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Abstract: This paper was aimed at finding out the solution to the problem of insufficient dimensional
accuracy caused by non-linear shrinkage deformation during injection molding of small module
plastic gears. A practical numerical approach was proposed to characterize the non-linear shrinkage
and optimize the dimensional deviation of the small module plastic gears. Specifically, Moldflow
analysis was applied to visually simulate the shrinkage process of small module plastic gears during
injection molding. A 3D shrinkage gear model was obtained and exported to compare with the
designed gear model. After analyzing the non-linear shrinkage characteristics, the dimensional
deviation of the addendum circle diameter and root circle diameter was investigated by orthogonal
experiments. In the end, a high-speed cooling concept for the mold plate and the gear cavity was
proposed to optimize the dimensional deviation. It was confirmed that the cooling rate is the most
influential factor on the non-linear shrinkage of the injection-molded small module plastic gears. The
dimensional deviation of the addendum circle diameter and the root circle diameter can be reduced
by 22.79% and 22.99% with the proposed high-speed cooling concept, respectively.

Keywords: small module plastic gears; non-linear shrinkage; injection molding; dimensional devia-
tion

1. Introduction

In recent decades, with the development of polymer manufacturing technology [1–4],
the share of plastic gears in the gear market has gradually increased. Compared with
metal gears, plastic gears have obvious advantages [5] such as low weight, low cost,
self-lubrication, strong ability to absorb shock and vibration, etc. Therefore, it is widely
used in frontier such as medical devices, aerospace, and industrial robots [6,7]. The latest
additive manufacturing and 3D printing processes manufacturing is a great breakthrough
for plastic gears manufacturing, but it is mainly used in small batch production [8]. At
present, plastic gears are mainly manufactured by injection molding [9–11] because of its
low production cost and short production cycle. The injection molding technology for
conventional gears is mature and can basically meet the use requirements. However, for
micro-nano manufacturing grade small module plastic gears (gears with module less than
or equal to 1 mm are usually called small module gears), there are still many challenges to
be addressed in micro-injection molding [12,13]. The biggest issue faced by small module
plastic gears is the serious shortage of dimensional accuracy. Due to the inherent shrinkage
of polymer [14–16], plastic parts could experience a non-linear shrinkage in the stage of
pressure holding and cooling, resulting in deviation between the final plastic part and the
mold cavity geometry. Moreover, the overall size of small module plastic gears is smaller,
and the shape deviation has a more significant impact on its dimensional accuracy. Low
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dimensional accuracy will affect the stability of gear transmission, produce vibration, and
noise, and accelerate the fracture of tooth root and gear wear [17,18]. It will inevitably
shorten the service life of small module plastic gears [19].

The key to solve the problem of insufficient dimensional accuracy of small module
plastic gears is to control the non-linear shrinkage of plastic parts in the molding process.
Different from conventional module gears, small module gears have smaller specific surface
area and smaller convection and radiation heat dissipation resistance during cooling. The
heat transfer at the interface [20–23] during melt molding is complex and changeable, so
the uneven heat transfer at various parts of the gear is more obvious. The premise of
shrinkage control is to understand the shrinkage characteristics of small module plastic
gears. However, because the forming process of plastic gears is not visualized and the
experimental conditions are difficult to control, it is difficult for researchers to quantitatively
describe the shrinkage characteristics of plastic gears in the production process. It is also
impossible to selectively control the influencing factors in the molding process of small
module plastic gears. To study the forming process of small module plastic gears visually, it
is of great significance to use computer numerical simulation technology [24–26] to simulate
the forming shrinkage behavior of gears. It can not only reduce the cost of research and
development experiments but also greatly shorten the production cycle. At present, the
finite element analysis software Moldflow can simulate the polymer manufacturing process
completely and accurately [27,28].

Shrinkage behavior of plastic parts is related to many factors such as processing
equipment, material properties, mold structure, plastic parts geometry, and injection
molding process parameters [29–31]. For gears whose dimensions have been determined
in practical production, the key concern is the influence of injection molding process
parameters on shrinkage. Gear injection molding process parameters are mainly divided
into three factors: time, pressure, and temperature. Various factors affecting the cooling
shrinkage process of small module plastic gears should be comprehensively considered
through characteristics analysis [32,33]. At the same time, there are many injection molding
process parameters, which will consume a lot of time during test adjustment. Many
scholars have studied the process parameters of conventional gear injection molding and
found that Taguchi method plays a great role in reducing the number of tests and adjusting
the process parameters [34–37]. Moreover, it is found that many parameters have little
influence on the warpage and shrinkage deformation of microstructure parts, which is
helpful to further reduce the complexity of research.

