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a b s t r a c t 

In this paper, a progressive global perception and local polishing (PCPLP) network is proposed to auto- 

matically segment the COVID-19-caused pneumonia infections in computed tomography (CT) images. The 

proposed PCPLP follows an encoder-decoder architecture. Particularly, the encoder is implemented as a 

computationally efficient fully convolutional network (FCN). In this study, a multi-scale multi-level feature 

recursive aggregation (mmFRA) network is used to integrate multi-scale features (viz. global guidance fea- 

tures and local refinement features) with multi-level features (viz. high-level semantic features, middle- 

level comprehensive features, and low-level detailed features). Because of this innovative aggregation of 

features, an edge-preserving segmentation map can be produced in a boundary-aware multiple supervi- 

sion (BMS) way. Furthermore, both global perception and local perception are devised. On the one hand, 

a global perception module (GPM) providing a holistic estimation of potential lung infection regions is em- 

ployed to capture more complementary coarse-structure information from different pyramid levels by en- 

larging the receptive fields without substantially increasing the computational burden. On the other hand, 

a local polishing module (LPM), which provides a fine prediction of the segmentation regions, is applied 

to explicitly heighten the fine-detail information and reduce the dilution effect of boundary knowledge. 

Comprehensive experimental evaluations demonstrate the effectiveness of the proposed PCPLP in boost- 

ing the learning ability to identify the lung infected regions with clear contours accurately. Our model is 

superior remarkably to the state-of-the-art segmentation models both quantitatively and qualitatively on 

a real CT dataset of COVID-19. 

© 2021 Elsevier Ltd. All rights reserved. 

1

2

c

u

l

a

f

p

a

s

s

i

a

e

p

p

t

i

h

g

d

h

m

i

h

0

. Introduction 

The spread of the severe acute respiratory syndrome coronavirus 

 (SARS-CoV-2) becomes a global public health crisis known as the 

oronavirus disease 2019 (COVID-19) pandemic. SARS-CoV-2 contin- 

es threatening the world due to its high infectivity and extreme 

ethality. To stop the spread of SARS-CoV-2, a robust, accurate, 

nd rapid testing protocol plays a critical role. The gold standard 

or detecting COVID-19 infections in clinics is reverse transcription- 

olymerase chain reaction (RT-PCR) [1] . Unfortunately, the short- 

ge of equipment and long operation time ( i.e., a typical 24-hour 

ample-to-result turnaround time) dramatically limits our ability to 

creen suspected patients rapidly. In addition, the reduced sensitiv- 

ty of RT-PCR tests caused by inappropriate sample collection, stor- 
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ge, transfer, purification, and processing yield high false-negative 

rrors, becoming a hazardous factor for stopping the COVID-19 

andemic. 

Radiological techniques, including chest X-ray [2–4] and com- 

uted tomography (CT) [5–7] , offer critical imaging tools for the de- 

ection of COVID-19-related pneumonia infections and in evaluat- 

ng the respiratory complications related to coronavirus. Due to its 

igh spatial resolution, chest CT is more effective than X-ray radio- 

raphy for detecting COVID-19. This is because CT can be used to 

etect small lesions showing signs of infections on the lung with a 

igher degree of sensitivity than X-ray radiography. 

When CT imaging is used to diagnose COVID-19-caused pneu- 

onia infections, one important task is to delineate the suspected 

nfections in the lung. The identification (also known as image seg- 

entation) of COVID-19-caused infections through CT images is 

rucial for further quantitative analysis of the disease. Also, the 

egmentation of the COVID-19-caused lesions can be used to mon- 

https://doi.org/10.1016/j.patcog.2021.108168
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108168&domain=pdf
mailto:jtang25@gmu.edu
https://doi.org/10.1016/j.patcog.2021.108168
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Fig. 1. An illustrative flowchart showing major components of the proposed PCPLP network. 
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simultaneously. 
tor and determine the severity of the disease over time, which al- 

ows doctors to predict risks and prognostics in a "patient-specific" 

ashion. Currently, the segmentation of the COVID-19-caused pneu- 

onia infections has been done manually by experienced radiolo- 

ists. However, such a task is labor-intensive and prone to inter- 

nd intra-observer variability. Automated segmentation of COVID- 

9-caused infections from CT images, will relieve clinicians’ work- 

oads and make radiologic diagnoses more reliable and repro- 

ucible. However, there are several challenges: 1) compared with 

lassification tasks, the segmentation of infection regions in the 

ung needs to process more discriminative information; 2) texture 

f the infected regions on CT images, especially the tiny infection 

egions, is devilishly complicated and detailed CT image character- 

stics vary dramatically, leading to false-negative; 3) the segmenta- 

ion is sensitive to several intrinsic factors in the images, e.g. , the 

ifference of the locations of the lesions, intensity inhomogeneity 

f the infected regions, high variation of the infection character- 

stics, soft tissue appearance within the proximity of a suspected 

nfection, etc. 

Our image segmentation method is inspired by practices in the 

linical workflow. More specifically, during the diagnosis of pul- 

onary infections, clinicians first identify the overall infected re- 

ions and then zoom in to the details of those detected pulmonary 

esions, e.g., local appearances on CT images. In other words, clin- 

cians use both global (a rough lesion contour) and local (detailed 

maging characteristics) information to distinguish the infected le- 

ions from normal tissues. Our algorithm first predicts the rough 

nfection areas and then refines the suspected lesion boundaries 

y taking imaging details into considerations. However, the com- 

ination of imaging artifacts ( e.g., motion artifacts) and insufficient 

mage contrast between the infections and their surroundings (soft 

issue) makes the automated image segmentation of COVID-19 in- 

ection regions challenging. 

