Research Article: Confirmation

eMeuro

Cognition and Behavior

Acoustically Driven Cortical 6 Oscillations Underpin
Prosodic Chunking

J. M. Rimmele,"? ©D. Poeppel,’>2 and O. Ghitza'*

https://doi.org/10.1523/ENEURO.0562-20.2021

"Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main 60322, Germany,
2Max Planck NYU Center for Language, Music, and Emotion, Frankfurt am Main, Germany, New York, NY,
3Department of Psychology and Center for Neural Science, New York University, New York, NY 10003, and
“Department of Biomedical Engineering and Hearing Research Center, Boston University, Boston, MA 02215

Abstract

Oscillation-based models of speech perception postulate a cortical computational principle by which decoding
is performed within a window structure derived by a segmentation process. Segmentation of syllable-size
chunks is realized by a 6 oscillator. We provide evidence for an analogous role of a é oscillator in the segmen-
tation of phrase-sized chunks. We recorded magnetoencephalography (MEG) in humans, while participants
performed a target identification task. Random-digit strings, with phrase-long chunks of two digits, were pre-
sented at chunk rates of 1.8 or 2.6 Hz, inside or outside the § frequency band (defined here to be 0.5-2 Hz).
Strong periodicities were elicited by chunk rates inside of 6 in superior, middle temporal areas and speech-
motor integration areas. Periodicities were diminished or absent for chunk rates outside &, in line with behav-
ioral performance. Our findings show that prosodic chunking of phrase-sized acoustic segments is correlated
with acoustic-driven & oscillations, expressing anatomically specific patterns of neuronal periodicities.
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s )

Oscillation-based models of speech perception postulate a cortical computational principle by which de-
coding is performed within a time-varying window structure, synchronized with the input on multiple time
scales. At prelexical level, cycles of a flexible 6 oscillator, locked to the input syllabic rhythm, constitute the
syllabic windows. We find that the presence of cortical 6 oscillations correlates with whether or not an input
phrase-sized chunk rate is inside the 6 range. This suggests that at the phrase time scale, a 6 oscillator
could play a role analogous to that of the 6 oscillator at the syllable level. The segmentation process is real-
\ized by a flexible & oscillator locked to the input rhythm, with 6 cycles constituting phrase-sized windows. /

ignificance Statement

Introduction

Naturally spoken language is a stream of connected
sounds, and although the speech acoustics contain no
cues regarding the beginning or end of linguistic units a
combination of interleaved cues (e.g., pauses, intonation,
syllabic stress) are embedded in the acoustic stream.
Information, broadly termed “accentuation” (e.g., intona-
tion, stress, pauses), is used by listeners to indicate boun-
daries associated with linguistic units (Aubanel et al.,
2016; Oganian and Chang, 2019). The process by which
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the input signal is partitioned into temporal segments to
be linked to a variety of linguistic levels of abstraction
(ranging from phonetic segments to syllables to words
and, ultimately, prosodic and intonational phrases) is
called “segmentation.”

The segmentation process has been shown to operate
on time intervals associated with syllables (up to
~250ms; Brungart et al., 2007; Ghitza and Greenberg,
2009; Doelling et al., 2014; Késem et al., 2018), and a sim-
ilar process has been suggested to operate on the phrasal
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level (0.5-2s; Ding et al., 2016; Ghitza, 2017; Martin and
Doumas, 2017; Keitel et al., 2018). At the syllabic level,
perceptual segmentation, or chunking, is by and large a
prelexical process. Oscillation-based models propose
that this segmentation is realized by flexible 6 oscillations
aligning their phase to the input syllabic rhythm (“speech
tracking”), where the 6 cycles mark the speech chunks to
be decoded (Poeppel, 2003; Lakatos et al., 2005, 2019;
Ahissar and Ahissar, 2005; Ding and Simon, 2009; Ghitza,
2011; Giraud and Poeppel, 2012; Peelle and Davis, 2012;
Gross et al., 2013; Haegens and Zion Golumbic, 2018;
Rimmele et al., 2018a; Assaneo et al., 2020; Hovsepyan
et al., 2020; Pittman-Polletta et al., 2021). At the phrase
level, phrase rhythm can affect segmentation (Gee and
Grosjean, 1983; Martin, 2015; Deniz and Fodor, 2019;
Hilton and Goldwater, 2020). There have been various
studies aiming to quantify phrase length and rhythmicity
(Clifton et al., 2006; Breen, 2018; Deniz and Fodor, 2019),
suggesting that typical intonational phrases are about 1 s
in duration (Auer et al., 1999; Inbar et al., 2020; Stehwien
and Meyer, 2021). More specifically, the duration of into-
national phrases spans a range between ~0.5and 1 s in
English (slightly faster in some other languages; Inbar et
al., 2020; Stehwien and Meyer, 2021). Prosodic segmen-
tation (here also termed “prosodic chunking”) is based on
intonation units that contain specific prosodic cues (such
as pauses or pitch contour), which can pace the informa-
tion flow at the phrasal time scale (Shattuck-Hufnagel and
Turk, 1996; Inbar et al., 2020). The extent to which phrase
level rhythmic structure supports segmentation and struc-
tural parsing was not widely studied. Here, we investigate
the neural processing of rhythmic structure at the phrasal
scale by analyzing how individuals’ group single digits
into “phrase-sized” digit chunks. What kind of neuronal
mechanism can realize this chunking process?

Cortical 6 oscillators, with a frequency range (~0.5-
2Hz) that corresponds to the phrasal time scale, were
shown to be elicited during phrasal processing of speech
or chunking processes at the phrasal scale (Buiatti et al.,
2009; Ding et al., 2016; Bonhage et al., 2017; Meyer et al.,
2017; Keitel et al., 2018; Boucher et al., 2019). § Was ob-
served in the posterior superior temporal, the inferior fron-
tal, precentral, and temporal-parietal cortex using ECoG
(Ding et al., 2016), and using EEG at bilateral middle and
superior temporal areas (also fusiform gyrus; Bonhage et
al.,, 2017) and at frontotemporal sites (Boucher et al.,
2019). [Recall the ambiguous definition of the § range in
the literature, which covers a range of overlapping
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Figure 1. Chunk patterns and chunk rates for the 10-digit digit
string 4259522560. The chunk pattern is 2222, with chunk rates
of 1.8Hz (inside §) and 2.6 Hz (outside). Each chunk was syn-
thesized as a two-digit unit, using the AT&T Text-to-Speech
System accentuation (see text). Note that a particular two-digit
chunk has the same acoustics, regardless of whether it occurs
in the 1.8- or 2.6-Hz 2222 chunk condition (red box). The 1.8-
Hz stimulus is generated by increasing the gap between the
chunks (with identical chunk acoustics).

frequency bands inside the 0.5- to 4-Hz frequency range
(Bonhage et al.,, 2017; Keitel et al., 2018; Brohl and
Kayser, 2020). Since we are interested in the segmenta-
tion of phrasal chunks, which in English are ~0.5-1 s long
(Miller, 1962; Inbar et al., 2020), we opted to define the &
frequency band to be 0.5-2 Hz.]