In view of the challenges mentioned above, Zhu et al. found that combination of
shrinkage directions and shrinkage distances of points on an injection-molded part de-
termine shrinkage ratios for various dimensions of the part, and shrinkage directions are
more influential to shrinkage ratios of dimensions, which offered a unique approach to un-
derstand the shrinkage principles of injection-molded parts [38]. Ghazali et al. successfully
analyzed the plastic gear injection molding process using MPI software [39]. Ramkumar
et al. found that Taguchi optimization and ANOVA method are very useful in determining
the most important molding process parameters that affect volume shrinkage and optimiz-
ing control parameters to achieve minimum part shrinkage [40]. Eghbal Hakimian et al.
also used the Taguchi method to assist numerical simulation to analyze the influence of
injection molding parameters and thermoplastic composites on the maximum warpage of
injection-molded micro gears [41]. However, the injection gate of the micro gear is set in
the gear teeth, which is inconsistent with the actual production. Jain et al. developed a 3D
model of industrial size plastic gear using pro E and analyzed the flow of plastic gears [42].
Mehat et al. used MPI simulation software to simulate and analyze the injection molding
process of polymer gear. Using the Taguchi optimization method, it was found that the
process parameters that have great influence on gear shrinkage are melt temperature,
packing pressure, and packing time [43].

At present, most researchers’ research on shrinkage of plastic gears mainly stays at
the stage of large and medium module. There is little research on the non-linear shrinkage
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characteristics of small module plastic gears. Furthermore, the research target parameters
only stay in the stage of maximum warping shrinkage deformation of gears, and there is no
targeted research on dimensional deviation. Therefore, it is a great challenge to optimize
the molding accuracy of small module plastic gears at present.

In this paper, aiming at the non-linear shrinkage problem of injection-molded small
modulus plastic gear, a practical numerical approach was proposed to characterize the
nonlinear shrinkage and optimize dimensional deviation of small module plastic gears.
Moldflow was used to simulate the warping shrinkage deformation and intuitively predict
the gear-forming shrinkage process. The 3D shrinkage model of gear was successfully ex-
ported, and the shrinkage characteristics of small module plastic gears were studied. Based
on the characteristics research, taking the key dimensional deviation of small module gears
(addendum circle diameter and root circle diameter) as the response target, the orthogonal
experiments were designed. The influence relationship between key process parameters
and key dimensional deviation of small module gears and its influence contribution ratio
was obtained. Under the guidance of the best combination of parameters in orthogonal
experiments, a high-speed cooling technology of moldboard-cavity combination for small
module plastic gears was proposed. Although there is no experimental verification in
this paper, the viscosity model and constitutive model adopted by the material are all
from Moldflow material database. Based on the wide application of Moldflow in practical
engineering and compared with the research results of other scholars, the obtained results
provide credible theoretical basis for die cavity design and shrinkage control and have
great guiding value.

2. Materials and Methods
2.1. Material

The properties of polymer materials are directly related to the final molding quality of
small module plastic gears. The selection of plastic gear materials should comprehensively
consider three aspects: service performance, process performance and economic cost [44].
Polyformaldenyde (POM) [45,46], as the most used thermoplastic engineering plastic for
gear products, has excellent comprehensive properties. In this study, POM Delrin 500 P
produced by DuPont was selected as the research material of small module plastic gears in
Moldflow material library, which is the most used polymer material for small module gears.
The physical properties of POM and Cross-William-Landel-Ferry (Cross-WLF) viscosity
model are shown in Tables 1 and 2, respectively. In addition, the Cross-WLF viscosity model
represent the correlation of temperature, shear rate, and pressure based on the viscosity
of thermoplastic materials. Figure 1a shows the (Pressure, Volume, Temperature) PVT
variation curve of the material, and Figure 1b shows the viscosity curve of the material in
molten state. Specifically, the PVT variation curve describes the temperature and pressure
relationship of the polymer in the whole processing range. Meanwhile, the curve of shear
rate and viscosity describes about the viscosity change in the flow process of polymer,
which is also supplemented in Table 2.

Table 1. Polyformaldenyde (POM) physical properties table.