This paper proposes a progressive global perception and local pol- 

shing (PCPLP) deep network to overcome the technological chal- 

enges mentioned above. As illustrated in Fig. 1 , the proposed 

CPLP network follows an encoder-decoder architecture. The en- 

oder structure uses a VGG-16 framework, which starts by extract- 
2 
ng multi-level Pyramid features, i.e. , high-level semantic features, 

iddle-level comprehensive features, and low-level detailed fea- 

ures. Two additional modules: a global perception module (GPM) 

nd a local polishing module (LPM), are added to extend the clas- 

ical VGG model. GPM is used to extract the global knowledge to 

nd the infected regions’ rough locations. In contrast, the LPM is 

sed to extract the local information to obtain the infected regions’ 

nternal details and external contours. After the image encoding, 

ocal features obtained by the LPM models at various scales, the 

iscriminant features of the contrast layers, and the upsampling 

eatures of the previous decoder layer are hierarchically integrated 

o obtain the enriched feature representations ( i.e., local score 

ap in Fig. 1 ). After that, the local refinement features, which 

re generated through multi-level feature recursive aggregation (ml- 

RA) by multistage parallel fusion in a recurrent manner, are com- 

ined with the global guidance features ( i.e., a global score map in 

ig. 1 ) via multi-scale feature recursive aggregation (msFRA) to pro- 

uce the initial segmentation map. Finally, we propose to train the 

ulti-scale multi-level feature recursive aggregation (mmFRA) net- 

ork by exploiting the boundary-aware multiple supervision (BMS), 

.e., segmentation cross-entropy loss (SCEL), boundary cross-entropy 

oss (BCEL), and boundary-refinement loss (BRL). 

In summary, our main contributions of this work are fourfold: 

1) We propose a novel deep fully encoder-decoder convolutional 

network, PGPLP, for COVID-19 lung infected region segmenta- 

tion from chest CT images. 

2) The entire network comprises a pair of msFRA and mlFRA net- 

works, which progressively aggregate the global guidance in- 

formation and local refinement information in a coarse-to-fine 

fashion to get the initial segmentation map. 

3) We build GPM and LPM modules to guide the message through 

the network to learn accurate positioning information and ex- 

tensive detailed knowledge of the lung infected regions. 

4) To make the network focus on the infected regions and the 

boundary pixels in the training phase, we employ BMS to pre- 

dict the lung infection regions and the corresponding contours 
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The remainder of this paper is organized as follows: The related 

ork is presented in Section 2 . The architecture of the proposed 

GPLP network is described in Section 3 . Extensive experimental 

valuations are provided in Section 4 followed by some closing re- 

arks in Section 5 . 

. Related Works 

In this section, image analysis techniques with applications in 

he COVID-19 pandemic, which are most relevant to our work, are 

iscussed. 

.1. Artificial Intelligence for Combating COVID-19 

Many researchers proposed various strategies based on artificial 

ntelligence (AI) technology to contribute to the combat against the 

OVID-19 epidemic [8] . For instance, Jiang et al . [9] presented an 

I architecture with the prophetic ability for COVID-19 detection 

o support rapid clinical decision-making. Li et al . [10] developed 

 fully automatic COVID-19 detection neural network (COVNet) to 

istinguish SARS-CoV-2 infections from community-acquired pneu- 

onia on chest CT images. Harmon et al . [11] employed an AI al-

orithm to detect COVID-19 pneumonia on chest CT datasets from 

ulti-institutions. Their method reached an accuracy of 90.8%. Be- 

ides utilizing chest CT images, Salman et al . [12] exploited a deep 

earning model for COVID-19 pneumonia detection in X-ray im- 

ges, which achieved comparable performance to expert radiolo- 

ists. Wang et al . [13] developed a tailored deep convolutional neu- 

al network for detecting COVID-19 utilizing chest X-ray images. 

dhikari et al . [14] introduced a two-staged DenseNet to diagnose 

OVID-19 from CT and X-ray images to alleviate the workloads 

f radiologists. All those radiography-based algorithms can decide 

hether a patient is infected by SARS-CoV-2 and contribute to the 

ontrol of the COVID-19 epidemic, especially when RT-PCR tests are 

ot available. 

.2. Segmentation of COVID-19 Infections from Chest CT Images 

In addition to AI-based detection of COVID-19-caused pneumo- 

ia [15–17] , research efforts have also been devoted to the segmen- 

ation of COVID-19 caused infections [18–21] . Image segmentation 

nables subsequent quantitative analysis for patients infected by 

ARS-CoV-2. A critical application of infection segmentation is to 

rovide a comprehensive prediction of the disease severity; this 

an be done by visualizing and stratifying the lesion distribution 

tilizing the percentage of infection (POI). As mentioned before, im- 

ge segmentation algorithms must overcome several challenges, in- 

luding intensity inhomogeneity, interference of imaging artifacts, 

ack of image contrast among different tissue types, etc . Some in- 

ovative strategies have been proposed to overcome the above-said 

hallenges. The most prominent neural network architectures of 

his line of research are U-Net [18] and its variants ( e.g. , residual

ttention U-Net [19] , spatial and channel attention U-Net [20] , 3D 

-Net [21] , etc .). Particularly, Zhou et al . [22] designed a rapid, ac-

urate, and machine-agnostic model to segment the infection re- 

ions in COVID-19 CT scans. Wang et al . [23] presented a noise- 

obust deep segmentation network to learn the pneumonia lesions 

f COVID-19. Fan et al . [24] proposed a lung infection segmenta- 

ion network to segment COVID-19 infected regions on chest CT 

mages automatically. More recently, Laradji et al . [25] put forward 

 weakly supervised learning framework for COVID-19 segmenta- 

ion in CT images, which utilized the consistency-based loss to en- 

ance the performance of the segmentation. 

