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Abstract

Interrupted time-series (ITS) designs are a robust and increasingly popular non-

randomized study design for strong causal inference in the evaluation of public health

interventions. One of the most common techniques for model parameterization in the

analysis of ITS designs is segmented regression, which uses a series of indicators and

linear terms to represent the level and trend of the time-series before and after an inter-

vention. In this article, we highlight an important error often presented in tutorials and

published peer-reviewed papers using segmented regression parameterization for the

analyses of ITS designs. We show that researchers cannot simply use the product

between their calendar time variable and the indicator variable indicating pre- versus

post-intervention time periods to represent the post-intervention linear segment. If

researchers use this often-presented parameterization, they will get an erroneous result

for the level change in their time-series. We show that researchers must take care to use

the product between their intervention variable and the time elapsed since the start of

the intervention, rather than the time since the beginning of their study. Thus, the second

linear segment of the time-series indexing the post-intervention level and trend should

be zero before intervention implementation and begin by counting from zero, rather than

counting from the time elapsed since the beginning of the study. We hope that this article

can clarify segmented regression parameterization for the analysis of ITS designs and

help researchers avoid confusing and erroneous results in the level changes of their

time-series.
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Introduction

Interrupted time-series (ITS) designs are a robust and in-

creasingly popular non-randomized study design for strong

causal inference in the quantitative impact evaluation of

public health interventions.1,2 In an ITS design, an interven-

tion (interruption) is introduced at a clear point in time,

with repeated sequential measurements of the outcome of

interest being recorded at equal intervals before and after

the intervention. The impact of the intervention is estimated

by comparing the trend and level of the outcome following

the intervention with the ‘counterfactual’ scenario where

the underlying pre-intervention level and trend continue

unchanged as if the intervention had not occurred.

Compared with before-and-after designs that measure expo-

sure and outcome at only two time points (before and after

the initiation of intervention), ITS designs have stronger in-

ternal validity by allowing for the statistical investigation of

potential threats to validity, including the underlying secular

trend, cyclical/seasonal patterns, short-term random fluctua-

tions, regression to the mean and autocorrelation in the esti-

mates of the effect of a given intervention.3,4 Furthermore,

the design allows for the analysis of the detailed functional

form of intervention effect and takes advantage of repeated

measurements of the same population, thus avoiding ele-

ments of selection bias due to group differences.1

Segmented regression parameterization for the
analysis of ITS designs and a common error

One of the most common techniques for model parameter-

ization in the analysis of ITS designs is segmented regres-

sion, which uses a series of linear segments to represent the

level and trend of the time-series before and after the

intervention.1,3 Bernal et al. (2017) have previously pub-

lished a tutorial in the International Journal of

Epidemiology highlighting a simple and commonly-used

segmented regression model for ITS analyses which

includes two linear segments with one trend pre-

intervention and one trend post-intervention. This parame-

terization allows the evaluation of a main effect of the im-

mediate level and slope changes in a time-series following

an intervention (interruption) of interest3 (see Equation 1).

Yt ¼ b0 þ b1T þ b2X t þ b3TX t Equation 1

where Yt is the outcome at time t, T is the time elapsed since

the start of the study, Xt is a dummy variable indicating the

pre-intervention period (coded 0) or the post-intervention

period (coded 1). b0 represents the baseline level of Y at

T¼ 0, b1 represents the underlying pre-intervention trend

(the change in Y associated with a single-unit increase in

time before the intervention), b2 is purported to represent

the immediate level (or intercept) change immediately fol-

lowing the intervention and b3 is interpreted as the change

in the slope of the trend following the intervention, com-

pared with the pre-intervention trend.