Factor Value

Melt density (g/cm3) 1.1027
Solid density (g/cm3) 1.387

Hardness (HRO) 92
Thermal conductivity (W/m·K) 0.29

Water absorption (%) 1.4
Coefficient of friction 0.25
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Table 2. The Cross-William-Landel-Ferry (WLF) viscosity model.

Factor Value

n 0.1958
Tau∗(Pa) 378,000
D1 (Pas) 7.29 × 1011

D2 (K) 223.15
D3 (K/Pa) 0

A1 25.44
A2~(K) 51.6
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2.2. Gear 3D Modeling

In this study, to meet the requirement of finite element simulation analysis accuracy
of small module plastic gears, a commercial-computer aided design software Unigraphics
(UG) with more powerful performance was selected to build the 3D model of the designed
gear [47]. In order to more directly and clearly analyze the non-linear shrinkage characteris-
tics of gear and avoid the influence of gear type, the most common involute spur gear was
selected as the research object. The gear 3D model built in this study was a high precision
small module gear. The 3D model and geometric parameters of the designed gear are
shown in Figure 2.
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2.3. Numerical Analysis

In this study, the gear numerical model established by Zhu and other researchers is
combined and improved [38–43]. The proposed numerical approach was realized in a
commercial finite element analysis code under the brand name of Moldflow. First, the 3D
model of designed gear established in UG was imported into Moldflow in STP format.
Then, according to the designed gear size, appropriate grid density was set for double-layer
grid division. The grid statistics are shown in Table 3. The grid accuracy was enough to
simulate the gear model. To study the non-linear shrinkage of small module plastic gears,
the analysis sequence of “cooling filling and pressure packing warpage” was selected. The
gear had a central hole structure and a central symmetrical geometric shape. For full fill and
even cool, the most common three-pin uniform gate was designed. In addition, the gear
was cooled by four sets of straight-through cooling circuits of upper and lower templates,
which can be produced by 3D printing. The simulation model of the designed gear is
shown in Figure 3. First, the characteristics analysis pre-test research of small module
plastic gears was carried out under the default process parameter level shown in Table 4.

Table 3. Grid statistics.

Factor Value

Number of elements 51,322
Minimum aspect ratio 1.54
Maximum aspect ratio 8.39
Average aspect ratio 1.16

Match percentage (%) 90.9
Reciprocal percentage (%) 92.7
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Table 4. Pre-experiment process parameters.

Melt
Temperature

(◦C)

Mold
Temperature

(◦C)

Packing
Pressure (MPa)

Packing Time
(s)

Coolant
Temperature

(◦C)

210 80 60 25 25

2.4. Orthogonal Experiments

Since the cavity geometry, polymer materials, and injection molding machine models
are not easy to change, the main way to control the shrinkage of small module gears is to
control key process parameters. It is very important to study the influence of relationship
between injection molding process parameters and molding accuracy of small module
plastic gears. There are many process parameters involved in the injection molding process
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of small modulus plastic gear, so it is not suitable to use single factor analysis. Orthogo-
nal experimental analysis method should be adopted for this research [48]. Orthogonal
experiment is another design method to study multi-factors and multi-levels, which selects
some representative points from the comprehensive experiment according to orthogonality.
Using orthogonal experiment, not only the number of experiments is greatly reduced but
also the calculation of statistical analysis is simplified.

Therefore, to better study the influence of process parameters on gear shrinkage, the
research focuses on the controllable process parameters that affect filling, pressure keeping,
and cooling process. In this study, the key parameters such as melt temperature, mold
temperature, packing pressure, packing time, and coolant temperature were selected for
orthogonal experimental design. The selection level of each parameter was determined
according to the recommended polymer process parameter level in the material library,
as shown in Table 5. Moreover, the L25

(
55) orthogonal array, as shown in Table 6, was

selected to simulate the cooling filling and pressure packing warpage according to the
simulation model in Figure 3.

Table 5. The level of injection molding process parameters.

Factor Parameter Level 1 Level 2 Level 3 Level 4 Level 5

A Melt temperature (◦C) 190 200 210 220 230
B Mold temperature (◦C) 70 80 90 100 110
C Packing pressure (MPa) 40 50 60 70 80
D Packing time (s) 15 20 25 30 35
E Coolant temperature (◦C) 10 15 20 25 30

Table 6. L25
(
55) orthogonal array.