Our proposed automatic deep segmentation model was inspired 

y observed clinical practices, making it different from other pub- 

ished methods. Our method first learns multi-level discriminant 
3 
nformation of lesions via a global perception strategy. It then pro- 

ressively refines the infection regions with additional local de- 

ailed image characteristics through the local polishing method. As 

escribed in the proceeding sections, the proposed method pos- 

esses enormous potentiality to assist experts in analyzing and in- 

erpreting COVID-19 CT images. 

. The Proposed Lung Infection Segmentation Network 

Anecdotally, experienced radiologists usually adopt a two-step 

rocedure to segment an infected region caused by SARS-CoV-2: 

) roughly locate an overall infection region, and 2) complete an 

ccurate delineation of the infection region characterizing local tis- 

ue structures and considering detailed imaging characteristics. In- 

pired by this diagnostic process, a global perception and local pol- 

shing guided deep network is proposed to automatically identify 

he infected regions so that both rough global structure informa- 

ion and fine local boundary information can be progressively in- 

egrated. The proposed neural network model can extract the lung 

nfected regions in CT images, even with the presence of low image 

ontrast, image blurring, drastic local changes, and complex local 

atterns. 

In this section, we first present an overview of the architecture 

f the proposed automatic lung infected region segmentation net- 

ork. Then, we describe both the global perception module (GPM) 

nd the local polishing module (LPM) in detail. After that, we pro- 

ide the design of multi-scale multi-level feature recursive aggrega- 

ion (mmFRA). To the end, a boundary-aware multiple supervision 

BMS) strategy and the training loss of the network are elucidated. 

.1. Overview of Network Architecture 

The proposed network follows the encoder-decoder architec- 

ure, as displayed in Fig. 2 . The encoder part is based on VGG-16 

nd is used to extract multi-level coarse features. In contrast, the 

ecoder part recursively integrates the multi-scale fine features to 

enerate the infected region segmentation map through supervised 

earning. The proposed network consists of four key components: 

PM, LPM, mmFRA (viz. mlFRA and msFRA), and BMS. 

Our encoder configuration is derived from the classic VGG-16 

rchitecture due to its simplicity and elegance. It is also worth 

oting that VGG-16 still has state-of-the-art performance and good 

eneralization properties for image segmentation. The comparisons 

mong four deep-learning neural networks frequently used as the 

ackbones of various segmentation architectures are shown in 

able 1 . We modified the VGG-16 [26] architecture by removing all 

he fully connected layers. Hence, the encoder becomes a fully con- 

olutional network (FCN), and the removal of fully connected layers 

llows us to improve computational efficiency. However, our en- 

oder still allows pixel-wise characterization of CT imaging data. 

We denote the remaining layers (13 convolutional layers and 5 

ooling layers) of VGG-16 as Bloc k 1 ~Bloc k 5 to extract the features 

 i (i = 0, 1, 2, 3, 4) at five different levels. The details of each block

re provided in Table 2 . 

The features obtained by Bloc k i are used as the input to the 

orresponding encoder block E i (i = 0, 1, 2, 3, 4). Each E i contains 

ne GPM and two LPMs, which are used to capture the overall 

hape information and the complement detail information of the 

otential lung infection regions, respectively. More details regard- 

ng GPM and LPM will be introduced in the proceeding sections 

elow. A contrast layer is applied to every feature map that is an 

utput of each E i to measure the dissimilarity between each patch 

nd its local average. The contrast feature F c 
i 

can be obtained by 

onducting an average pooling operation with a 3 × 3 kernel as 

ollows 

 

c = F i − AvgPool ( F i ) . (1) 
i 
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Fig. 2. An overview of the proposed PCPLP network architecture. 

Table 1 

A summary of four commonly used classic neural network models for image segmentation. 

AlexNet [27] VGG [26] GoogLeNet [28] ResNet [29] 

Input Size 227 × 227 224 × 224 224 × 224 224 × 224 

Number of Layers 8 19 22 152 

Number of Conv. Layers 5 16 21 151 

Filter Sizes 3, 5, 11 3 1, 3, 5, 7 1, 3, 5, 7 

Strides 1, 4 1 1, 2 1, 2 

Fully Connected Layers 3 3 1 1 

TOP-5 Test Accuracy 84.6% 92.7% 93.3% 96.4% 

Contributions ReLU, Dropout Small filter kernel 1 × 1 Conv. Residual learning 

Advantages Increase training speed 

and prevent overfitting 

Suitable for parallel 

acceleration, nonlinear 

Reduce the amount of 

computation 

Overcome gradient 

vanishing 

Disadvantages Low accuracy Small receptive field Overfitting, vanishing 

gradient 

Many parameters, long 

training time 
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The contrast layer contributes to making the infected regions 

tanding out from their normal surroundings. The feature maps 

ombined from each decoder E i and contrast layer are fed into de- 

oder block D 1 ~D 4 for further refinement, as shown in Fig. 2 . 