And behaviorally, it has been shown that performance
is impaired when the chunk rate is outside of the 6 range
(Ghitza, 2017). These findings suggest a role of neuronal
oscillatory mechanisms in the § range in chunking at a
phrasal time scale (see also Martin and Doumas, 2017;
Ghitza, 2020). Little is known, however, about the brain
areas that may recruit chunking-related 6 oscillations.

Here, we focus on the cortical mechanism that may be
involved in acoustic-driven segmentation at a phrasal
time scale, using sequences of digit chunks (with a mini-
mal amount of content). We test the hypothesis that the
decoding process is guided by a 6 oscillator locked to the
accentuation acoustic cues (Ghitza, 2017) by recording
magnetoencephalography (MEG) data while participants
performed a digit retrieval task. The digits in the string
were grouped into chunks, with chunk rates either inside
or outside to the 6 frequency range (Fig. 1). The experi-
ment addresses two questions: (1) Do elicited & brain
waves correlate with behavior, such that impaired per-
formance in digit retrieval occurs if the chunk rate is out-
side of the § range? (2) Where in the auditory pathway do
those neuronal oscillations occur?

Our data show that in superior and middle temporal
areas and in speech-motor planning and integration areas
(IFG, PC, SMG), robust neural & periodicities were elicited
by chunk rates inside of the 6 range but were diminished
when the chunk rate was outside of the § range, in line
with behavioral performance. In speech-motor integration
areas (SMG) and areas implicated in processing word
form and meaning (middle temporal gyrus; MTG), perio-
dicity was present albeit diminished even for chunk rates
inside the 6 range. The & periodicities were acoustically
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driven, in sync with the input as long as the acoustic
chunk rate was inside 6. 6 Periodicities were diminished
for chunk rates outside &, although sufficient acoustic
cues for chunking were present in all conditions. Thus, the
failure to track the input-chunk-rate when it was outside
of the 6 range was not caused by insufficient acoustic
cues but seems due to neuronal circuitry characteristics
constraining the tracking of the chunks.

Materials and Methods

Participants

The data from 19 healthy right-handed (Oldfield, 1971)
mean score: 75.22, SD: 18.08) participants were included
in the study (mean age: 24.89years, SD: 3.54; f=14).
Human subjects were recruited from the local community
in Frankfurt. Two participants were excluded because of
technical issues, and one participant because of outlier
performance (i.e., performance < mean performance, 2
SD). Individual MRI scans were recorded for all except
for two participants who did not fulfill the MRI scanning
criteria. All participants gave written informed consent
for participating in the study and received monetary
compensation. The study was approved by the local
ethics committee of the University Hospital Frankfurt
(SG2-02-0128).

Digit string stimuli

We used 10-digit long stimuli where we manipulated
the pauses in-between digits according to the experimen-
tal conditions. We opted for digit sequences —material
that is semantically unpredictable at the digit-chunk level
(i.e., while semantic information is present at the single
digit level, no semantic/contextual information is present
at the digit-chunk level), to minimize the bottom-up/
top-down interaction that is in play in setting perceptual
boundaries for digit-chunks. The digit sequences were
grouped into chunks, with a chunk pattern termed
2222. For example, the 2222 pattern of the sequence
4259522560 is [42 59 52 25 60]. Digits were presented
as single digits, i.e., 42 was read as four-two and not as
forty-two.

We used two chunk rates: 1.8 Hz (inside the & range)
and 2.6 Hz (at the outside border of the § range, referred
to as “outside”), termed conditions “1.8 Hz” and “2.6 Hz”
(Fig. 1). Note that a third condition was used, which is not
reported here. The condition was a “no-chunk” condition
where digit chunks were presented at the rate of 2.6 Hz.
However, besides top-down chunking information (pro-
vided by the instructions), there were no acoustic chunk-
ing cues. The neuronal findings resemble that of the 2.6-
Hz chunking condition, confirming the main claims of this
paper. They are reported elsewhere (Rimmele et al.,
2020).

Corpus

The text material comprised 100 10-digit long text
strings. Stimuli were generated by using the AT&T Text-
to-Speech System with the American English female
speaker Crystal. [The AT&T-TTS system (http://www.
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wizzardsoftware.com/text-to-voice.php) uses a form of
concatenative synthesis based on a unit-selection pro-
cess, where the units are cut from a large, high-quality,
prerecorded natural voice fragments. The system pro-
duces natural-sounding, highly intelligible spoken mate-
rial with a realistic prosodic rhythm, with accentuation
defined by the system-internal prosodic rules, and is con-
sidered to have some of the finest quality synthesis of any
commercial product.] To generate stimuli with a 2222
chunk pattern, we first created a two-digit chunk vocabu-
lary as follows. For each doublet of digits that exists in the
100 text strings, a naturally sounding two-digit chunk
waveform was generated (naturalness was obtained by
the AT&T system accentuation rules) resulting in a chunk-
vocabulary. For a given text string, a 2222 10-digit stimu-
lus was generated by concatenating the corresponding
five two-digit chunk waveforms pulled from the chunk-vo-
cabulary. The chunk rate was set by adjusting the gap du-
ration in between two successive chunks, resulting in a
stimulus with a temporal structure but without any con-
textual cues at the digit-chunk level. To enable the gener-
ation of stimuli with chunk rates greater than the &
frequency upper bound (at 2.6 Hz), the waveforms in all
conditions were time compressed by a factor of 2.5, just
below the auditory channel capacity (Ghitza, 2014). The
duration of the 10-digit stimuli varied across conditions;
for the 1.8-Hz condition: mean=2.61 s (VAR=85.6 ms),
and for the 2.6-Hz condition: mean=1.99 s (VAR=85.6
ms).

