Table 8.
Comparisons with other detectors on MS COCO test-dev. “MS” denotes multi-scale training, otherwise using single-scale training. All experiments of our method set score_thr to 0.001, which slightly improves detection performance without a speed reduction. IoU-Aware R-CNN means that trainval dataset is used to train the detector and soft-NMS is employed at inference.
| Method | Backbone | AP | ||||||
|---|---|---|---|---|---|---|---|---|
| one-stage detectors | ||||||||
| SSD [12] | ResNet-101 | 31.2 | 50.4 | 33.3 | 10.2 | 34.5 | 49.8 | |
| RefineDet [30] | ResNet-101 | 36.4 | 57.5 | 39.5 | 16.6 | 39.9 | 51.4 | |
| RetinaNet [5] | ResNet-101 | 39.1 | 59.1 | 42.3 | 21.8 | 42.7 | 50.2 | |
| FSAF [17] | ResNet-101 | ✓ | 40.9 | 61.5 | 44.0 | 24.0 | 44.2 | 51.3 |
| FSAF [17] | ResNeXt-101-64x4d | ✓ | 42.9 | 63.8 | 46.3 | 26.6 | 46.2 | 52.7 |
| FCOS [6] | ResNet-101 | ✓ | 41.5 | 60.7 | 45.0 | 24.4 | 44.8 | 51.6 |
| FCOS [6] | ResNeXt-101-64x4d | ✓ | 44.7 | 64.1 | 48.4 | 27.6 | 47.5 | 55.6 |
| FoveaBox [31] | ResNet-101 | ✓ | 40.8 | 61.4 | 44.0 | 24.1 | 45.3 | 53.2 |
| FoveaBox [31] | ResNeXt-101 | ✓ | 42.3 | 62.9 | 45.4 | 25.3 | 46.8 | 55.0 |
| LTM [32] | ResNeXt-101-64x4d | ✓ | 44.9 | 64.7 | 48.3 | 26.9 | 47.8 | 55.8 |
| ATSS [33] | ResNeXt-101-32x8d | ✓ | 45.1 | 63.9 | 49.1 | 27.9 | 48.2 | 54.6 |
| two-stage detectors | ||||||||
| Faster R-CNN [7] | ResNet-101 | 34.9 | 55.7 | 37.4 | 15.6 | 38.7 | 50.9 | |
| Faster R-CNN w/FPN [11] | ResNet-101 | 36.2 | 59.1 | 39.0 | 18.2 | 39.0 | 48.2 | |
| Mask R-CNN [34] | ResNeXt-101 | 39.8 | 62.3 | 43.4 | 22.1 | 43.2 | 51.2 | |
| Libra R-CNN [20] | ResNet-101 | 41.1 | 62.1 | 44.7 | 23.4 | 43.7 | 52.5 | |
| Libra R-CNN [20] | ResNeXt-101-64x4d | 43.0 | 64.0 | 47.0 | 25.3 | 45.6 | 54.6 | |
| Grid R-CNN [35] | ResNet-101 | 41.5 | 60.9 | 44.5 | 23.3 | 44.9 | 53.1 | |
| Faster R-CNN w/ PISA [21] | ResNeXt-101 | 42.3 | 62.9 | 46.8 | 24.8 | 45.5 | 53.1 | |
| Cascade R-CNN [8] | ResNet-101 | 42.8 | 62.1 | 46.3 | 23.7 | 45.5 | 55.2 | |
| TridentNet [36] | ResNet-101 | ✓ | 42.7 | 63.6 | 46.5 | 23.9 | 46.6 | 56.6 |
| IoU-Aware R-CNN | ResNet-50 | 40.7 | 59.8 | 44.0 | 22.9 | 43.5 | 51.2 | |
| IoU-Aware R-CNN | ResNet-101 | 42.3 | 61.3 | 45.7 | 23.3 | 45.5 | 54.5 | |
| IoU-Aware R-CNN | ResNeXt-101-32x4d | 43.4 | 62.8 | 46.8 | 24.7 | 46.7 | 55.1 | |
| IoU-Aware R-CNN | ResNeXt-101-32x4d | 44.3 | 62.9 | 48.3 | 25.6 | 47.5 | 56.5 | |