Now referring to the decoder configuration, we develop a su- 

ervised learning framework that enables recursive integration of 

ulti-scale high-level features for generating the predications of 

he lung infection regions. The four decoder blocks D 1 ~D 4 share a 

imilar structure, which contains a ReLU activation function and an 

PM. Each decoder block is designed to merge the features from a 

ontrast layer, an encoder block, and a previous decoder block, as 

hown in Fig. 2 (far right column). Of note, features from the pre- 

ious decoder are upsampled via a deconvolution layer before the 

bove-referenced feature merge. For instance, the coarse-level fea- 

ures from the encoder block E 0 , the discriminant features from 

he contrast layer, and the upsampled output from D 1 are concate- 

ated to produce the fine-level features. The fine-level features are 

hen passed through two convolution layers and two LPMs to ob- 

ain the final local refinement information (see the local score map 

n Fig. 2 ) that is used to precisely determine the boundaries of lung 

nfection regions. 

After Bloc k 5 , a GPM followed by a series of LPMs and convo- 

ution layers is placed to capture the global guidance information 
c

4 
 i.e. , Global Score; rough estimation of the suspected lung infec- 

ion regions). Hence, the initial lung infected region segmentation 

ap can be successfully generated by integrating the complemen- 

ary global guidance information (Global Score) and local refine- 

ent information (Local Score). Furthermore, the fine-level fea- 

ures are further utilized to refine the determination of the bound- 

ries of the suspected lung infection regions (see BMS component 

n Fig. 2 ). The details regarding each layer of the encoder-decoder 

ramework are shown in Table 3 . 

.2. Global Perception Module (GPM) 

In the past, when a CNN is designed ( e.g ., VGGNet [26] , AlexNet

27] , GoogLeNet [28] , ResNet [29] , LeNet [30] , DenseNet [31] ), small

onvolutional kernels ( e.g., 3 × 3 or 1 × 1 ) are commonly used to 

xtract hierarchical features because they are less computationally 

xpensive (low time and memory requirements). However, small 

ernel sizes ( 3 × 3 or 1 × 1 ) limit the network’s overall representa-

ion ability. It is desirable to explore a more effective strategy for 

andling large receptive field problems, which aims at capturing 

he global shape and appearance information of the lung infected 

egions. Research efforts have been devoted to enlarging the re- 

eptive field; strategies include dilated convolutions [32] , deepen- 
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Table 2 

Details of the Block 1 ~Block 5 to extract image features in a multi-level 

Pyramid scheme. 

Block Layer Filter Size/Channels Stride Padding 

Block 1 Conv 1-1 3 × 3/64 1 Yes 

Conv 1-2 3 × 3/64 1 Yes 

Maxpool 2 × 2/64 2 No 

Block 2 Conv 2-1 3 × 3/128 1 Yes 

Conv 2-2 3 × 3/128 1 Yes 

Maxpool 2 × 2/128 2 No 

Block 3 Conv 3-1 3 × 3/256 1 Yes 

Conv 3-2 3 × 3/256 1 Yes 

Conv 3-3 3 × 3/256 1 Yes 

Maxpool 2 × 2/256 2 No 

Block 4 Conv 4-1 3 × 3/512 1 Yes 

Conv 4-2 3 × 3/512 1 Yes 

Conv 4-3 3 × 3/512 1 Yes 

Maxpool 2 × 2/512 2 No 

Block 5 Conv 5-1 3 × 3/512 1 Yes 

Conv 5-2 3 × 3/512 1 Yes 

Conv 5-3 3 × 3/512 1 Yes 

Maxpool 2 × 2/512 2 No 
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Fig. 3. A schematic diagram showing the structure of GPM module. 
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ng the convolutional layers [33] , and adding a series of downsam- 

ling [34] . However, these operations pose new challenges as ex- 

lained below. Conducting dilated convolutions and network deep- 

ning will lead to an increase in storage space and a decrease in 

omputing efficiency. Performing multiple downsampling results in 

he loss and distortion of high-level feature information, thereby 

egatively impacting the determination of the gross lung infection 

egions. We are motivated to introduce a global perception module 

GPM) that can enlarge the range of the receptive field but has low 

emory requirements and computation demands. 

GPM can enlarge the receptive field while maintaining the res- 

lution of the feature map so that the loss of spatial information 

n the feature maps can be avoided. In particular, using a 1 × n 

onvolution operation followed by a n × 1 convolution operation is 

quivalent to a convolution with an n × n receptive field [35] . Let 

denote a 2-d image, K x and K y denote two 1-d kernels along x- 

imension and y-dimension, respectively. This mechanism can be 

epresented as follows: 

W ∑ 

 = −W 

K x (i ) 

[ 

H ∑ 

j= −H 

K y ( j) I(x − i, y − j) 

] 

= 

W ∑ 

i = −W 

H ∑ 

j= −H 

K( i, j) I( x − i, y − j) , 

(2) 
Table 3 

Details of the proposed encoder-decoder convolutional network. 

