [56] while
using Reactome Database for identifying related pathways [57].

Bioinformatic and Network Analysis. We selected all known
SARS-CoV-2 interacting partners. We used the Gordon dataset
[51] to obtain all the partners. Then, for each SARS-COV-2 protein,
we retrieved the list of its interactors. We determined the intersec-
tion between the list of human interactors and the ageing-related
genes for each viral protein. We estimated the probability that this
intersection is higher than chance by Fisher’s exact test. In Supple-
mentary Material, we show the sub-networks induced in human
interactome by each SARS-COV-2 protein. For each subnetwork,
we report the main topological parameters: number of nodes,
number of edges, average node degree, average local clustering
coefficient, the expected number of edges. For each sub-network,
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we performed a Gene Ontology enrichment analysis. Network
analysis and visualisation were performed in Cytoscape 3.7.0
[58]. We also tested the significance of the difference in the expres-
sion of EEF2, NPM1, HMGA1, HMGA2, APEX1, CHEK1, PRKDC, and
GPX4 due to age (we considered six different classes), sex, and tis-
sue. All the p-values of the tests were corrected for multiple testing
using Bonferroni correction. We used a Wilcoxon Test for testing
difference in the expression among classes (since the expression
of genes is not gaussian as reported by a Shapiro test). In addition,
the difference among age classes is evaluated using a Kruskal Wal-
lis test.

3. Results

3.1. Network analysis

We selected human interactors for each viral protein. The anal-
ysis revealed that only ten viral proteins (M, NSP2, NSP4, NSP6,
NSP11, NSP13, Orf3a, Orf7a, Orf8, and Orf9c) have interactors with
a significant overlap with respect to ageing-related proteins, as
summarised in Table 1 (p-values have been corrected using Bonfer-
roni correction). Then, we considered those that are enriched for
ageing in a significant way. Finally, we intersected all these sets,
and we obtain a core set of eight proteins: EEF2, NPM1, HMGA1,
HMGA2, APEX1, CHEK1, PRKDC and GPX2 (indicated as core inter-
actors hereafter) as reported in Fig. 2 (see supplementary for the
list of interactors for each viral protein, integrated with the topo-
logical characteristics of the induced subnetwork in the human
interactome).

The Gene Ontology analysis revealed that the whole network is
enriched with the following terms: (GO:0090402) oncogene-
induced cell senescence, (GO:0035986) senescence-associated
heterochromatin focus assembly, (GO:2000774) positive regula-
tion of cellular senescence, (GO:2000773) negative regulation of
cellular senescence, (GO:2000772) regulation of cellular senes-
cence. The analysis of Reactome DB reveals that the subnetwork
is associated with the following pathways: Formation of Senes-
cence Associated Heterochromatin Foci (HSA2559584), Host inter-
actions of HIV factors (HSA162909).

3.2. Expression analysis

We searched the GTEx database for the expression of core inter-
actors as reported in Fig. 2 expressed as TPM (Transcripts Per Mil-
lion). We found that all the interactors are expressed in the lung as
well as in other human tissues (see supplementary materials for
Table 1
P-Values of the enrichment. For each protein, we report the significance of the
enrichment after correction. A p-value lower than 0.01 means that the interactors are
significantly related to ageing (NS stands for not significant).

Viral Protein P-Value Viral Protein P-Value

Spike NS E NS
M 6.84E�03 N NS

NSP1 NS NSP2 1.8E�03
NSP3 NS NSP4 8.32E�03
NSP5 NS NSP6 2.6E�03
NSP7 NS NSP8 3.4E�03
NSP9 NS NSP10 NS
NSP11 1.8E�04 NSP12 NS
NSP13 2.5E�03 NSP14 NS
NSP15 NS NSP16 NS
Orf3a 5.06E�03 Orf3b NS
Orf6 NS Orf7a 1.8E�04
Orf7b NS Orf8 6.9E�04
Orf9b NS Orf9c 1.50E�02
Orf10 NS
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more details). To assess the different outcomes between males
and females we focused on lung tissue and we compared the
expression of these core interactors in males and females as
reported in 3. Since data were not normally distributed (as given
by Shapiro Test), we applied a Wilcoxon Test to evaluate signifi-
cance of the difference in expression between male/female classes.