For each of the 200 10-digit stimuli (100 stimuli for each
of the 1.8- and 2.6-Hz conditions) a trial was created by
concatenating the following waveform sequence: [one
digit trial-count] [20-ms-long gap] [10-digit string] [500-
ms-long gap] [two-digit target], resulting in one concaten-
ated waveform per trial with durations that varied across
trials and conditions. The 200 trials were scrambled, and
the resulting pool of trials was divided into blocks, 50 trials
per block. A jittered intertrial interval of 3-4.5 s was pre-
sented between trials. Overall, two different sets of stimuli
were used.

Task

Behavioral and MEG data were collected while partici-
pants performed a digit retrieval task, in the form of an
adapted Sternberg target identification task (Sternberg,
1966; target ID task from here on): listeners heard a 10-
digit stimulus followed by a two-digit-long target, and
were asked to indicate whether or not the target was part
of the utterance. A target position was always within a
chunk. Note that the task is suitable for probing the role of
acoustic segmentation in a memory retrieval task: a suc-
cessful yes/no decision depends on how faithful the rec-
ognized chunk objects are, generated by a decoding
process that, by hypothesis, depends on the goodness of
segmentation.

Procedure and paradigm
Participants were seated in front of a board for instruc-
tions in the MEG testing booth. Binaurally insert earplugs
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(E-A-RTONE Gold 3A Insert Earphones, Ulrich Keller
Medizin-Technik) were used for stimulus presentation.
Two button boxes (Current Designs) were used to record
participants’ responses. The Psychophysics Toolbox
(Brainard, 1997) was used to run the experiment. During
the experiment, on each trial participants fixated the
screen center (fixation cross) while listening to the digit
sequences. The sounds were presented at a comfortable
loudness level (~70dB SPL), which remained unchanged
throughout the experiment. Overall, the experiment lasted
~2.5 h, including preparation time, recording time, breaks,
and postrecording questionnaires. Participants were pre-
sented with the task requirements. They were instructed
that all sequences comprise concatenated chunks of two-
digits. Before the experiment, all participants performed a
short training of three trials (with feedback) to familiarize
themselves with the stimuli and task. Participants were
asked to indicate by button press (yes/no response; with
the response hand balanced across participants; yes-hand
right: N =12) whether or not the target was part of the pre-
ceded utterance.

MRI and MEG data acquisition

A 3 Tesla scanner (Siemens Magnetom Trio, Siemens)
was used to record individual T1-weighted MRIs. MEG re-
cordings were performed on a 269-channel whole-
head MEG system (Omega 2000, CTF Systems Inc.) in a
magnetically shielded booth. Data were acquired with a
sampling rate of 1200 Hz, online denoising (higher-order
gradiometer balancing) and online low pass filtering (cut-
off: 300 Hz) was applied. Continuous tracking of the head
position relative to the MEG sensors allowed correction of
head displacement during the breaks and before each file
saving of a participant, using the fieldtrip toolbox (http://
fieldtrip.fcdonders.nl; Stolk et al., 2013).

Behavioral analysis

A “yes—no” model for independent observations was
used to compute dprime (Green and Swets, 1966).
Four classes of response are considered: (1) hit: a
“yes” response when the target chunk is present in the
digit sequence; (2) correct rejection: a “no” response
when the target chunk is absent; (3) miss: a “no” re-
sponse when the target chunk is present; and (4) false
alarm: a “yes” response when the target chunk is ab-
sent. Nonparametric Wilcoxon signed-rank tests (two-
sided) were used to test differences in the mean
dprime across conditions. The Bayes factor BF;q
(Schoénbrodt and Wagenmakers, 2018), which reflects
the likelihood data arose from the alternative model,
was computed using the software JASP (JASP Team,
2020; 10,000 samples) and default priors.

MRI analysis

The FieldTrip toolbox (http://fieldtrip.fcdonders.nl;
Oostenveld et al., 2011) was used for the MRl and MEG
data analyses. The standard Montreal Neurologic
Institute (MNI) template brain was used for participants
where an individual MRl was missing. Probabilistic
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tissue maps (cerebrospinal fluid gray and white matter)
were constructed from the individual MRIs. Next, a sin-
gle shell volume conduction model (Nolte, 2003) was
applied to retrieve the physical relation between sen-
sors and sources. Between the individual T1 MRI and
the MNI template T1 a linear warp transformation was
computed. An 8-mm template grid, defined on the MNI
template T1, was warped on the individual head space
by inversely transforming it, based on the location of
the coils during the MEG recording and the individual
MRI. Next, based on the warped MNI grid and the prob-
abilistic tissue map a forward model was computed,
and applied for source reconstruction. This allowed
aligning the grids of all participants to each other in MNI
space for the across participants statistics.

MEG preprocessing

Line-noise was removed using bandstop filters (49.5-
50.5, 99.5-100.5, two-pass; filter order 4) and the data
were bandpass filtered off-line (0.1-100 Hz, Butterworth
filter; filter order 4). A common semi-automatic artifact de-
tection procedure was applied: for artifact rejection, the
signal was filtered to identify muscular artifacts (band-
pass: 110-140Hz) or jump artifacts (median filter) and z-
normalized per time point and sensor. The z scores were
averaged over sensors, to accumulate evidence for arti-
facts that occur across sensor. Trials that exceeded a pre-
defined z value (muscular artifacts, z=15; jumps, z=30)
were rejected. Trials were the range (min-max difference)
in any sensor exceeded a threshold (threshold =0.75e-5)
were identified as containing slow artifacts and rejected.
Down-sampling to 500Hz was applied. The data were
epoched (—3.5-5 s). Furthermore, when head movements
exceeded a threshold (5 mm) a trial was rejected. Next, all
blocks of recorded MEG data were concatenated. If high
variance was detected at any sensor, the sensor was re-
jected. Finally, independent component analysis (infomax
algorithm; Makeig et al., 1996) was used to remove eye-
blink, eye-movement and heartbeat-related artifacts
based on cumulative evidence from the component to-
pography and time course.

MEG source-level analysis

In a first step, the data were epoched (0-5 s). For the main
analyses, only trials in which participants showed correct re-
sponses (i.e., hits and correct rejections) were selected.
Next, the sensor-space measurements were projected and
localized in source-space inside the brain volume (Van Veen
et al.,, 1997) using linearly constrained minimum variance
(LCMV) beamforming. A spatial filter was computed based
on the individual leadfields for each participant and condi-
tion (A =10%; 0.8-cm grid). Next, all trials were epoched to
the minimum stimulus duration in the corresponding condi-
tion (condition 1.8 Hz: 2.38 s; condition 2.6 Hz: 1.68 s).