Run#
Factor

A B C D E

1 1 1 1 1 1
2 1 2 2 2 2
3 1 3 3 3 3
4 1 4 4 4 4
5 1 5 5 5 5
6 2 1 2 3 4
7 2 2 3 4 5
8 2 3 4 5 1
9 2 4 5 1 2

10 2 5 1 2 3
11 3 1 3 5 2
12 3 2 4 1 3
13 3 3 5 2 4
14 3 4 1 3 5
15 3 5 2 4 1
16 4 1 4 2 5
17 4 2 5 3 1
18 4 3 1 4 2
19 4 4 2 5 3
20 4 5 3 1 4
21 5 1 5 4 3
22 5 2 1 5 4
23 5 3 2 1 5
24 5 4 3 2 1
25 5 5 4 3 2
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2.5. Range Analysis and ANOVA

The range analysis can visually assess the influence level of each process parameter on
the key dimensional deviation of the gear. In addition, the optimal levels can be obtained.
The range (R) equation was calculated according to the following equation.

Rj = max
(
Kj1, Kj2, · · · , Kjm

)
− min

(
Kj1, Kj2, · · · , Kjm

)
(1)

where Kjm is the mean sum of experiment indexes, j is the column number, and m is the
level number.

To evaluate the specific contribution percentages (C%) of each molding process pa-
rameter to the key dimensional deviation of small module plastic gears, the analysis of
variance (ANOVA) of gear shrinkage results was carried out by Minitab 18 software. The
C% was calculated according to the following equation.

Ci% =
SSi
SST

× 100 (2)

where Ci is the percentage contribution (C%) of each factor, SSi is the sum of the square of
each factor, i is the factor number (where i = 1 represents factor A and where i = 5 represents
the factor E), and SST is the sum of the squares of the effects (treatments), i.e., SST = ∑ SSi.
The percentage contribution of each factor represents the influence rate.

3. Results
3.1. Shrinkage Characteristics Analysis of Small Module Plastic Gears

The warpage deformation results of the designed gear were obtained by Moldflow
software simulation analysis. Warpage deformation is the direct cause of gear dimensional
deviation. Warpage deformation is mainly caused by three effects, which are uneven
shrinkage, uneven cooling, and orientation effect. Figure 4 is the nephogram of the whole
warpage deformation effect of the designed gear, and Figure 4a is the total deformation of
the gear, with the maximum deformation of 0.1125 mm. Figure 4b shows the deformation
of gears caused by uneven shrinkage. It can be clearly seen that the deformation caused by
uneven shrinkage is very close to the overall deformation of the gear, and the maximum
deformation is 0.1105 mm. Figure 4c shows the deformation of gears caused by orienta-
tion effect. It can be seen that the cloud image of orientation effect presents three-point
central symmetry distribution, which is closely related to the distribution of gates, and
the maximum deformation is 0.0023 mm. Figure 4d shows the deformation of the gear
caused by uneven cooling, and the maximum deformation is only 4 × 10−6 mm, which
can be ignored basically. It is concluded that the deformation of small module plastic gear
mainly depends on uneven shrinkage. It explains theoretically that the results of warping
and shrinkage in Erfan Oliaei et al. are very close and have the same changing trend [37].
Moreover, the effects of uneven cooling and orientation have little influence on the warpage
deformation of the gear, which can be ignored directly. Therefore, it is necessary to analyze
its non-linear shrinkage characteristics to study the dimensional accuracy of small module
plastic gears.
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Next, the shrinkage of small module plastic gears was divided into three directions:
X, Y, and Z, as shown in Figure 5. With the structural center of the gear as the origin,
Figure 5a,b shows the shrinkage of the designed gear in the X-axis direction and the Y-axis
direction. It shows that the shrinkage trends of the two directions are very close, and the
shrinkage of the gear in the X-axis direction and Y-axis direction at both ends of the origin
presents symmetrical distribution. Figure 5c shows the shrinkage of the gear in the Z-axis
direction, i.e., the thickness direction of the gear. It shows that the maximum shrinkage
is only 0.01 mm. For small module plastic gears, the shrinkage in the thickness direction
is very small, so the research can focus on the radial shrinkage of gears. In addition, the
shrinkage of the gear is symmetrical about the center of the structure. To simplify the
calculation, some areas can be selected along the radius direction as the research object to
replace the overall shrinkage.



Polymers 2021, 13, 2092 9 of 20
Polymers 2021, 13, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 5. The shrinkage nephogram of the designed gear in different directions: (a) shrinkage in X-axis direction, (b) 
shrinkage in Y-axis direction, and (c) shrinkage in Z-axis direction. 