We evidenced a significant difference for NPM1 and HMGA1
which are significantly downregulated in males, without consider-
ing age as reported in Fig. 3.

We also explored the trend of the core interactors focusing on
lung tissue and six different classes of age (20–29, 30–39, 40–49,
50–59, 60–69, 70–79). We found a significant difference consider-
ing age groups for HMGA1, APEX, CHEK1, EEF2, and NPM1 (p 60.05
as evidenced by a Kruskal Wallis test). Fig. 4 reports this trend.
4. Discussion

Deaths from COVID-19 occur predominantly among older
adults. COVID-19 also appears to be more lethal for men rather
than women [23,9,10,24]. This feature has been found in China,
as well as in Europe and in the United States of America [59].

Starting from this observation, we investigated the molecular
basis of this phenomenon. Next, we recall that ageing is a hetero-
geneous process that presents differences among individuals. In
particular, age-related changes impact many organs producing
possible multi-organ failures, even showing many inter-
individual differences. Beyond these differences, we tried to
explain how the age-related changes at the molecular level can
be relevant to COVID-19 pathology.

To achieve this goal, we integrated interactomics and expres-
sion data related to COVID-19, age and sex. We started from
SARS-CoV-2 interactors, and we isolated age-related from those.
Then we considered the expression value of these genes, and we
further investigated the trend of changes of these genes in age
and sex groups. We identified a set of statistically significant inter-
actors for the ageing process: EEF2, NPM1, HMGA1, HMGA2,
APEX1, CHEK1, PRKDC, and GPX4. As reported in Fig. 7, we found
some interesting changes of these genes considering tissue, age
and sex groups. We also found that NPM1 and HMGA1 are down-
regulated in males (statistically significant regulation), while
HMGA2 is slightly downregulated in males (not significantly)
(Fig. 3).

We also found some statistically relevant changes in age for
EEF2, NPM1, HMGA1, APEX1, and CHEK1 for males (Fig. 5), and
for APEX1 in Females (Fig. 6). With the only exception of HMGA2,
all these genes show a decreased expression with ageing in lung
tissues.

As investigated in [60], ageing is characterised by the decline of
the immune function. Older adults are not immuno-deficient, but
the immune system’s response is often not sufficient to be effective
against antigens. This effect is particularly evident when they are
subject to novel antigens. For example, it is known that both
responses to influenza and vaccination are not efficient in the
elderly [61,62]. Moreover, the elderly accumulate inflammatory
mediators in tissues (inflammageing process), which may occur
by the accumulation of DNA lesions that, in turn, triggers the
increased production of inflammatory mediators [63]. In parallel,
the link between COVID-19 and the suppression of the immune
system has been observed in [64]. Authors found that many pro-
teins related to the immune response were modulated, causing
the possible suppression of such a system.

HMGA1 and HMGA2 genes encode four proteins (HMGA1a,
HMGA1b, HMGA1c, and HMGA2) belonging to the High-
mobility group A (HMGA) protein family [65]. All the proteins
bind AT-rich regions in DNA and modulate gene expression by



Fig. 2. Figure shows tissue level analysis of this work. The Network analysis contributed to find a set of human proteins (yellow nodes) related to aging that interact with
many SARS-CoV-2 proteins (green nodes). The analysis of the expression of the related genes at tissue level revealed that all these genes are expressed in the lung, as well as
in other human tissues. Expression levels are presented as TPMs. (for interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article).