This standard model (Equation 1) has been presented in

numerous previous studies and tutorials on how to cor-

rectly conduct segmented regression analyses of ITS

designs.5–7 However, a different model has also been pre-

sented in both studies and tutorials,8–11 and purported to

represent the same main effect estimates (see Equation 2):

Yt ¼ b00 þ b01T þ b02 X t þ b03 ðT � TiÞ X t

Equation 2

where the interpretations of Yt, T, Xt are the same as those

Key Messages

• We highlight an important error in segmented regression parameterization for interrupted time-series (ITS) analyses

often presented in turorials and peer-reviewed published papers.

• We show that researchers cannot simply use the often-presented product between their study time variable and their

intervention dummy variable (for example, b3TXt ) to represent the second linear segment in their analysis. T is the

time elapsed since the start of the study, Xt is a dummy variable indicating the pre-intervention period (coded 0) or

the post-intervention period (coded 1). Despite being commonly presented in the peer-reviewed literature, research-

ers using this parameterization will receive an erroneous and biased result for the main effect of the immediate level

change of the time-series.

• To parameterize the second segment in a segmented regression analysis, researchers must centre their time variable

in the interaction term of study time and their intervention dummy variable, subtracting out the study time (Ti) when

the intervention starts (b03ðT � TiÞXt ), where Xt ¼ 1 for T �Ti.

• In doing so, the first time point of the second linear segment should start indexing from zero instead of the time

elapsed since the beginning of the study (as it does when a simple interaction term of b3TXt is used).
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in Equation 1, Ti represents the time point when the inter-

vention starts (Xt ¼ 1 for T �Ti) and the interpretations of

b00 , b01, b02 and b03 are the same as the purported interpre-

tation of b0 , b1, b2 and b3 in Equation 1, respectively. The

singular difference between the two models is the parame-

terization of the second linear segment, corresponding to

b03. In Equation 1, this second segment is parameterized by

the product between the intervention dummy variable (Xt)

and the time elapsed since the beginning of the study (T).

In Equation 2, the second segment is parameterized by the

product between the intervention (Xt) and the time elapsed

since the beginning of the intervention (T-Ti).

The questions we ask now are the following: (i) are these

models equivalent?; and ii) do they both yield the purported

interpretation of interest for our cofficients? In order to an-

swer this question, we generated a simple simulated dataset

using hypothetical parameters in the R and Stata statistical

programs (R version 3.5.3, Stata 15) and fit the two models

to the data to compare the estimated coefficients with the

parameters we initially used to simulate the data (see

Supplementary File S1a, available as Supplementary data at

IJE online, for R code and Supplementary File S1b, available

as Supplementary data at IJE online, for Stata code). For the

simulated data, the dependent variable is the weekly mea-

surement of an outcome of interest from week 0 to 150; the

outcome follows a linear trend with baseline level of 30 and

a pre-intervention slope of 1/week. The intervention starts at

T ¼ 100 and is associated with an immediate level increase

of 5 and an increase in the slope by 0.3/week. Normally-

distributed noise was also added to the simulated dependent

variable.

The results from the two models are presented in

Table 1. The estimates of b0, b1, and b3 from Equation 1

are very close to the simulated parameters (the truth),

whereas the estimate of b2 is different from the true imme-

diate level change. All of the estimated coefficients, b00, b01,

b2 and b03, from Equation 2 are close to the simulated

parameters and represent the baseline level, the pre-

intervention slope, the immediate level change

post-intervention and the post-intervention slope change,

respectively.

Based on our results in Table 1, it is clear that b2 in

Equation 1 does not represent the purported immediate

level change associated with the intervention. In order to

interpret b2 and understand how it differs from b02 in

Equation 2, we can rearrange Equation 1:

Yt ¼ b0þ b1T þ b2Xt þ b3TXt

¼ bo þ b1T þ b2Xt þ b3½ðT � TiÞ þ Ti�Xt

¼ bo þ b1T þ ðb2 þ b3TiÞXt þ b3ðT � TiÞXt

Equation 1

Yt ¼ b00 þ b01T þ b02 X t þ b03 ðT � TiÞ X t

Equation 2

From Table 1 we notice that the estimated b0, b1, and b3

from Equation 1 are equivalent to the estimated b00, b01,

and b03 respectively from Equation 2. Moreover, the fitted

values of the outcome from Equation 1 are exactly the

same with those from Equation 2 (see Supplementary

Dataset S1, available as Supplementary data at IJE online).