During the forming process, the polymer melt follows the isotropic and centripetal 
shrinkage law centered on the gate. However, the small modulus plastic gear adopts 
three-point uniform distribution injection mode, and the gate is not in the center of the 
whole structure. As shown in Figure 6, it shows that the shrinkage of the designed gear 
still presents roughly isotropic shrinkage, and the shrinkage situation is the same at the 
same diameter. To study the radial shrinkage of small module plastic gears, the radius of 
the gear was divided equally on the scale of 0.20 mm, and the shrinkage at each point was 
measured. The results shown in Figure 6 were obtained. It is concluded that the radial 
shrinkage of gears presents a linear relationship and follows the law of isotropic centrip-
etal shrinkage under the three-point uniform distribution injection mode.  

 

Figure 6. The radial shrinkage of the designed gear. 

To further understand the shrinkage characteristics of small module plastic gears, the 
analysis object can be specific to the key positions of the gear. Figure 7a shows the radial 
shrinkage nephogram of the designed gear. First, the designed gear with the shrinkage 
model was compare. It shows that the shrinkage of gear teeth is the largest. By enlarging 
partial teeth and the central hole, it can be clearly seen that the shrinkage at tooth top A 
and tooth root C is very large, while the shrinkage at B near the pitch circle is very small. 
Moreover, there is almost no shrinkage at the center hole. It is concluded that the shrink-
age of gear is mainly concentrated in addendum circle and root circle. Therefore, when 
we study the shrinkage of small modulus plastic gears, we should focus on the shrinkage 
of addendum circle and root circle. Figure 7b compares the volume shrinkage when the 
gear is ejected with the air-pocket and shows that the volume shrinkage in the center of 
the gear tooth thickness direction is larger. In addition, it shows that there are bubbles in 
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During the forming process, the polymer melt follows the isotropic and centripetal
shrinkage law centered on the gate. However, the small modulus plastic gear adopts
three-point uniform distribution injection mode, and the gate is not in the center of the
whole structure. As shown in Figure 6, it shows that the shrinkage of the designed gear
still presents roughly isotropic shrinkage, and the shrinkage situation is the same at the
same diameter. To study the radial shrinkage of small module plastic gears, the radius of
the gear was divided equally on the scale of 0.20 mm, and the shrinkage at each point was
measured. The results shown in Figure 6 were obtained. It is concluded that the radial
shrinkage of gears presents a linear relationship and follows the law of isotropic centripetal
shrinkage under the three-point uniform distribution injection mode.
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To further understand the shrinkage characteristics of small module plastic gears, the
analysis object can be specific to the key positions of the gear. Figure 7a shows the radial
shrinkage nephogram of the designed gear. First, the designed gear with the shrinkage
model was compare. It shows that the shrinkage of gear teeth is the largest. By enlarging
partial teeth and the central hole, it can be clearly seen that the shrinkage at tooth top A
and tooth root C is very large, while the shrinkage at B near the pitch circle is very small.
Moreover, there is almost no shrinkage at the center hole. It is concluded that the shrinkage
of gear is mainly concentrated in addendum circle and root circle. Therefore, when we
study the shrinkage of small modulus plastic gears, we should focus on the shrinkage
of addendum circle and root circle. Figure 7b compares the volume shrinkage when the
gear is ejected with the air-pocket and shows that the volume shrinkage in the center of
the gear tooth thickness direction is larger. In addition, it shows that there are bubbles in
this part. Therefore, it is known that the existence of bubbles has a certain effect on the
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shrinkage deformation of gears. Because the gear teeth have relatively large shrinkage and
relatively small structure, the gear shrinkage is expanded according to the ratio of 1:20, and
it enlarges the partial teeth, as shown in Figure 7c. It shows that the radial shrinkage of the
center part of the gear teeth along the thickness direction is obviously larger than that of
both sides and the tooth profile angle changes accordingly. This phenomenon of wasting
has a great influence on the tooth profile accuracy of small module plastic gears.
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Due to various external factors, the disorder and relaxation of molecular chains in
melt materials are destroyed. It makes the melt in an unstable state and produces residual
stress [49,50]. In the process of molecular chain relaxation or recrystallization, the stress
will be released, which leads to the shrinkage of related positions. Figure 8a,b shows the
stress in the first main direction (the residual stress in the orientation direction before
ejection) and in the second main direction (the residual stress in the vertical direction of
the first main direction before ejection) of the key positions, respectively, when the gear
was ejected. Moreover, the x-axis label “dimensionless thickness” is a value for measuring
the thickness of a part, which ranges from -1 to 1, where 0 represents the center position
in the thickness direction, and -1 and 1 refer to both sides. It is known that the residual
stress at the addendum circle and the root circle is larger than that at the pitch circle. In
addition, the residual stress in the center of tooth thickness direction is greater than that
in other positions. This also explains the phenomenon that the addendum circle and root
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circle of small module plastic gears shrink greatly, but the pitch circle shrinks little, and
the phenomenon of waisting. Figure 8c is the temperature curve of the cooling process
of the designed gear. It is known that the cooling rate of the addendum circle and root
circle is equivalent to that of the pitch circle. Therefore, the cooling time is longer before
the gear geometry is stabilized. To a certain extent, it was confirmed that cooling rate is the
most influential factor on the non-linear shrinkage of the injection-molded small module
plastic gears. The faster the cooling rate, the shorter the cooling time and the smaller the
shrinkage. It is also consistent with the research results of Chil-Chyuan Kuo et al. [51].
Figure 8d shows a graph of edge shrinkage in a gear tooth cycle. The edge of gear teeth
was divided into several segments evenly and the shrinkage corresponding to each point
was measured. It shows that the contraction relationship of gear teeth presents a gear tooth
function relationship.
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3.2. Analysis of Orthogonal Experiments Results