Fig. 3. Figure reports box plot of the expression of the eight core genes grouped by sex in the lung tissue. The evidences a significant difference tested by using a Wilcoxon
Test for NPM1 and HMGA1 genes.
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Fig. 4. Figure reports the difference of the expression of the core genes in lung tissue in different age classes. A � on top of the plot means a significant difference (p � 0:05 as
evidenced by a Kruskal Wallis test).

Fig. 5. Difference in the expression in lung tissue by age classes in males. Expression is reported as TPM.A � on top reveals a modulation in groups.
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acting as transcription factors. Literature reports that HMGA1 has
critical roles in tumorigenesis and the progression of various can-
cers. However, the role of HMGA1 in COVID-19 has not been
explored in the past. We now provide a hypothesis framework
for future research in the functional interplay between ageing
and SARS-CoV-2 infection. HMGA1 is significantly downregulated
both in males and the elderly, and these differences may be asso-
ciated with poor outcomes observed in these classes. It has been
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shown that HMGA1 induces inflammatory pathways in many
cancers, enhance the expression of genes related to neural
stmness and pathways involved cell cycle progression. HMGA1
dysregulation causes aberration in cellular development and
hematopoiesis [66]. Furthermore, the involvement of HMGA1 in
the transcriptional regulation of genes essential in both
the inflammatory response and atherosclerosis has been
established [67].



Fig. 6. Difference in the expression in lung tissue by age classes in females. Expression is reported as TPM. A � on top reveals a modulation in groups.

Fig. 7. Figure summarises main results of the work. Network analysis found that there exist eight proteins related to ageing that are also all targeted by ten SARS-CoV-2
proteins. The analysis of the expression of their genes revealed that there exist difference on the expression of these genes considering both age and sex.
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Our results suggest that low HMGA1 levels may be a risk factor
in COVID-19 patients, given the possibility that interactions
between SARS-CoV-2 and HMGA1 may impair/trigger inflamma-
tory pathways. Furthermore, it has been demonstrated that low
HMGA1 levels in basal stem/progenitor cells of the human airway
epithelium are associated with suppression of the expression of
genes critical to normal differentiation and up-regulation of genes
linked to abnormal differentiation relevant to smoking and chronic
obstructive pulmonary disease [68], which have been demon-
strated to be risk factors associated with COVID-19 mortality [69].
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Similarly to HMGA1, the Nucleophosmin (NPM1) is also down-
regulated in males. NPM1 is related to DNA and cell cycle control
such as ribosome biogenesis, protein chaperoning, centrosome
duplication, histone assembly, and cell proliferation [70,71]. Previ-
ous studies investigated the age incidence of acute myeloid leukae-
mia with mutated nucleophosmin (NPM1) [72,73], while there are
no studies related to these mutations and other diseases. In [74]
the impact of NPM1 modification in older patients has been inves-
tigated for AML, suggesting a worse prognosis for older patients
due to NPM1 changes. The interaction between NPM1 and the
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nucleocapsid protein of the previous SARS-CoV is known to affect
the viral particle assembly [75–77]. The role of NPM1 and Histone
H2AX targeted by other viral proteins has also been reported in
other viruses such as Epstein-Barr and KSHV as a common strategy
to manipulate translation and to promote virus latency [78,79]. A
case of SARS-CoV-2 associated sudden death in an NPM-mutated
AML 50-year-old male patient was reported in [80]. Together with
our findings, this suggests that further studies on interactions
between SARS-CoV-2 and NPM1 are required. Moreover, for older
men, the scenario is furtherly complicated by the downregulation
of EEF2, APEX1 and CHEK1.

