Skip to main content
. 2021 Jul 10;111:107675. doi: 10.1016/j.asoc.2021.107675

Table 6.

The experimental performance of the proposed model (DNE-RL) vs other competitive deep learning benchmarks for Mendely Dataset.

Metric GA DE PSO GSK MobileNet VGGNet19 ResNet50 DenseNet12 DNE-RL
AVG 0.927389 0.929467 0.936799 0.952668 0.956657 0.946883 0.961993 0.970338 0.987742
STD 0.030495 0.029899 0.030885 0.028858 0.026337 0.026199 0.018996 0.017557 0.012116
ACC Best 0.933583 0.948779 0.954091 0.962122 0.966641 0.965887 0.969985 0.978594 0.995186
Worst 0.906488 0.909957 0.908777 0.934014 0.933933 0.930258 0.951332 0.960241 0.982168

AVG 0.942783 0.938861 0.947751 0.948183 0.963662 0.956788 0.968848 0.973861 0.984334
STD 0.025571 0.024167 0.023885 0.023955 0.021175 0.035537 0.023191 0.022818 0.013883
Precision Best 0.956733 0.957883 0.959919 0.959192 0.975455 0.966881 0.976766 0.978588 0.991443
Worst 0.916855 0.917919 0.920559 0.926634 0.939986 0.922065 0.941445 0.947766 0.984452

AVG 0.921456 0.918872 0.925531 0.959983 0.948711 0.938636 0.956674 0.962678 0.989123
STD 0.009886 0.009817 0.013553 0.011762 0.012835 0.011028 0.014224 0.016887 0.009931
Recall Best 0.931441 0.923221 0.936637 0.963321 0.957766 0.945709 0.966838 0.968871 0.992172
Worst 0.918965 0.914453 0.921298 0.949663 0.931655 0.925667 0.944913 0.948815 0.985561

AVG 0.924881 0.927571 0.932889 0.948775 0.954686 0.943008 0.957814 0.968649 0.984939
STD 0.002882 0.003662 0.003119 0.005891 0.018893 0.015944 0.019962 0.004881 0.002674
F-measure Best 0.927644 0.931089 0.938875 0.095219 0.961008 0.949889 0.961129 0.971291 0.987175
Worst 0.920307 0.922566 0.926618 0.944103 0.948871 0.939892 0.939072 0.965667 0.982323

AVG 0.929331 0.928888 0.937676 0.951881 0.957117 0.945771 0.963442 0.969881 0.988466
STD 0.017553 0.024554 0.015585 0.008914 0.005771 0.023319 0.019288 0.024596 0.015884
AUC Best 0.932441 0.937669 0.942448 0.955676 0.960083 0.957119 0.972885 0.982011 0.991777
Worst 0.925669 0.917765 0.932191 0.048911 0.953382 0.928228 0.948558 0.939006 0.981407