Therefore, b2 in the above transformation of Equation 1

should be equal to b02 - b3Ti, indicating that the estimated

immediate level change (if we incorrectly presume that it is

represented by b2) from Equation 1 is biased because of its

negative association with the product of the slope change

(b3) and the time point when the intervention starts (Ti).

Table 2 presents the deriviation and the relationships of

the coefficients in Equation 1 and Equation 2, which fur-

ther confirms that b0 ¼ b00; b1 ¼ b01; (b2þb3Ti ) ¼ b02; b3 ¼
b03, representing the baseline level, pre-intervention slope,

level change and slope change for Equation 1 and

Equation 2, respectively. For additional clarity, please see

Table 3 for the differences in raw data structure for

Equation 1 and Equation 2. Researchers should clearly

note that in Table 3, both T (time elapsed since start of the

study) and (T � Ti)Xt begin counting from zero and not

one. To correctly estimate the main effect of the level

change, (T � Ti)Xt must be zero at the first time point post

intervention implementation (Xt¼1). In addition, if

Table 1. Comparison of estimates from Equation 1 and Equation 2 to the ‘true’ parameters used in the data simulation

Simulated parameters Equation 1 Equation 2

Point estimates Standard error Point estimates Standard error

Baseline level 30.00 29.99 (b0) 0.06 29.99 (b00) 0.06

Pre-intervention slope 1.00 1.00 (b1) 0.00 1.00 (b01) 0.00

Purported level change 5.00 �25.20 (b2) 0.34 4.84 (b02) 0.10

Slope change 0.30 0.30 (b3) 0.00 0.30 (b03) 0.00

The intervention starts at Ti ¼ 100; b2 � b’2 � b3*Ti; (�25.12� 4.84 � 0.3� 100)
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researchers wish to interpret B0 as the first time point in

their time-series, T (time elapsed since the start of the

study) must begin counting from zero.

For illustration, Figure 1 visualizes the predicted

trend based on the two models and the interpretation of

the coefficients. As is seen in Figure 1, b2 (shown as

B-C) is the estimated level change from Equation 1,

which is a an erroneous result and does not represent the

immediate level change of interest. b02 (shown as B-A) is

the estimated level change from Equation 2, and repre-

sents the immediate level change of interest in our

analysis.

Table 2. Interpretation of the coefficients in Equation 1 and Equation 2 along with the relationships between the coefficeints of

the two models

Equation 1 Equation 2 Relationships

Baseline level:

E(YtjT ¼ 0)

b0 b00 b0 ¼ b00

Pre-intervention slope:

E(Ytþ1 � Yt j T � Ti)

[b0 þ b1(Tþ1)] � (b0 þ b1T)¼ b1 [b00 þ b01(T þ 1)] � (b00
þ b01T)¼ b01

b1 ¼ b01

Post-intervention slope:

E(Ytþ1 � Yt j T>Ti)

[b0 þb1(Tþ1)þb2þb3(T þ 1

� Ti)]� [b0 þb1Tþb2þb3(T

� Ti)]¼ b1þb3

[b00 þb01 (T þ 1) þ b02 þ b03 (T

þ 1 � Ti)] � [b00 þb01 T þ b02
þ b03 (T � Ti)]¼ b01þb03

b3 ¼ b03

Slope change:

E(Ytþ1 � Yt j T>Ti) –

E(Ytþ1 � Yt j T�Ti)

(b1þb3) � b1¼ b3 (b01þb03) � b01¼ b03

Immediate/level change:

E(Yt jT ¼ Ti & Xt ¼ 1 ) �
E(Yt j T¼Ti & Xt ¼ 0)

[b0 þb1Tþ(b2þb3Ti)]-[b0 þb1T]

¼ b2þb3Ti

(b00 þ b01T þ b02) � [b00
þ b01T]¼ b02

b2 þ b3Ti ¼ b02

Where Yt is the outcome at time t, T is the time elapsed since the start of the study, Xt is a dummy variable indicating the pre-intervention period (coded 0) or

the post-intervention period (coded 1). Ti represents the time point when the intervention starts (Xt ¼ 1 for T � Ti). b0 or b00 represents the baseline level of Y at

T¼ 0, b1 or b01 represents the underlying pre-intervention trend (the change in Y associated with a single-unit increase in time before the intervention), (b2 þ b3Ti)

or b02 both purport in the peer-reviewed literature to represent the immediate level (or intercept) change following the intervention, and b3 or b03 is interpreted as

the change in the slope of the trend following the intervention, compared with the pre-intervention trend

Table 3. Example dataset structure for Equation 1 [erroneous

results for b2 (level change)] versus Equation 2 [correct

results for b02 (level change)]

Equation 1 (erroneous) Equation 2 (correct)

T Xt TXt T Xt (T � Ti)Xt

0 0 0 0 0 0

1 0 0 1 0 0

2 0 0 2 0 0

. . . . . .

99 0 0 99 0 0

100 1 100 100 1 0

101 1 101 101 1 1

102 1 102 102 1 2

. . . 1 . . . 1 . . .

150 1 150 150 1 50

Where T is the time elapsed since the start of the study, Xt is a dummy vari-

able indicating the pre-intervention period (coded 0) or the post-intervention

period (coded 1). Ti represents the time point when the intervention starts (Xt

¼ 1 for T � Ti). In this example, Ti ¼ 100.
Figure 1. Interrupted time-series parameterized as a segmented regres-

sion model including a level and slope change. The solid lines represent

the predicted trend based on the two models. b2, demonstrated as

(B-C), is the estimated level change from Equation 1, which is a an

erroneous result and does not represent the immediate level change of

interest. b’2, demonstrated as (A-B), is the estimated level change from

Equation 2, and is the correct result and represents the immediate level

change of interest in our analysis
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Conclusions

In this article we have highlighted an important error that

is often presented in tutorials and published papers using

segmented regression parameterization for the analyses of

ITS designs. Specifically, Equation 1—which results in an

erroneous result for the immediate level change of the

time-series—is described as the correct method for param-

eterizing segmented regression analyses of interrupted

time-series in a tutorial article recently published by

Bernal et al. (2017) in the International Journal of

Epidemology.

We have used a simulated case to show that care must

be taken in parameterizing the second linear segment us-

ing segmented regression analyses for ITS designs.

Researchers cannot use the often-presented parameteriza-

tion of the simple product between study time and their in-

tervention dummy variable (Equation 1). Using this model

will lead to biased and erroneous findings for the main ef-

fect of the level change of their time-series. The correct pa-

rameterization is to use a second linear segment that is

zero before intervention implementation, and then counts

from zero (Equation 2) rather than the time elapsed since

study start. This can be accomplished by centring the in-

teraction term and subtracting the study time that inter-

vention starts: b03ðT � TiÞ X t. For clarity, researchers

should take care to confirm that this second linear seg-

ment begins counting from zero and not one. That is, the

second linear segment should be zero for the first time

point after intervention initiation (Xt ¼ 1). If the second

segment starts counting from one instead of zero, the im-

mediate level change may also be biased due to the inabil-

ity to separate the effects of the level change and potential

slope changes. Last, if researchers wish to be able to inter-

pret B0 as the first time point in their time-series they

should confirm that their study time variable (T in our ex-

ample) begins counting from zero and not one (see

Table 3).

Supplementary Data

Supplementary data are available at IJE online.
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