Module Block Layer 

Encoder GPM GPM left Conv 

Conv 

GPM right Conv 

Conv 

LPM Conv 

ReLU 

Conv 

Conv Conv 

ReLU ReLU 

LPM Conv 

ReLU 

Conv 

Contrast Layer Contrast Layer avg_pool 

Decoder DeConv DeConv 

ReLU ReLU 

LPM Conv 

ReLU 

SConv 

ReLU ReLU 

5 
here K is a 2-d kernel, W and H are the width and height of 

he 2-d image, respectively. As a result, the number of parameters 

s dramatically reduced and the performance degradation is mini- 

al. Furthermore, let C denote the number of channels in the input 

ayer and output layer of GPM, the computational cost of adopting 

wo 1-d convolution operations is 2 n C 2 , which is 1 − 2 /n less than

hat of a 2-d convolution operation n 2 C 2 . 

As illustrated in Fig. 3 , the proposed GPM comprises two sub- 

ranches, each of which consists of two convolutional layers with 

ernel size 1 × 7 and 7 × 1 , respectively. After the convolution op- 

rations, the two sub-branches are integrated to enable the cor- 

esponding feature extraction layers to focus on a larger 7 × 7 re- 

eptive field rather than on a small one. GPMs can capture deep 

igh-level semantic information without significantly increasing 

he memory space and computation cost. A GPM has powerful 

lobal representation ability and can effectively avoid the loss of 

mall-target information since its "effective" kernel size is 7 × 7 . 

e consider that the adoption of GPM modules is essential for ac- 

urate pixel-wise segmentation of infected lung regions. 

.3. Local Polishing Module (LPM) 

Along with the increased feature levels, the holistic structure of 

he lung infection regions gradually appears with the help of the 

roposed GPMs. However, when deep convolutional networks are 

pplied for image segmentation, they generally produce blurred 
Filter Size/Channels Stride Padding 

7 × 1/128 1 Yes 

1 × 7/256 1 Yes 

1 × 7/128 1 Yes 

7 × 1/256 1 Yes 

3 × 3/256 1 Yes 

3 × 3/256 1 Yes 

3 × 3/128 1 Yes 

3 × 3/128 1 Yes 

3 × 3/128 1 Yes 

3 × 3/128 1 No 

3 × 3/384 2 Yes 

3 × 3/384 1 Yes 

3 × 3/384 1 Yes 
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Fig. 4. A schematic diagram showing the structure of LPM. 
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oundaries and are not sensitive in terms of recognizing narrow 

on-infected regions that are (fully or partially) surrounded by 

heir infected neighboring regions. This is not surprising because 

onvolution layers ( e.g., strides and pooling) may cause information 

oss. Recall that we import guidance information from the previ- 

us decoder layers (see Fig. 2 ), which contains less accurate infor- 

ation due to convolution and deconvolution layers. Particularly, 

round the contours of the infected regions, such information ac- 

uracy could deteriorate remarkably. 

The local polishing module (LPM) possesses a simple but effec- 

ive residual structure [29] and can be used to polish the feature 

epresentation, especially the boundary information. The idea of 

PM is to promote the network to learn the residual represen- 

ations of the input data via nonlinearity and it is implemented 

y introducing shortcut connections to skip the input layer to its 

utput without extra parameters or computational complexity (see 

ig. 4 ). LPM can be used together with any deep convolutional lay- 

rs. 

These skip connections help to retain spatial information at 

he network output so that the low-level knowledge contains rich 

dges, textures, and shapes can be effectively transmitted, mak- 

ng the proposed encoder-decoder framework more suitable for ex- 

licit segmentation. Specifically, LPMs keep the local details of the 

ung infection representations obtained by the CNNs, such as the 

ackbone or preceding GPM, and learn to refine them with the 

esidual connection. The output x l of LPM can be defined as: 

 l = x l−1 + R ( x l−1 ) , (3) 

here x l−1 is the output of the previous layer, R ( x l−1 ) denotes the 

utput after performing the convolution and activation operations. 

As demonstrated in Fig. 4 , an LPM is a localized residual net 

onsisting of two 3 × 3 convolution layers and one ReLU on x l−1 . 

ince the residual connection directly propagates the input infor- 

ation to the output layer, the high-level and low-level informa- 

ion can be conveniently concatenated to preserve the integrity of 

he lung infection regions and detailed boundaries between the in- 

ected and non-infected regions. 

.4. Multi-Scale Multi-Level Feature Recursive Aggregation (mmFRA) 

We propose two schemes to improve feature aggregation in this 

ection. A multi-level feature recursive aggregation (mlFRA) scheme 

s to improve feature aggregation during the encoder step, while a 

ulti-scale feature recursive aggregation (msFRA) scheme is to fine- 

une information fusion prior to the generation of the initial seg- 

entation map. 
6 
It is important to note that the execution of the proposed GPMs 

nables the global guidance information to be absorbed in the fea- 

ure maps for different pyramid levels and the utilization of the 

PMs allows the local refinement information to be maintained as 

uch as possible during the knowledge transmission between con- 

olutional layers. Now, our effort is steered towards the seamless 

ggregation of coarse-level features at different scales. Taking the 

roposed encoder ( i.e., Bloc k 1 ~Bloc k 5 in Fig. 2 ) as an example, the 

onvolutional layers of different levels correspond to abstract fea- 

ures in different spatial scales: 1) for high-level features, there is 

bundant semantic information that is beneficial to positioning the 

ung infection regions and suppressing noise interference; 2) for 

iddle-level features, both the semantic and detailed information 

an be adaptively prioritized, offering flexibility for feature utiliza- 

ion; 3) for low-level features, the fine-grained details can be pre- 

erved and are useful for predicting the boundaries of the lung 

nfection regions. We strive to enhance multi-scale feature fusion 

y developing the innovative mlFRA scheme during the encoder 

tep. Our goal is to fully integrate the high-level, middle-level, and 

ow-level features by a strategy of recursive learning, which in 

urn generates a comprehensive and discriminative fine-level fea- 

ure representation with local perception. 