Cortical regions of interest (ROls)

The automated anatomic labeling atlas (AAL; Tzourio-
Mazoyer et al., 2002) was used to select the ROls as fol-
lows (Fig. 2):
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Figure 2. Cortical ROIs. The automated AAL (Tzourio-Mazoyer
et al., 2002) was used to select Cortical regions of interest
(ROIs) in left and right STG, middle temporal gyrus (MTG), and
speech-motor planning and integration areas (IFG, PC, SMG).
V1 was used as control region. ROls are color coded.

® Superior temporal gyrus (STG; Temporal_sup_L/R):
auditory association areas (Hickok and Poeppel, 2007;
Binder et al., 2009)

® MTG (Temporal_Mid_L):
word form and meaning

® |FG (Frontal_Inf_Tri_L/R): involved in speech-motor
planning

® PC (Precentral_L/R), SMG (SupraMarginal_L/R): speech-
motor integration

® (Calcariane (Calcarine_L/R): primary visual cortex (as a
control region)

implicated in processing

We opted to omit Heschl’s gyrus (primary auditory cor-
tex area) from the list of ROIs because of the very small
number of voxels (three in the left, two in the right).

Periodicity density function (PDF) within ROI

We aim to determine whether the elicited brain signal
measured at any given voxel within a specific ROl shows
periodicity, and if so, to extract the frequency. Ultimately,
we seek to characterize the density function of the perio-
dicities across all voxels in the ROIs of interest.

The aggregated cross-correlation measure (XCOV) of
periodicity

To measure the neural response periodicity in individual
voxels one could use one of several widely used meas-
ures, e.g., autocorrelation, where the first nontrivial peak
indicates the period, or the intertrial phase coherence
(ITPC), where the outcome would be the frequency distri-
bution of the coherence function. Importantly, these
measures build on the number of trials, M. The trial signals
are noisy, both because of the SNR and because of the
brain wave irregularity (which is why these methods aver-
age over trials). But what if M is too small? Here we used
a newly proposed measure, termed XCOV, to measure
periodicity across M trials. Broadly, we suggest taking ad-
vantage of the fact that, for M ftrials, we can generate
about M?/2 cross-correlation functions. Recall that, unlike
autocorrelation, the first peak of a cross-correlation func-
tion does not indicate the period but rather the delay be-
tween the two signals. Therefore, we run each of the M2/2
candidate pairs through a “match filter,” which deter-
mines whether the corresponding two signals have a
“zero” delay. Such a pair will have a cross-correlation
function similar to that of an autocorrelation function, i.e.,
its peak is at zero and its earliest nontrivial peak is at the
period. Only the pairs that pass the test are cross-
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correlated and aggregated. Obviously, the number of
cross-correlation functions qualified for aggregation is be-
tween M and M?/2, depending on how strict the match fil-
ter is. [For example, in the STG ROI, the mean number of
trials over subjects for the “hit” response was M = 38, with
a mean number of pairs of 703. The mean number of pairs
that passed the test was 433 for the 1.8-Hz condition and
378 for the 2.6-Hz condition, about one degree of order
bigger than M. A similar trend was observed for all ROls.]
We term the outcome of this measure as the XCOV
function.

PDF within a ROl

Figure 3 details the analysis pipeline for deriving the
PDF of the periodicities within a particular ROI. L voxels,
N subjects, and M trials per subject are considered. First
(data not shown), each brain signal is filtered to the fre-
quency range of interest [low pass filter with cutoff fre-
quency of 6Hz for the (inside/outside) & chunk rate
analysis, and a bandpass filter with a [2-10] Hz frequency
range, for 6 (single digit rate) analysis]. [The filters were
chosen with a bandwidth wider than the expected mean
periodicities (1.8 and 2.6 Hz for 6, ~4 Hz for 0), to let the
XCOV analysis determine the periodicity PDFs without
any bias.] Cross-correlations were computed using the fil-
tered signals. Shown is the XCOV function at the i-th
voxel, for the j-th subject, obtained by aggregating K
cross-correlation functions. (Note that as a cross-correla-
tion function, XCOV is computed against time-lags; the
abscissa here shows the time-lag inverse, in frequency,
hence going from right to left). The particular XCOV func-
tion shown in Figure 3 has a single peak at 1.76 Hz but
note that, in general, an XCOV may have more than one
local peak. Next, the location of the prominent peaks is
extracted, with the number of prominent peaks as a pa-
rameter. (The prominence of a peak measures how much the
peak stands out because of its intrinsic height and its location
relative to other peaks in the range of interest.) In our analysis
one prominent peak per XCOV is considered. Hence, for L
voxels and N subjects, a maximum of L x N data points are
available to construct a histogram, from which only those in-
side the frequency range of interest are used, and the result-
ing histogram is normalized to L x N. A third order Gaussian
mixture model (GMM) that fits the histogram is the desired
PDF. The “goodness” of the periodicity is quantified by in
terms of P, the percentage of datapoints inside the frequency
range of interest with respect to the total number of data-
points (L x N), and the mean u and variance o of the promi-
nent Gaussian component of a third order GMM. (The total
number of data points is shown in the inset of each entry.)

Software accessibility statement
Analysis code will be made available on request.

Results

Behavioral results

Dprime scores were the highest in the 1.8-Hz condition
(mean=2.19, SD =0.4; Fig. 4), i.e., when the chunk rate is
inside the 6 frequency range. Lower dprime scores were
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Gaussian component of a third order GMM. (The total number of data points is shown in the inset of each entry.)
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registered in the 2.6-Hz condition (mean=1.74, SD=0.42), albeit with much weaker periodicity compared with the
when the chunk rate was just at the outside edge of the 6 1.8-Hz condition, and with a smaller P (of below 30%).
range. The difference in scores was significant (1.8-Hz condi-  Notice that, across chunk conditions, the PDF patterns
tionvs 2.6 Hz: W=177,p < 0.001, r=0.863; BF 1o = 199.6). for hits and correct rejections are similar, as are the pat-
terns for misses and false alarms. Such similarities were
observed for all ROIs. Therefore, in presenting the rest of

PDF of elicited brain waves the data, the hits and correct rejections are combined to
We used the XCQOV of periodicity across M trials to de-  indicate correct responses, and the misses and false

termine whether the elicited brain signal measured at any  alarms are as erroneous responses.