After orthogonal experiments, the 3D shrinkage model of the designed gear was
exported in a 1:1 ratio in STP format. Through characteristics analysis, it is known that
the biggest shrinkage parts of small module plastic gears are the addendum circle and the
root circle, and the shrinkage presents isotropic centripetal shrinkage. To quantificationally
characterize the shrinkage and forming dimensional accuracy of gears, the dimensional
deviation of the addendum circle diameter and root circle diameter were taken as the
response targets. The key dimensions of 3D shrinkage model of the designed gear were
measured by analyzing geometric attribute module in UG. The schematic diagram of
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measurement method is shown in Figure 9. The dimensional deviation of addendum circle
diameter and root circle diameter was calculated by Equations (3) and (4), respectively. The
results are shown in Table 7.

∆ai(i = 1, 2, 3 . . . . . . 25) = da − dai (3)

∆ f i(i = 1, 2, 3 . . . . . . 25) = d f − d f i (4)

where da is the diameter of addendum circle, d f is the diameter of root circle, and i is the
number of tests. Figure 10 shows the results of the difference of key dimensional deviation
of each group. It is obvious that the dimensional deviation of gear varies significantly
under different process parameters. By comparing the dimensional deviation of addendum
circle diameter with that of root circle diameter, it can be found that they have the same
variation trend. Therefore, it was confirmed that the diameter of the addendum circle and
the diameter of the root circle contract synchronously, which also reduces the difficulty of
overall adjustment and control of gear shrinkage to a certain extent.
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Table 7. Results of orthogonal experiment.

Run# dai (mm) dfi (mm) ∆ai (mm) ∆fi (mm)

1 10.812 9.708 0.213 0.192
2 10.807 9.704 0.218 0.196
3 10.804 9.702 0.221 0.198
4 10.802 9.698 0.223 0.202
5 10.796 9.692 0.229 0.208
6 10.804 9.698 0.221 0.202
7 10.802 9.698 0.223 0.202
8 10.814 9.710 0.211 0.190
9 10.818 9.712 0.207 0.188

10 10.810 9.706 0.215 0.194
11 10.814 9.710 0.211 0.190
12 10.818 9.714 0.207 0.186
13 10.814 9.708 0.211 0.192
14 10.806 9.700 0.219 0.200
15 10.814 9.710 0.211 0.190
16 10.824 9.716 0.201 0.184
17 10.826 9.720 0.199 0.180
18 10.818 9.712 0.207 0.188
19 10.820 9.716 0.205 0.184
20 10.822 9.716 0.203 0.184
21 10.824 9.718 0.201 0.182
22 10.822 9.716 0.203 0.184
23 10.822 9.716 0.203 0.184
24 10.832 9.726 0.193 0.174
25 10.828 9.714 0.197 0.186

Then, the results of orthogonal experiments were visually analyzed by range analysis.
The results are shown in Table 8. According to the dimensional deviation of addendum
circle diameter, the influence degree from top to bottom is melt temperature, coolant
temperature, packing time, packing pressure, and mold temperature. According to the
dimensional deviation of root circle diameter, the influence degree from high to low is melt
temperature, coolant temperature, packing time, mold temperature, and packing pressure.
The optimal levels combination of process parameters is A5 B4 C4 D1 E1 (melt temperature
230 ◦C, mold temperature 100 ◦C, packing pressure 70 MPa, packing time 15 s, and coolant
temperature 10 ◦C) under the condition of minimum deviation of diameter of addendum
circle and diameter of root circle.