As shown in Fig. 2 , the features at different levels, which are 

xtracted by Bloc k 1 ~Bloc k 5 of the VGG-16 backbone, are progres- 

ively refined in parallel to be more accurate and representative 

y passing through the encoder and contrast layers. In particu- 

ar, the parallel encoding and decoding structure at different lay- 

rs of VGG-16 can maintain the feature information at each level. 

urthermore, the features at each level are updated with the inte- 

ration of the encoder layer, contrast layer, and preceding decoder 

ayer. Practically speaking, the proposed mlFRA can be achieved by 

oncatenating the local feature F i , the contrast feature F c 
i 

, and the 

igher level unpooled feature F u 
i +1 

as follows, 

 

u 
i = Upsamp 

(
CAT 

(
F i , F 

c 
i , F 

u 
i +1 

))
, (4) 

here CAT is a concatenation operation. 

As stated before, when VGG-16 is used to extract the features, 

wo problems intrinsic to convolution neural networks arise, i.e. , 

he inadequate expression of low-level features and the loss of fea- 

ure information as the convolution layer deepens. The proposed 

lFRA allows the semantic information of the high-level features, 

omprehensive information of the middle-level features, and de- 

ailed information of the low-level features to be gradually ag- 

regated. Since three levels of features are complemental to each 

ther, such aggregation can minimize information loss. 

At a late step ( i.e., prediction step), there are still fusion prob- 

ems of global and local information from pyramid features ex- 

racted by the backbone network. We employ multi-scale feature 

ecursive aggregation (msFRA) to finally integrate the global and lo- 

al features for lung infected region segmentation. Instead of ex- 

loiting more complicated modules and sophisticated strategies to 

ntegrate the multi-scale features, our msFRA architecture is quite 

imple. It directly concatenates the global guidance feature map 

which is obtained by feeding the backbone VGG-16 output into 

 series of GPM, LPM, and convolution with varying subsampling 

ates in the forward pass) and the local refinement feature map 

which is obtained by feeding the output from mlFRA to a series 

f LPMs and convolutions with varying downsampling rates). In 

oncrete terms, the proposed msFRA is implemented by integrating 

he global features with local features through a Softmax function: 

 M 

(p) = P ( G T (p) = s ) = 

e w L (s ) L F (p)+ v L (s )+ w G (s ) G F + v G (s ) ∑ 

s ′ ∈{ 0 , 1 } 
e w L (s ′ ) L F (p)+ v L (s ′ )+ w G (s ′ ) G F + v G (s ′ ) , (5) 

here ( w L , v L ) and ( w G , v G ) denote the linear operators of the 

ocal feature map (denoted as L ) and the global feature map (de- 
F 
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oted as G F ), respectively. In effect, the probability P of pixel p be- 

onging to the lung infection regions in the initial segmentation 

ap can be predicted. In this way, the multi-scale features are ag- 

regated to assist the localization of lung infection regions and the 

efinement of the local details and generate a rough segmentation 

ap. The rough map will be used as the input to the BMS module 

see Section 3.5 below). 

In summary, the progressive mlFRA significantly increases the 

epresentations of the multi-level features stage by stage, and the 

sFRA greatly improves the segmentation performance. As a re- 

ult, with multi-scale multi-level feature recursive aggregation (mm- 

RA), the coarse and multi-level features can be rectified and com- 

ined to produce the fine-level features, the cluttered information 

an be removed to better sharpen the details of the lung infection 

egions. 

.5. Boundary-Aware Multiple Supervision (BMS) Module 

To train the networks, the design of the loss functions is very 

mportant. For segmentation networks, cross-entropy loss (CEL) is 

ften utilized to measure the dissimilarity between the segmenta- 

ion map (SM, denoted by S M 

) and ground truth (GT, denoted by 

 T ). Let i represent the index of each pixel and n indicate the 

umber of the pixels, the proposed segmentation cross-entropy loss 

SCEL, denoted by L SCE ) function is defined as: 

 SCE = 

n ∑ 

i =1 

l bce (S i M 

, G 

i 
T ) , (6) 

 bce (S i M 

, G 

i 
T ) = −

n ∑ 

i =1 

[
G 

i 
T log S i M 

+ (1 − G 

i 
T ) log (1 − S i M 

) 
]
, (7) 

here l bce represents the binary cross-entropy loss, which is exten- 

ively used and can be robust in segmentation and binary classifi- 

ation tasks. 

