Skip to main content
. 2021 Jun 24;21(13):4323. doi: 10.3390/s21134323

Table 5.

Performance comparison of the proposed YOLOv3-Human model with other methods on the same night databases.

Method Database Purpose Detection Time Accuracy (AP Score)
TIRFaceNet model DHU dataset Facial recognition 89.7%
YOLO model FLIR dataset Person detector for small and multiple subjects - 29.36%
MMTOD model KAIST dataset Person detector for small and multiple subjects - 49.39
FLIR dataset - 54.69
YOLOv3-Human model KAIST dataset Person detector for small and multiple subjects 10 ms 65.01%
FLIR dataset 8 ms 67.54%
DHU Night dataset Integrated face and gait recognition 7 ms 99% for face and gender recognition 90% for gait recognition