Table 8. The range analysis.

Index Level
∆ai ∆fi

A B C D E A B C D E

Kj1 0.2208 0.2094 0.2114 0.2066 0.2054 0.1992 0.1900 0.1916 0.1868 0.1852
Kj2 0.2154 0.2100 0.2116 0.2076 0.2080 0.1952 0.1896 0.1912 0.1880 0.1896
Kj3 0.2118 0.2106 0.2102 0.2114 0.2098 0.1916 0.1904 0.1896 0.1932 0.1888
Kj4 0.2030 0.2094 0.2078 0.2130 0.2122 0.1840 0.1896 0.1896 0.1928 0.1928
Kj5 0.1994 0.2110 0.2094 0.2118 0.2150 0.1820 0.1924 0.1900 0.1912 0.1956
Rj 0.0214 0.0016 0.0038 0.0064 0.0096 0.0172 0.0028 0.0020 0.0064 0.0104

Optimal level 5 1 and 4 4 1 1 5 2 and 4 3 and 4 1 1

To describe the influence law of injection molding process parameters on key dimen-
sional deviation more intuitively, the horizontal axis of process parameters was taken as
the abaxial axis, and the key dimensional deviation was taken as the vertical axis. The
response relationship between the change of process parameters and the diameter devi-
ation of addendum circle diameter and root circle diameter was obtained, as shown in
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Figure 11a,b, respectively. Since there is a synchronous variation relationship between the
diameter of addendum circle and the diameter of root circle, they show roughly the same
rule. The results show that there is a negative correlation between the size deviation of
addendum circle diameter and root circle diameter and melt temperature and there is a
positive correlation between them and coolant temperature.
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The ANOVA results are shown in Table 9. As for the dimensional deviation of the
addendum circle, the melt temperature has the greatest influence, reaching 75.1938%;
followed by the cooling liquid temperature and the packing time, 13.3236% and 7.6066%,
respectively; and the mold temperature and the packing pressure have the smallest contri-
bution percentages, which are 0.4845% and 2.3740%, respectively. As for the dimensional
deviation of the root circle, the melt temperature has the greatest contribution percentage,
reaching 66.0272%; followed by the coolant temperature and the packing time, 19.4926%
and 10.2104%, respectively; and the mold temperature and packing pressure have very
little contribution percentage. It is also consistent with the result that Mehat et al. found
that melt temperature is the most important process parameter for gear shrinkage [42].
Based on the above analysis, it is known that melt temperature has the greatest influence
on the key dimensional deviation of gears, followed by coolant temperature and packing
time, while mold temperature and packing pressure have very little influence.

Table 9. The ANOVA results.

Factor
∆ai ∆fi

SSi DOF MS F C% SSi DOF MS F C%

A 0.001552 4 0.000388 75.186 75.1938 0.001067 4 0.000267 44.467 66.0272

B 0.000010 4 0.000003 0.496 0.4845 0.000027 4 0.000007 1.133 1.6708

C 0.000049 4 0.000012 2.357 2.3740 0.000018 4 0.000004 0.733 1.1139

D 0.000157 4 0.000039 7.628 7.6066 0.000165 4 0.000041 6.867 10.2104

E 0.000275 4 0.000069 13.326 13.3236 0.000315 4 0.000079 13.133 19.4926

Error 0.000021 4 0.000005 75.186 1.0174 0.000024 4 0.000006 44.467 1.4851

Total 0.002064 24 0.001616 24
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3.3. Optimization of Dimensional Deviation