given voxel within a specific ROl shows periodicity, and if In the following figures, the data are presented as fol-

so, to extract the frequency. Then, we derived the PDF of  lows. Each figure contains 6 x 2 entries organized in six
the periodicities across all voxels in the ROls of interest  rows (ROIls) and two columns (chunking conditions). Each
(Fig. 2). The goodness of the periodicity is quantified by in  entry shows the periodicity PDF, and the goodness of the
terms of P, the percentage of datapoints inside the fre-  periodicity is quantified in terms of P, wand o. In some se-
quency range of interest with respect to the total number  lected entries, the upper left corner shows the Kullback-
of datapoints (L voxels x N subjects), and the mean wand  Leibler divergence (KLD) of the entry’s PDF with respect
variance o of the prominent Gaussian component of a  to a reference PDF defined in the respective figure cap-
third order GMM. Figure 5 shows the periodicity PDFs in  tion. Finally, in some entries, no x and o values are pres-
the [1 4] Hz frequency range for the STG ROI in the left  ent. This is so because of a failure of the third order GMM
hemisphere. For the 1.8-Hz condition, a strong periodic  to converge because of the small p value.

response at ~1.8 Hz was recorded for the hits and correct Figure 6A,B show the elicited responses in the [1 4] Hz
rejections, with the P over 50%. Much weaker presence frequency band for correct responses (i.e., hits and cor-
of periodicity was recorded for the misses and false rect rejections combined), and erroneous responses (i.e.,
alarms. A similar trend is shown for the 2.6-Hz condition, misses and false alarms combined), respectively. We
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Figure 4. Behavioral performance in the digit retrieval task.
Dprime values are displayed, as measure of performance accu-
racy, separately for each condition. Blue dots indicate individual
dprime scores, black lines indicate the mean dprime scores,
dark gray bars indicate the =1 SEM and light gray bars the con-
fidence interval. Significance is indicated by **(p <0.01). The
performance was higher in the 1.8-Hz acoustical chunk (inside
8 chunking), compared with the 2.6-Hz acoustical chunk condi-
tion (outside of §; replicating findings in Ghitza (2017)).

term these elicited responses § responses. For correct re-
sponses in the 1.8-Hz condition a strong periodicity pres-
ence at ~1.8 Hz is recorded. A similar pattern is shown for
the 2.6-Hz condition, albeit with much weaker periodicity
presence compared with the 1.8-Hz condition (lower p
value and wider o). For erroneous responses, for all ROls,
no presence of periodicities is recorded, for any condition.
More specifically: for correct responses, in the chunked
conditions, the auditory association ROI (STG) shows a
compelling periodicity presence at 1.8Hz in the 1.8-Hz
condition and a weaker presence at 2.6 Hz in the 2.6-Hz
condition. At the middle temporal ROl (MTG), periodicity
exists for the chunked conditions, albeit with 1.8 Hz perio-
dicity stronger than that of 2.6 Hz. Similar patterns are ob-
served in the speech-motor planning and integration ROIs
(IFG, SMG, PC), whereas periodicity is present at 1.8 Hz,
and is absent in the 2.6-Hz condition. Note that in the vis-
ual ROI (calcarine), & periodicities are absent for all condi-
tions. Finally, the 1.8-Hz condition column of Figure 6A
also shows the KLD for all ROls, with respect to the STG
ROI (highlighted in red). The KLD values suggest similar
patterns of elicited § periodicities observed in the tempo-
ral brain regions (STG and MTG ROls, with KLD value of
0.15 for MTG), and the frontal motor and temporal-parietal
regions (IFG, SMG and PC ROls, with KLD values of 0.15,
0.25, and 0.11, respectively).

Furthermore, we compared the elicited 6 responses in
all ROIs in the left versus the right hemispheres for correct
responses. Similar periodicity PDFs are observed for all
ROIs in all chunking conditions. The KLD was calculated
for each ROI in the Right hemisphere against the corre-
sponding left ROI. The KLD values show a closer similarity
between the periodicity PDFs of the left and right

July/August 2021, 8(4) ENEURO.0562-20.2021

Research Article: Confirmation 7 of 15
hemisphere of the temporal brain regions (STG and MTG,
with KLD values of 0.1 and 0.11, respectively). In contrast,
in the frontal motor and temporal-parietal regions perio-
dicities were more prominent in the left compared with
the right hemisphere (IFG, SMG, and PC, with KLD values
of 0.28, 0.15, and 0.47, respectively).

Figure 7A,B show the elicited responses in the [2 6] Hz
frequency band for the correct and erroneous responses,
respectively, for ROIs in the left hemisphere. We term re-
sponses in this frequency band 60 responses. For the cor-
rect behavioral responses, strong 6 was elicited in all
ROIs and for all chunking conditions. Such elicited neural
response patterns reflect the single digit presentation
rate. Two observations are noteworthy, the bimodal char-
acteristic of the PDFs for all chunking conditions, in par-
ticular for the 1.8-Hz chunking condition, and the strong,
unexpected, # periodicity presence in the calcarine ROI.
For the erroneous responses, a weaker more dispersed
periodicity presence was observed. Finally, for the correct
responses, the periodicity PDFs were similar in shape
across conditions, as was quantified by the KLD values
comparing the periodicity PDFs in the 1.8-Hz condition
with respect to the 2.6-Hz condition (KLD values between
0.13 and 0.2 across ROIls). The similarity of the PDFs
across chunking conditions confirms that the decoding
time at the digit level was sufficient across conditions.

Correspondence between behavioral data and
electrophysiological data

Figure 8 quantifies the correspondence between the eli-
cited 6 periodicity patterns and the behavioral data.
Shown are the third order GMMs computed for the cor-
rect responses in the left hemisphere and the two stimulus
conditions. Unlike Figure 6A, which shows PDF in terms
of scaled periodicity count, shown here are the actual
probability densities (with the [p(x)dx = 1). The title of each
panel shows three measures: (1) [dprime o], the behav-
ioral performance indicated by mean dprime values and
the variance across subjects; (2) [Bias o], the average of
the absolute difference (termed Bias) between the mean
of the prominent Gaussian component of the GMM and
the acoustic chunk rate, and the variance across the
ROls; and (3) [P o], the average p value and the variance
across the ROls. Two observations are noteworthy. First,
the tightness of the PDFs in the 1.8-Hz condition as re-
flected in the high probability value at the periodicity fre-
quency, compared with the pseudo-uniform shape of the
PDFs in the 2.6-Hz condition. And second, the decrease
in dprime accompanies the increase in Bias and the de-
crease in P. These data support the hypothesis that per-
ceptual chunking at the time scale of phrase is derived by
acoustic-driven 6 oscillators.

