Skip to main content
. 2021 Jun 26;21(13):4391. doi: 10.3390/s21134391

Table 5.

Evaluation indexes of different models.

Networks GunPoint Lightning7 Trace OSULeaf SyntheticControl CBF UMD
LSTM Precision 0.9744 0.5908 0.2621 0.5629 0.9807 0.9879 0.8197
Recall 0.9737 0.5486 0.5 0.5783 0.98 0.9878 0.7986
F1-score 0.9704 0.5689 0.3811 0.5705 0.9803 0.9879 0.809
GRU Precision 0.9602 0.746 1 0.6073 0.9901 0.9913 0.9867
Recall 0.9602 0.7096 1 0.6094 0.99 0.9911 0.9861
F1-score 0.9602 0.7274 1 0.6083 0.9901 0.9912 0.9864
BiLSTM Precision 0.9744 0.6239 0.7545 0.5882 0.9803 0.9802 1
Recall 0.9737 0.4313 0.7267 0.5781 0.98 0.9801 1
F1-score 0.974 0.51 0.7403 0.5831 0.9802 0.9802 1
BLS + GADF Precision 0.9735 0.6294 1 0.6018 0.9747 0.9541 0.8167
Recall 0.9735 0.6048 1 0.5897 0.9733 0.9514 0.8194
F1-score 0.9735 0.6168 1 0.5957 0.9740 0.9527 0.8178
BLS + RP Precision 0.9365 0.5456 0.9565 0.6088 0.9809 0.9727 0.9723
Recall 0.9328 0.5662 0.9643 0.5943 0.9800 0.9724 0.9722
F1-score 0.9346 0.5557 0.9604 0.6015 0.9804 0.9725 0.9723
Best D–S Precision 0.9805 0.7950 1 0.6857 0.9967 0.9944 1
Recall 0.9803 0.6709 1 0.6702 0.9967 0.9945 1
F1-score 0.9804 0.7277 1 0.6779 0.9967 0.9945 1