According to the results of orthogonal experiments analysis, the optimal parameter
combination of the designed gear is A5 B4 C4 D1 E1. It was set as the forming process
parameters of gear initial optimization simulation model. After obtaining the initial
optimized shrinkage model of the designed gear, the dimensional deviation was compared
with the minimum dimensional deviation of orthogonal experiments, as shown in Figure 12.
The dimensional deviation of the addendum circle and the root circle decreased by 2.072%
and 2.353%, respectively. This also verifies the accuracy of orthogonal experiments to
some extent.
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Through shrinkage characteristics analysis, it was found that the shrinkage of gear
teeth is the largest, and as the cooling rate increases, the cooling time decreases and the
shrinkage decreases. Fangcheng Xiao et al. [52] found that cooling system is a key influ-
encing factor of molding shrinkage rate. The molding shrinkage rate can be adjusted by
optimizing the mold’s cooling system. Therefore, under the optimal parameter combina-
tion, the cavity loop cooling pipeline was added. A plate-cavity combined high-speed
cooling model, as shown in Figure 13a, was designed to accelerate the cooling of gear
teeth. Further, the volume shrinkage of the gear during ejection is shown in Figure 13b.
The results show that the shrinkage rate of the gear during ejection is greatly reduced, the
shrinkage of each part is more even, and there is no large volume shrinkage in the center
of the tooth thickness direction. Then, the shrinkage of the small module plastic gear is
enlarged according to the ratio of 1:20, and the gear teeth are locally enlarged, as shown
in Figure 13c. It shows that the radial shrinkage of gear teeth in the thickness direction
is relatively even, and there is no big sudden change, thus avoiding the occurrence of
waist shrinkage.
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Figure 14 shows the temperature change of key positions during cooling process
under the Run 24 test and high-speed cooling technology. It was found that the cooling
rate of addendum circle, root circle, and pitch circle increase, and the cooling time is
greatly reduced under high-speed cooling technology. Finally, the dimensional deviation
of addendum circle diameter and root circle diameter were measured and calculated, as
shown in Figure 15. The results show that the dimensional deviation of the addendum
circle is 0.149 mm, which is reduced by 22.79%, the dimensional deviation of the root circle
is 0.134 mm, which is reduced by 22.99%.
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4. Conclusions

Non-linear shrinkage in the forming process of small module plastic gears leads to
serious shortage of dimensional accuracy. In this study, a practical numerical approach was
proposed to characterize the non-linear shrinkage and optimize the dimensional deviation
of the small module plastic gears. First, based on Moldflow simulation technology, the
shrinkage characteristics of injection-molded small module plastic gears were analyzed.
Then, the influence relationship between molding process parameters and key dimensional
deviation were obtained through analysis of orthogonal experiments. Finally, the key
dimensional deviation was optimized by the high-speed cooling technology of gears
plate-cavity combination. Key findings of this study include:

1. The dimensional accuracy of small module plastic gears mainly depends on the
non-linear shrinkage in the forming process. The shrinkage of gear teeth is the largest,
especially the diameter of addendum circle and root circle.

2. The volume shrinkage rate in the center of the tooth thickness direction of small
module plastic gear is too large locally, which leads to waist shrinkage. Moreover, it was
found that the residual stress in the top circle and root circle of gear teeth is obviously
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larger than that in the pitch circle, and a larger residual stress appears in the center of gear
teeth in the thickness direction.

3. The 3D shrinkage model of small module plastic gears was exported. It was
confirmed that cooling rate is the most influential factor on the non-linear shrinkage of the
injection-molded small module plastic gears. The faster the cooling rate, the shorter the
cooling time and the smaller the shrinkage.

4. Melt temperature has the greatest influence on the key dimensional deviation
of small module plastic gears. In addition, the optimal levels combination of process
parameters is A5 B4 C4 D1 E1 (melt temperature 230 ◦C, mold temperature 100 ◦C, packing
pressure 70 MPa, packing time 15 s, and coolant temperature 10 ◦C) under the condition of
minimum deviation of diameter of addendum circle and diameter of root circle.

5. The high-speed cooling technology of gears plate-cavity combination was proposed.
Under the high-speed cooling of gear teeth, it was found that the dimensional deviation of
the addendum circle and the root circle are reduced by 22.79% and 22.99%, respectively, and
the shrinkage of each part is more even. At the same time, the waist shrinkage disappeared.

In general, the influence of forming process parameters on the critical dimension
deviation of gears was studied, and the shrinkage of small module plastic gears is well pre-
dicted. At the same time, the high-speed cooling technology of small modulus plastic gear
template-cavity combination was proposed, which makes the key dimensional deviation of
gear reduced obviously. Therefore, this approach provides a theoretical basis for die cavity
design and shrinkage control in practical production of small module plastic gears.
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