Discussion

In this study we adopted a reductionist approach to
test, in electrophysiological terms, the hypothesis that the
speech decoding process at the phrasal time scale is
guided by a flexible, acoustic-driven neuronal & oscillator
locked to phrase-size acoustic cues (Ghitza, 2017). The
proposal suggests an analog role of a § oscillator, at the

eNeuro.org



Research Article: Confirmation 8 of 15

eMeuro

[P 1 o] = [54 1.78 0.011] [P 1 o] = [29 2.43 0.02]

015 0.15
Z 380 380
= =0
I 9
5 0.
o
[P 1 0] =[25 1.82 0.024] [P 1 0] =[10 2.74 0.094]
0.15 0.15 .
z [ 380
@ % 0.1 0.1
= O
= $o. 0.05
[a
0 e ~D e
c 1 2 3 4
o [P 1 o]l=[24 2.68 0.19]
B 0 0.15
o £ 7380 380
T S o.
xc 3
+ 5 0.
3
=
o
© P 14 2.65 0.036
£ 015 o Bel = [14 265 10.096)
£z
o
g E,o. 0.05
1 2 3 4

Frequency (Hz)

Frequency (Hz)

Figure 5. PDFs of § periodicities per response class. The periodicity density functions (PDFs) are displayed for the left hemisphere
STG region of interest (ROI). The number of voxels in this ROl is 20 and the number of participants 19. Per voxel and subject, one
XCOV peak inside the 6 [1 4] Hz range was selected. The rows indicate the response classes (hit, miss, etc.), and the columns the
chunking conditions. Each entry shows the histogram (with the periodicity count scaled to L x N), and the corresponding PDF. The
inset of each entry shows the total number of data points L x N analyzed (20 voxels x 19 subjects =380 incidences). The goodness
of the PDF is quantified in terms of the percentage (p value) of datapoints inside the frequency range of interest with respect to the
total number of datapoints, and the mean w and variance o of the prominent Gaussian component of a third order GMM. For the
1.8-Hz condition, a strong periodicity presence at 1.8 Hz was recorded for the hit and correct rejection responses, with P over 50%.
A much weaker presence was recorded for the miss and false alarm responses. A similar trend is shown for the 2.6-Hz condition, al-
beit with much weaker periodicity presence compared with the 1.8-Hz condition, and a smaller number of datapoints (P of below 30%).

phrasal time scale, to the role played by neuronal §-band
oscillations at the syllabic time scale. The study is reduc-
tionist in the sense that it is confined to the perceptual
chunking of digits sequences, where the digits in the se-
quence are grouped into phrase-size chunks. We col-
lected, concurrently, behavioral and MEG data during a
digit retrieval task, in which the digit sequences were ei-
ther presented with an acoustic chunk pattern inside or
outside of the § range. Stimuli with a chunk rate inside the
6 range elicited considerable neuronal periodicity at the
chunk rate in STG, MTG ROIs and IFG, SMG, and PC
ROls. Critically, this pattern of detected periodicities was
directly related to correct behavioral responses. In con-
trast, stimuli with a chunk rate outside of the 6 range eli-
cited weak periodicity, aligned with observed declines in
behavioral performance. In the calcarine ROI (early visual
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cortex), considered a “control area” for our analyses, no
periodicities at the chunk rate were elicited.

Presence of é periodicities in the auditory pathway
How should these activity patterns of neuronal 6 and 6
periodicities, be interpreted? In the temporal cortex (STG
and MTG), robust periodicities were recorded mainly by
stimuli with a chunk rate inside the 6 range, and only for
correct behavioral responses. Periodicities in these brain
areas were present even for acoustic chunk rates at the
edge of the 6 range, albeit considerably weaker. A similar
pattern of periodicities was observed in the speech-motor
planning and integration areas (IFG, SMG, and PC), where
periodicities were absent for acoustic chunk rates outside
the 6 range. Note that the observed lack of hemispheric
lateralization in auditory cortex in our study is in line with
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Figure 6. 6 Periodicities for correct and erroneous responses in the left hemisphere. A, Periodicities for correct responses: rows in-
dicate the ROIls and columns the chunking conditions. Each entry shows the histogram (with the periodicity count scaled to the L x
N), and the PDF, quantified in terms of the percentage (p value) of datapoints inside the frequency range of interest with respect to
the total number of datapoints (L x N, see inset). For the 1.8-Hz condition, a strong periodicity presence at ~1.8 Hz is recorded. A
similar trend is shown for the 2.6-Hz condition, albeit with much weaker periodicity presence compared with the 1.8-Hz condition.
The 1.8-Hz condition column shows the KLD computed for this condition at all ROIs, with respect to the STG ROI highlighted in red
(upper left corner of the ROIs). The KLD values suggest similar patterns of elicited 6 periodicities in the temporal brain areas (STG
and MTG ROls), and in the frontal motor and temporal parietal areas (IFG, SMG, and PC ROlIs). B, Periodicities for erroneous re-
sponses: no presence of periodicities is recorded for any condition.

previous reports on bilateral #/8 activity elicited to more
complex speech stimuli (Assaneo et al., 2019; Flinker et
al., 2019). Interestingly, in contrast to the temporal brain
areas, in the speech-motor planning and integration areas
more divergence between the left and right hemisphere
was observed, with more prominent 6 periodicities in the
left hemisphere. The left hemisphere more tightly followed
the chunking rate compared with the right. These findings
suggest an important role for superior and middle tempo-
ral and speech-motor planning and integration areas in
chunking at the phrasal scale. Importantly, and quite re-
markably, the §-band activity in these areas was fully
aligned with behavioral performance (i.e., 6 activity was
only elicited in correct, but not in erroneous responses).
Previously, EEG studies showed § in bilateral middle and
superior temporal areas (also fusiform gyrus; Bonhage et

July/August 2021, 8(4) ENEURO.0562-20.2021

al.,, 2017) and at frontotemporal sites (Boucher et al.,
2019) was related to chunking during phrase and sen-
tence processing. § Might reflect the chunking of ordered
sensorimotor events as articulated sound, rather than
syntactic phrasal/sentential processing directly (Boucher
et al., 2019). Furthermore, Keitel et al. (2018) and Morillon
et al. (2019) recently proposed that § oscillations in the
motor cortex are involved in temporal predictions, affect-
ing speech processing in the auditory cortex at a phrasal
scale (for a predictive account of § see also Breska and
Deouell, 2017; Daume et al., 2021; or a statistical learning
account, see Henin et al., 2021). A possible interpretation
of their findings through the lens of our results is that
acoustic-driven segmentation of phrase-size chunks
takes place in STG, and the recorded behavioral perform-
ance with respect to chunk rate is a consequence of the
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Figure 7. 6 Periodicities for correct and erroneous responses in the left hemisphere. A, Periodicities for correct responses: strong 6
periodicities were present in all regions of interest (ROls) and for all chunking conditions. Such elicited neural response patterns re-
flect the single digit presentation rate. The histograms are scaled to L x N (see inset). The periodicity density functions (PDFs) are
similar in shape across conditions, as is quantified by the KLD values comparing the PDFs in the 1.8-Hz condition with respect to
the 2.6-Hz condition. B, Periodicities for erroneous responses: a weaker more dispersed presence of 6 periodicities is recorded for

all conditions (lower p value and wider o).

