Skip to main content
. 2021 Jul 10;111:107675. doi: 10.1016/j.asoc.2021.107675

Table 7.

The experimental performance of the proposed model (DNE-RL) vs other competitive deep learning benchmarks for Kaggle dataset.

Metric GA DE PSO GSK MobileNet VGGNet19 ResNet50 DenseNet12 DNE-RL
AVG 0.933488 0.924888 0.942884 0.948021 0.949502 0.950001 0.972881 0.966913 0.991441
STD 0.027901 0.012288 0.011142 0.014252 0.017881 0.023315 0.020994 0.013637 0.011042
ACC Best 0.947991 0.937786 0.948788 0.958893 0.958812 0.961152 0.982441 0.971189 0.993668
Worst 0.912298 0.915658 0.931229 0.932285 0.937881 0.927748 0.955571 0.952449 0.980671

AVG 0.949893 0.940174 0.956618 0.957782 0.958838 0.968841 0.982441 0.973861 0.993568
STD 0.037716 0.020781 0.030083 0.025151 0.023878 0.022274 0.027313 0.019669 0.021339
Precision Best 0.968668 0.962881 0.972335 0.973991 0.968816 0.975561 0.986004 0.983315 0.996812
Worst 0.908915 0.921007 0.913806 0.931401 0.927175 0.944767 0.952721 0.955672 0.968814

AVG 0.925933 0.912829 0.935581 0.929181 0.935535 0.942552 0.960112 0.953443 0.981445
STD 0.014047 0.018626 0.007996 0.009158 0.014663 0.018596 0.010052 0.008492 0.011381
Recall Best 0.940116 0.936682 0.941887 0.937736 0.948778 0.955778 0.968784 0.959928 0.987886
Worst 0.913005 0.904334 0.929981 0.920704 0.923051 0.932994 0.953008 0.942217 0.970221

AVG 0.932717 0.921633 0.940081 0.945771 0.947006 0.948003 0.969951 0.964412 0.989666
STD 0.015542 0.008797 0.012252 0.002363 0.006666 0.011882 0.016672 0.012331 0.004881
F-measure Best 0.938812 0.935542 0.948788 0.949772 0.951332 0.954481 0.976866 0.969982 0.990454
Worst 0.920094 0.916652 0.931176 0.938182 0.942553 0.935991 0.951331 0.957871 0.983353

AVG 0.934451 0.926656 0.940092 0.949882 0.951666 0.947781 0.974554 0.963999 0.990337
STD 0.022444 0.011434 0.008892 0.006772 0.021033 0.014403 0.009037 0.014544 0.007881
AUC Best 0.945333 0.929922 0.948871 0.951991 0.969912 0.952662 0.979988 0.970002 0.992008
Worst 0.911329 0.915004 0.934505 0.943303 0.936766 0.932242 0.968998 0.949889 0.982662