Although the proposed mmFRA encourages the overall network 

o predict the initial segmentation map with abundant structure 

nd rich contour information, the pixels near the boundaries of 

he lung infection regions are difficult to be correctly classified. 

iven this, to incentivize the deep network to pay more attention 

o the boundary pixels during the training phase, a boundary cross- 

ntropy loss (BCEL, denoted as L BCE ) and a boundary-refinement loss 

BRL, denoted as L BR ), serving to generate exquisite boundaries, are 

xploited to work together with the SCEL for segmenting the lung 

nfected regions. Let E B and T B denote the estimated boundary map 

nd the true boundary map, respectively, L BCE and L BR can be de- 

ned as follow: 

 BCE = l bce 

n ∑ 

i =1 

(
E i B , T 

i 
B 

)
, (8) 

 BR = 1 − 2 | E B + T B | 
| E B | + | T B | . (9) 

Mathematically, the proposed boundary-aware multiple supervi- 

ion (BMS) can be given as the combination of the three losses: 

 = L SCE + θ1 × L BCE + θ2 × L BR , (10) 

1 + θ2 = 1 . (11) 

With multiple supervision using L SCE , L BCE and L BR in an inter- 

ingled manner, the final lung infected region segmentation map 

f the uniform highlighted foreground and finely sharpened con- 

ours can be effectively achieved. 
7 
. Experimental Results 

In this section, we demonstrate the effectiveness of the pro- 

osed PCPLP network by providing detailed qualitative and quanti- 

ative experimental results using publically available COVID-19 CT 

atasets [36] . The evaluation was performed by comparing it with 

ther eight state-of-the-art models in terms of 12 metrics. 

.1. Experimental Setup 

Evaluation dataset . The COVID-19 CT dataset [36] , which con- 

ists of 100 axial CT images from more than 40 patients, was col- 

ected by the Italian Society of Medical and Interventional Radiology 

SIRM). Each image was annotated by a radiologist using three dif- 

erent labels: ground-glass (the value is 1), consolidation (the value 

s 2), and pleural effusion (the value is 3). In our experiments, 50% 

f CT images of the dataset were randomly selected for training 

nd the remaining 50% were used for tests. In addition, a semi- 

upervised COVID-19 dataset [24] , which contained 1600 unlabeled 

T images extracted from the COVID-19 image data collection in 

37] , was utilized for augmenting the training set. 

Implementation Details. We implemented the proposed PC- 

LP network using TensorFlow [38] deep learning framework on 

n NVIDIA Ge-Force RTX 2070 GPU and Inter Core i3-9100F CPU 

3.6GHz) processor with 32 GB RAM. Our model was trained by 

dam optimizer with a batch size of 1 for 10 epochs, which took 

bout nine hours. The initial learning rate is 10 −6 , the weights of 

ll the convolution and deconvolution layers were randomly initial- 

zed using a truncated normal distribution (standard deviation is 

.01), and the biases were initialized to 0. During the training and 

esting, CT slides were resized to a fixed dimension of 416 × 416 

ixels. We employed horizontal flips on the training images for 

ata augmentation. 

Evaluation models. The proposed PCPLP framework was com- 

ared with other eight state-of-the-art segmentation models in- 

luding FCNet [39] , UNet [18] , AttUnet [40] , BASNet [41] , EGNet 

42] , PoolNet [43] , UNet ++ [44] , and Inf-Net [24] . For the sake

f fair comparisons, all these models were trained using the same 

OVID-19 CT dataset and the same settings. 

Evaluation metrics. To comprehensively evaluate the perfor- 

ance of the proposed PCPLP architecture against the other eight 

lgorithms, we exploited 12 performance metrics as shown in 

able 4 . In Table 4 , true-positive (TP) and true-negative (TN) repre- 

ent the correct classification ratio of positives (lung infection pix- 

ls) and negatives (non-lung infection pixels), respectively, whereas 

alse-positive (FP), and false-negative (FN) denote the incorrect pre- 

iction ratio of lung infection regions and non-lung infection re- 

ions, respectively. 

.2. Experimental Results 

Quantitative results. The 12 metrics in Table 4 were used to 

easure the performance of the proposed method and the other 

ight methods. The obtained results are reported in Fig. 5 and 

able 5 . 

As depicted in Fig. 5 , the curves of the proposed model, il- 

ustrated by the red solid lines, consistently lie above most of 

he other models, indicating that the predictions produced by our 

odel had the minimum error in comparison with the ground 

ruths. As can be seen in Table 5 , it is evident that the scores of

he DICE, Sensitivity, MAE, WF, OR, and S-M metrics, provided by 

he proposed PGPLP, outperformed all the compared state-of-the- 

rt models. However, in terms of Specificity and AUC scores, our 

odel only achieved the second-best results, which were slightly 

ower (0.0079 and 0.0124) than those obtained by UNet ++ model. 
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Table 4 

The 12 metrics for evaluating the performance of various segmentation models. 