goodness of segmentation. When the chunk rate is inside
the 6 band, successful segmentation results in § activities
in speech-motor integration areas (SMG, PC, IFG) that
may reflect decoding processes and possibly auditory-
motor mapping related processes (Park et al., 2015). In
contrast, chunk rates outside of the § band might result in
bad segmentation in STG, and in turn suppressed perio-
dicities in speech-motor integration areas (SMG, PC,
IFG) because of unreliable decoding and audio-motor
mapping. This interpretation is in line with another
study (Donhauser and Baillet, 2020) that reports strong
8 activity in STG when the speech input was “informa-
tive,” which may be the consequence of appropriate
segmentation.

It could be argued that one cannot draw a conclusive
relationship between “chunking” and the neural periodic-
ity in the 6 range. In particular, the drop in intelligibility for
the 2.6-Hz condition may be because of the fact that the
silent gaps in-between the two-digit chunks are shorter.

July/August 2021, 8(4) ENEURO.0562-20.2021

This argument raises three points that merit discussion.
First, a question arises whether or not a 2.6 Hz rhythm in
the acoustics is present at the cochlear output level.
Figure 9A shows a simulation of the cochlear modulation
spectrum (Jepsen et al., 2008) for a 1.8Hz (left) and a
2.6 Hz (right) stimuli, taken at a characteristic frequency of
426 Hz (this cochlear place was selected at random, for
demonstration). A robust modulation presence is ob-
served for both stimuli, at their respective acoustic input
rhythm. Second, it could be argued that the shorter silent
gaps result in weaker acoustic cues for chunking.
Recalling that neural activity in primary auditory cortex
represents sensory representations of the acoustics with
a minimal information loss (Nourski et al., 2009), a weak-
ening in acoustic cues should be reflected in terms of a
weaker periodicity presence at primary cortex (e.g., the
Heschl’s gyrus). As mentioned earlier (Fig. 2), we opted to
omit the Heschl’s gyrus from our rigorous periodicity anal-
ysis because of the small number of voxels present (three
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Figure 8. Correspondence between behavioral data and electrophysiological data. Shown are the third order Gaussian Mixture
Models (GMMs) of correct responses in the left hemisphere. Unlike Figure 6A, which shows the periodicity density function (PDF)
scaled to P (the percentage of datapoints inside the frequency range of interest with respect to the total number of datapoints),
shown here are the actual probability densities (with the [p(x)dx =1). The title of each panel shows three measures: (1) [dprime o],
the behavioral performance; (2) [Bias o], the average of the absolute difference between the mean of the prominent Gaussian com-
ponent of the GMM and the driving acoustic chunk rate, and variance across the ROls; and (3) [p o], the average p value (defined in
Fig. 6) and variance across the regions of interest (ROIs). Note the tightness of the PDFs in the 1.8-Hz condition compared with the
pseudo-uniform shape of the PDFs in the 2.6-Hz condition, and the correlation between the decrease in dprime and the increase in

Bias and the decrease in p.

in the left, two in the right). Figure 9B shows the XCOV pe-
riodicity PDF for all five available voxels, for correct and
erroneous responses combined. Keeping in mind the con-
cern over the validity of the results because of the limited
number of voxels, we observe a strong periodicity pres-
ence for both chunking conditions at their respective
chunk rates, suggesting no weakening of the acoustic
cues for chunking. In contrast, as early as at the STG level
we observe strong periodicities only for chunk rates inside
the & frequency range (Fig. 6). The findings suggest that
the neuronal circuitry of the § oscillator resides at the
STG level and constrains prosodic chunking. Third, it
could also be argued that the shorter silent gaps result in
an insufficient decoding time at the single digit level.
However, our data show that this is not the case, as at the
digit level, for all chunking conditions and at all ROls,
strong 6 periodicities (at the single digit rate) were elicited
regardless of the level of behavioral chunking perform-
ance. Thus, the drop in performance for the 2.6-Hz condi-
tion, with a chunk rate just outside the é frequency range,
is because of the lack of decoding time at the chunk level
but not because of digit decoding time. Recall that for
both the 2.6-Hz and the 1.8-Hz stimuli, the two-digit

July/August 2021, 8(4) ENEURO.0562-20.2021

chunks themselves have an identical time-compressed
acoustics; the only difference is the duration of the silent
gaps between the chunks (Fig. 1). Performance is recov-
ered by bringing the chunk rate back inside the § range,
hence providing the extra decoding time needed. As a
whole, therefore, our data suggest that segmentation of
phrase-sized chunks is realized by neuronal 6 oscillators,
and that the chunk’s decoding time is determined by &, in
analogy to the role of 6 in determining the decoding time
at the syllable level (Ghitza, 2014).

Presence of 0 periodicities in all chunking conditions
Our data show strong 6 periodicities in all ROls and for
all chunking conditions. Such elicited neural response
patterns reflect the single digit presentation rate. A bi-
modal characteristic of the PDFs is observed for all
chunking conditions, but in particular for the 1.8-Hz con-
dition. The bimodality arises from the acoustic properties
of the stimuli. Consider, for example, the stimulus shown
in Figure 1. Three intradigit durations can be identified: (1)
the duration between the onset of the first digit of a chunk
and the first digit in the following chunk, which gives rise
to the chunking rate; (2) the duration between the onset of
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Figure 9. Cochlear modulation spectrum (A) and é periodicities at Heschl’s gyrus (B) for the digit-sequence stimuli shown in Figure
1. A, Cochlear output in terms of cochlear modulation spectrum (Jepsen et al., 2008). Shown are modulation spectra of the digit-se-
quence stimuli shown in Figure 1, for the 1.8-Hz stimulus (left) and for the 2.6-Hz stimulus (right). The modulation spectra shown are
shapshots at the cochlear characteristic frequency (CF) of 426 Hz. Abscissae represent time (duration of 2.7 and 1.9 s, for the 1.8-
and the 2.6-Hz stimuli, respectively) and the ordinate represents the modulation frequencies (0.5 to 7.6 Hz). Note the strong pres-
ence of modulations at 1.8 Hz for the 1.8-Hz stimulus and at 2.6 Hz for the 2.6-Hz stimulus. (B) § Periodicities at Heschl’s gyrus ROI
for the correct and erroneous responses, combined. Note that the total number of datapoints is 380: the number of voxels (left and
right combined) is 5, the number of participants 19, and the number of response conditions (correct and erroneous) is 4. The KLD
value of the 2.6-Hz probability density function (shifted to 1.8 Hz) with respect to the 1.8-Hz probability density function is 0.87.
Keeping in mind the concern over the validity of the results because of the limited number of voxels, the strong periodicity presence
for both chunking conditions suggest that the diminished periodicity for the 2.6-Hz condition is because of neuronal circuitry char-

acteristics at the STG level and not because of weakening of acoustic cues for chunking.

