Skip to main content
. 2021 Jul 5;26(13):4095. doi: 10.3390/molecules26134095

Table 2.

Effects of ginseng on bacterial infections of the respiratory tract.

Ginseng Extracts and Compounds Microbe Study Type Observations Conclusions Reference
Withaferin A (WA), a withanolide purified from Withania somnifera H. pylori In vitro study WA inhibits H. pylori-induced IL-8 production in gastric epithelial cells. WA does not influence H. pylori-induced ROS production or any associated signaling. [147]
Withania somnifera (Indian ginseng), Both aqueous as well as alcoholic extracts of the plant (root as well as leaves) Pathogenic bacteria In vitro study Inhibitory activity against a spectrum of bacteria. Increased survival rate as well as decreased bacterial load. [148]
Withania somnifera (Indian ginseng) extracts Salmonella typhimurium and Escherichia coli. In vitro study Methanol and hexane extracts of both leaves and roots were found to have potent antibacterial activity. A synergistic increase in the antibacterial effect of Tibrim was noticed when MIC of Tibrim was supplemented with these extracts. [149]
Extracts of Withania somnifera (Indian ginseng) Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis In vitro study Polar solvents had higher antibacterial property in comparison with the nonpolar solvents; higher MIC values were obtained for both gram-positive bacteria S. aureus, B. subtilis and gram-negative bacteria, E. coli and P. aeruginosa, with polar extract. Antimicrobial activity of crude extract of W. somnifera was shown to validate the use of traditional medicinal herbal medicine and results of this study tend to give credence to the common use of W. somnifera plant. [150]
P. ginseng polysaccharides H. pylori hemagglutination and enzyme-linked glycosorbent assays Acidic carbohydrates may play an important role in the inhibitory activity on H. pylori adhesion to host cells. Bacterial binding was inhibited more effectively by P. ginseng polysaccharides [151]
Fermented ginseng extracts H. pylori Formation of clear zones, measurement of urease activity and cell adhesion activity in vitro. Anti-H. pylori activity, including anti-bacterial, anti-adhesion, and urease inhibition effects. Fermented ginseng extract containing L.plantarum MG 208 could prove to be useful as a functional diet for the protection of the gastric environment against H. pylori. [152]
Red ginseng extracts (RGE) H. pylori Analysis of cell viability (trypan blue dye exclusion assay, DNA fragmentation assay (comet assay) Measurement of cytokine level, cell signaling (in vitro) RGE decreased H. pylori-stimulated IL-8 gene expression, which resulted from the transcriptional regression of NF-κB. RGE showed significant gastroprotective effects against H. pylori-associated gastric mucosal cell damage, suggesting that red ginseng could be used as a medicinal phytonutrient against H. pylori infection. [153]
White ginseng extract (WGE) H. pylori Disc diffusion assay The zone of inhibition due to WGE increased significantly with increasing dosage. WGE exhibited an inhibitory effect on cell growth at 2.0 mg/mL for all tumor cell lines. The potential of WGE to be used as a health-promoting substance. [154]
Ginseng aqueous extract Pseudomonas aeruginosa P. aeruginosa biofilms were further investigated in vitro and in vivo. Oral administration of ginseng extracts in mice promoted phagocytosis of P. aeruginosa PAO1 by airway phagocytes but did not affect phagocytosis of a PAO1-film mutant. Ginseng treatment may help to eradicate the biofilm-associated chronic infections caused by P. aeruginosa. [155]
Saline extract of ginseng Pseudomonas aeruginosa Cytokine modulating effect in a mouse model of P. aeruginosa lung infection. Th1-like immune response in the mice with P. aeruginosa lung infection after 7 days of ginseng treatment. Th1 response might benefit the host with P. aeruginosa lung infection and ginseng treatment might be a promising alternative measure for the treatment of chronic P. aeruginosa lung infection in CF patients. [156]
Polysaccharide (PS) isolated from Panax ginseng Staphylococcus aureus In vitro assays for the activity measurement of PS, NO production test with Greiss reagent, in vivo anti-septicemic activity was assessed by using C57BL/6J mice. Polysaccharide showed anti-septic effects, Ginsan enhanced pro-inflammatory abilities (NO, pro-inflammatory cytokine production, phagocytic activity of macrophages). Ginsan modulated TLR pathway. PS from Panax ginseng possess a potent anti-septicemic activity by stimulating macrophage and potential as an immunomodulator against sepsis caused by Staphylococcus aureus. [157]
Polysaccharide (PS) isolated from Panax ginseng Staphylococcus aureus In vitro study Proinflammatory cytokines, such as TNF-alpha, IL-1beta, IL-6, IFN-gamma, IL-12, and IL-18, were markedly down-regulated in ginsan-treated mice compared with those of control-infected mice. Antiseptic activity of ginsan can be attributed to enhanced bacterial clearance, and reduced proinflammatory cytokines via the TLR signaling pathway. [158]
Korean red ginseng Staphylococcus aureus Fluorescent marker calcein from negatively charged PC/PG (1: 1, w/w) liposomes Ginsenosides may exert antibacterial activity by disrupting the cell membrane Synergistic or additive effects between the ginsenosides and antibiotics tested [159]
Crude saponins extracted from the Panax quinquefolius Fusobacterium nucleatum, Clostridium perfringens, and Porphyromonas gingivalis Determination of MIC, cell integrity HTS, HTS-3, and HTS-4 were effective at inhibiting the growth of F. nucleatum, C. perfringens, and P. gingivalis. Less polar ginsenoside-enriched fraction from heat transformation can be used as an antibacterial agent to control halitosis. [160]
Acidic polysaccharide from P. ginseng, PG-F2 P. gingivalis Determination of MIC Anti-adhesive activity and anti-hemagglutination. PG-F2 may exert a selective antiadhesive effect against pathogenic bacteria, while having no effects on beneficial and commensal bacteria. [161]
A mixture of roasted coffee and red ginseng Pseudomonas aeruginosa and S. Typhimurium Classical paper disc method DPPH scavenging activity decreased when red ginseng extract composed of more than 70% of the total extract. Antibacterial activity shown. [162]

Abbreviations: WA: Withaferin A; MIC: minimum inhibitory concentration; CF: cystic fibrosis; TLR: toll-like receptor; DPPH: 2,2 diphenyl-1-picryl-hydrazyl-hydrate; TNF-alpha: Tumor Necrosis Factor Alpha; ROS: reactive oxygen species; NF-Kb: Nuclear Factor kappa; MBC: minimum bactericidal concentration; KRG: Korean red ginseng; RGE: red ginseng extract; NO: nitric oxide; PC: Phosphatidylcholine; PG; Phosphatidyl glycerol; HTS: heat-transformed saponins; HTS-3 & HTS 4: Ginsenoside enriched fractions.