The dysregulation of EEF2 may cause the accumulation of DNA
damage [81]. The role of EEF2 in severe cases of COVID-19 has also
been elucidated in [64], and the possible association of downregu-
lation of EEF2 with COVID-19 severity is also suggested by our
study. Moreover, this protein is targeted together with the Eukary-
otic translation initiation factor 2 subunit 1 (EIF2S1) by Orf3a, Orf8,
NSP2, NSP6, NSP11, NSP13, indicating a possible role of the virus to
promote viral translation over cellular translation [82]. In [83] the
synergistic downregulation of both APEX1 and NPM1 has been
clearly observed in oligodendrocyte cells in relation to ageing
APEX1 plays a protective role in the cellular response to oxidative
stress [84], and has a major role in DNA repair and in redox regu-
lation of transcription factors [73]. CHEK1 is targeted together with
CDK1 by many SARS-CoV-2 interactors (NSP2, NSP4, NSP11,
NSP13) and with CDKN2A (Orf3, NSP13), suggesting an additive
effect on the disruption of pathways of apoptosis mediated by
TP53 [85] yet dis-regulated by both senescence and ageing. [86].

Differently, for females we found only the age-dependent mod-
ulation of APEX1. Thus, this may suggest that females may have
less risk factors than males.

In parallel, in supplementary material we report that core inter-
actors are also significantly overexpressed in adipose tissue, there-
fore suggesting a second factor of co-morbidity. Changes in adipose
tissue promote a chronic state of low-grade systemic inflammation
on a phenotypic level, thus increasing the risk of age-associated
diseases [35,87]. Here, we report that core interactors are expressed
in adipose tissue, suggesting a possible role that should be further
investigated. We hypothesise that the molecular relationship
between SARS-CoV-2 and aging is intrinsical: on one side, SARS-
CoV-2 induces a major change to the host cell’s transcriptome/pro-
teome, with hundreds of transcripts/proteins affected [51,88]; on
the other side, this effect is larger in older transcriptomes [89]. Sec-
ondly, ageing modulates the expression of proteins necessary for
the viral cycle of SARS-CoV-2 [46], including those included in
the interactome described in this study.

5. Conclusion

We applied a bioinformatic analysis to perform a qualitative
study of mechanisms of infection by SARS-CoV-2 in older people.

Several studies have shown in the past the modifications of
genes and proteins that occur in older adults. Other studies have
partially elucidated the mechanism of infections and the dysregu-
lated pathways in COVID-19 patients.

We detected a statistically significant overlap between SARS-
CoV-2 interacting proteins and those related to ageing, suggesting
a potentially different response in older people. Our analysis
showed that virus infection mainly affects ageing molecular mech-
anisms centred around proteins EEF2, NPM1, HMGA1, HMGA2,
APEX1, CHEK1, PRKDC, and GPX4. We also found that some of
these genes are differentially expressed in lung tissues of the
elderly, suggesting an increased susceptibility of the elderly to
COVID-19 inflammatory-related manifestations. Finally, we found
that there is a significant difference in the expression considering
both age and sex.
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While causality is often hard to derive in high-throughput data-
sets such as the proteomics/transcriptomics data on which our
study is based [90], we believe that the capability of SARS-CoV-2
to interact with proteins increasing in abundance with ageing
may justify part of the increased severity of COVID-19 in older
individuals.

These results will provide a first step for understanding the
molecular basis of the mechanism of infection and will shed light
on infection progression. The limitation of this study is that the
dataset is correlative, and thus it should be confirmed by in vivo
experiments.
6. Key Points

� A network-based analysis identified some molecular mecha-
nisms that could play a role in the SARS-CoV-2 molecular aeti-
ology and ultimately affect COVID-19 outcome.

� Our analysis evidenced that virus infection particularly affects
ageing molecular mechanisms centred around proteins EEF2,
NPM1, HMGA1, HMGA2, APEX1, CHEK1, PRKDC, and GPX4.

� We found an age-dependent modulation of EEF2, NPM1,
HMGA1, APEX1 and CHEK1 in lung tissue of males.

� We found an age-dependent modulation of APEX1 in females.
� Our study generated a mechanistic framework aiming at clarify-
ing the correlation between COVID-19 incidence in elderly
patients and molecular mechanisms of ageing considering dif-
ferences by age and sex.
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