the first digit and onset of the second digit in a chunk; and
(8) the duration between the onset of the second digit in a
chunk and the onset of the first digit in the following
chunk. This plurality in intradigit durations give rise to a bi-
modal duration distribution with a skewness determined
by the prescribed chunking rate. The skewness is accen-
tuated, in particular, in our 1.8-Hz stimuli. The bimodal na-
ture in the acoustics drives the elicited neural response
seen in our data (Fig. 7A).

Oscillations versus evoked responses

Our data show strong & cortical periodicities while lis-
tening to the 1.8 Hz chunked stimuli. Are these brain
waves generated by a neuronal oscillator locked to the
acoustic chunk rhythm or do they reflect the evoked re-
sponse to the corresponding acoustic cues? The answer
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to this question at the syllabic level has been difficult to
determine, because the impulse response of the neuronal
circuitry to discrete acoustic cues associated with sylla-
bles (e.g., acoustic edges, vocalic nuclei) corresponds, in
duration, to the 6-cycle range (about [125 330] ms).
Doelling et al. (2019) addressed this conundrum by gener-
ating simulated outputs of an oscillator model and of an
evoked response model, and comparing the quantitative
predictions of phase lag patterns generated by the two
models against recorded MEG data. They showed that,
compared with the evoked response model, a model that
includes oscillatory dynamics better predicted the MEG
data. Our data provides additional support for the oscilla-
tor interpretation. Can the observed, robust periodic re-
sponses to a 1.8Hz chunked stimulus reflect evoked
responses elicited by discrete acoustic cues at the phrase
time scale? Indeed, steady-state evoked responses to
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slow dynamics have been observed in both visual and au-
ditory sensory regions (Capilla et al., 2011; Wang et al.,
2011). However, only a model of oscillatory dynamics can
explain the fact that neural response at the 6 range is only
present when the acoustic chunk rate is inside, but is ab-
sent for rates outside the § range.

Generalizability of the neuronal chunking mechanism
Scaling up to real speech

The studies discussed above (Meyer et al.,, 2017;
Bonhage et al., 2017; Keitel et al., 2018; Boucher et al.,
2019; Morillon et al., 2019) suggest a presence of 6 brain
waves in phrasal chunking for continuous speech, beyond
the digit retrieval paradigm used here. Extending our re-
sults to naturalistic speech has important implications for
what would constitute optimally sized acoustic chunks for
the sentential decoding, or parsing, process. If the infor-
mation “bound” within windows of roughly a § cycle are
integrated as phrases (intonation phrases and perhaps
structural phrases, depending on the specific relation), it
suggests that there are natural patterns of spoken phrase
rhythms or phrase durations that are best suited for de-
coding spoken language, driven by the necessity to
match a cortical function. Deploying the experimental
analysis approach, we describe here to real speech can
elucidate the temporal aspects of spoken language
comprehension.

Infra-8 chunking rate

As discussed earlier we define the relevant § range to
be between 0.5 and 2 Hz, and chose the 1.8-Hz condition
to represent the case where the input chunking rate is in-
side 6, and the 2.6-Hz condition to represent the outside
8 case. The main research question of our study was
whether elicited 6 cortical oscillations correlate with be-
havior. In particular, does performance deteriorate if the
chunk rate is outside the § range? We addressed this
question by looking at an above-8 chunking rate (2.6 Hz),
but we did not look at infra-é rates (e.g., 0.3 Hz). The rea-
son to skip the effects of infra-6 rates stemmed from the
fact that the decay time of sensory memory, ~2 s long
(Cowan, 1984), roughly coincides with the lower bound of
the 6-cycle duration. Consequently, the dominant factor
at the origin of a possible deterioration in performance
may very well be an internal time constraint on processing
spoken material (because of echoic memory span) rather
than prosodic segmentation.

In conclusion, oscillation-based models of speech per-
ception (Ghitza, 2011; Giraud and Poeppel, 2012; Gross
et al., 2013; Martin and Doumas, 2017; Haegens and Zion
Golumbic, 2018; Rimmele et al., 2018b; Lakatos et al.,
2019) postulate a cortical computational principle by
which decoding is performed within a time-varying win-
dow structure, synchronized with the input on multiple
time scales. The windows are generated by a segmenta-
tion process, implemented by a cascade of oscillators. At
the prelexical level, the segmentation process is realized
by a flexible 6 oscillator locked to the input syllabic
rhythm, where the 6 cycles constitute the syllabic win-
dows. Doelling et al. (2014) provided MEG evidence for
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the role of 6, showing that intelligibility is correlated with
the existence of acoustic-driven 6 neuronal oscillations.

Our major finding, that phrase-size chunking of digit
strings is correlated with acoustic-driven 6 oscillations,
suggests that the role played by neuronal #-band oscilla-
tions in syllabic segmentation can be generalized to the
phrasal time scale. The segmentation process is realized
by a flexible 6 oscillator locked to the input phrase-size
chunk rhythm, where the § cycles constitute the phrase-
size chunk windows.

Future research is required to investigate whether our
findings can be generalized to continuous speech (i.e.,
beyond digit strings). That is, whether the intonational
phrase patterns of language could be constrained by cort-
ical 6 oscillations. Adopting the view that the strategy of
composing syllables and words into phrasal units is the
result of an evolutionary trajectory to match a cortical
function (Patel and Iversen, 2014; Bosman and Aboitiz,
2015), we hypothesize that the phrases of language are
constrained by é oscillations, and the rules of chunking in
speech production may be the product of common corti-
cal mechanisms on both motor and sensory sides, with &
at the core.
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