Skip to main content
. 2021 Jun 28;21(13):4433. doi: 10.3390/s21134433

Table 8.

Comparisons with other detectors on MS COCO test-dev. “MStrain” denotes multi-scale training, otherwise using single-scale training. All experiments of our method set score_thr to 0.001, which slightly improves detection performance without a speed reduction. IoU-Aware R-CNN* means that trainval dataset is used to train the detector and soft-NMS is employed at inference.

Method Backbone MStrain AP AP50 AP75 APS APM APL
one-stage detectors
SSD [12] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8
RefineDet [30] ResNet-101 36.4 57.5 39.5 16.6 39.9 51.4
RetinaNet [5] ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2
FSAF [17] ResNet-101 40.9 61.5 44.0 24.0 44.2 51.3
FSAF [17] ResNeXt-101-64x4d 42.9 63.8 46.3 26.6 46.2 52.7
FCOS [6] ResNet-101 41.5 60.7 45.0 24.4 44.8 51.6
FCOS [6] ResNeXt-101-64x4d 44.7 64.1 48.4 27.6 47.5 55.6
FoveaBox [31] ResNet-101 40.8 61.4 44.0 24.1 45.3 53.2
FoveaBox [31] ResNeXt-101 42.3 62.9 45.4 25.3 46.8 55.0
LTM [32] ResNeXt-101-64x4d 44.9 64.7 48.3 26.9 47.8 55.8
ATSS [33] ResNeXt-101-32x8d 45.1 63.9 49.1 27.9 48.2 54.6
two-stage detectors
Faster R-CNN [7] ResNet-101 34.9 55.7 37.4 15.6 38.7 50.9
Faster R-CNN w/FPN [11] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2
Mask R-CNN [34] ResNeXt-101 39.8 62.3 43.4 22.1 43.2 51.2
Libra R-CNN [20] ResNet-101 41.1 62.1 44.7 23.4 43.7 52.5
Libra R-CNN [20] ResNeXt-101-64x4d 43.0 64.0 47.0 25.3 45.6 54.6
Grid R-CNN [35] ResNet-101 41.5 60.9 44.5 23.3 44.9 53.1
Faster R-CNN w/ PISA [21] ResNeXt-101 42.3 62.9 46.8 24.8 45.5 53.1
Cascade R-CNN [8] ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2
TridentNet [36] ResNet-101 42.7 63.6 46.5 23.9 46.6 56.6
IoU-Aware R-CNN ResNet-50 40.7 59.8 44.0 22.9 43.5 51.2
IoU-Aware R-CNN ResNet-101 42.3 61.3 45.7 23.3 45.5 54.5
IoU-Aware R-CNN ResNeXt-101-32x4d 43.4 62.8 46.8 24.7 46.7 55.1
IoU-Aware R-CNN* ResNeXt-101-32x4d 44.3 62.9 48.3 25.6 47.5 56.5