Metric Formula Description 

Receiver operating characteristic (ROC) curve T P R = 

TP 
TP+ FN 

, F P R = 

FP 
FP+ TN 

TPR and FPR measure the proportion of correctly 

identified actual positives and actual negatives, 

respectively 

Precision-recall (PR) curve P = 

TP 
TP+ FP 

, R = 

TP 
TP+ FN 

PR curve mainly evaluates the comprehensiveness of 

the detected lung infection pixels 

F-measure curve F m = 

(1+ β2 ) P·R 
β2 ·P+ R 

β2 is set to 0.3 to emphasize the effect of P

F- measure is computed by the weighted harmonic 

mean of precision and recall, which can reflect the 

quality of detection 

DICE score DICE = 

2 ×| S M ∩ G T | | S M | + | G T | DICE score measures the similarity between the 

predicted map and the ground truth 

Sensitivity score Sen. = 

TP 
TP+ FN 

Sensitivity score measures the rate of missed 

detection 

Specificity score Spec. = 

TN 
FP+ TN 

Specificity score measures the rate of false detection 

Mean absolute error (MAE) score MAE = 

1 
W ×H 

W ∑ 

1 

H ∑ 

1 

| S M − G T | 
W and H denote the width and height of the image, 

respectively 

MAE score indicates the similarity between the 

segmentation map and the ground truth 

Area under curve (AUC) score AUC = 

∑ 

t 0 ∈ E 0 
∑ 

t 1 ∈ E 1 I 
[ f ( t 0 ) − f ( t 0 )] 

| E 0 |·| E 1 | 
E 0 and E 1 denote the set of negative and positive 

examples, respectively 

AUC score gives an intuitive indication of how well 

the segmentation map predicts the true lung 

infection regions 

Weighted F-measure (WF) score [45] W F = 

(1+ β2 ) W P·W R 
β2 ·W P+ W R 

W P and W R denote the weighted precision and 

weighted recall, respectively 

WP and WP measure the exactness and 

completeness, respectively 

Overlapping ratio (OR) score OR = 

| S BM ∩ G T | | S BM ∪ G T | 
S BM denotes the binary segmentation map 

OR score measures the completeness of lung infection 

pixels and the correctness of non-lung infection 

pixels 

Structure-measure (S-M) score [46] (1 − α) × S O ( S M , G T ) + α × S R ( S M , G T ) 

S O and S R denote the object-aware similarity and 

region-aware similarity, respectively 

S-M score measures the structural similarity between 

the segmentation map and the ground truth 

Execution time Average execution time per image (in second) All experiments were performed with the same 

equipment and settings 

Fig. 5. Performance comparisons of the proposed PCPLP framework with other models using the COVID-19 CT dataset [36] . 
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his indicates that our model is weaker than UNet ++ in distin- 

uishing non-infected regions but more outstanding in identifying 

egmented regions of interest. 

We attributed the competitive performance to our progressive 

lobal perception and local polishing architecture, which yielded a 

obust feature representation with more complete structural infor- 

ation and finer detail information. In addition, by introducing the 

oundary-aware multi-supervised learning strategy into our frame- 

ork, the segmentation accuracy can be further improved. 

Qualitative results. As an assistant diagnostic means, the seg- 

entation map is expected to offer more detailed information 

n the lung infection regions. The subjective performance com- 

arisons between the manual annotations (ground truths) and 

ine AI-generated lung infection segmentation maps are shown 

n Fig. 6 . It can be seen clearly that the segmentation results of 

he proposed PGPLP model are highly consistent with the ground 

ruth maps, which may supply a powerful guarantee for subse- 

uent analysis. In contrast, the AttUnet and BASNet models gen- 

rated unsatisfactory results, with many miss-segmented infection 

egions. FCN and UNet models were able to segment the large in- 

a

8 
ection regions, but poor in identifying small regions. EGNet and 

Net ++ models over-segmented or improperly segmented some 

f the COVID-19 lesions. PoolNet and Inf-Net models produced 

elatively good results by aggregating the high-level features, but 

he complete structure and clear contour could not be predicted. 

he advantage of our PGPLP is mainly due to the coarse-to-fine 

eep FCN framework, in which the coarse-level Pyramid features 

re progressively integrated into fine-level features to roughly lo- 

ate the lung infection regions and precisely segment the lesions 

espectively in an escalatory manner. This process mimics how 

 clinician visually segments the COVID-19 lung infected regions 

rom CT slices and therefore can achieve good performance. 

.3. Ablation Studies 

To assess the contribution of different modules of the pro- 

osed PGPLP architecture, an ablation study was performed un- 

er the same environment. The effectiveness of each component 

GPM, LPM) in the proposed model is demonstrated in Figs. 7-8 

nd Table 6 . 
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Table 5 

Quantitative performance comparison of nine models in terms of different metrics. The best two results are 

highlighted in red and blue, respectively. The up-arrow ↑ indicates the higher value obtained, the better 

segmentation quality is, whereas the down-arrow ↓ implies the opposite. 

Fig. 6. Visual comparisons of lung infection segmentation using different algorithms. The green and the yellow areas represent the undetected and detected true infection 

regions, respectively. The red areas indicate the false infection regions that are incorrectly detected. (a) The original CT images from the test set. (b) The corresponding 

ground truth for each image. (c-j) The corresponding segmentation results from the eight state-of-the-art models. (k) The segmentation maps of the proposed PGPLP. 

Fig. 7. Performance comparisons using different variants of the proposed PCPLP model. 

Table 6 

Quantitative performance comparisons using different variants of the proposed PCPLP model, the best two 

results are highlighted in red and blue colors, respectively. 

9 
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Fig. 8. Qualitative performance comparisons using different variants of the proposed PCPLP model. 
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In this part, we conducted an ablation study on three variants 

f the proposed PGPLP model: encoder-decoder model without 

PM and LPM (Backbone), model without LPM (Backbone + GPM), 

nd model without GPM (Backbone + LPM). The comparison results 

re shown in Fig. 7 and Table 6 . As observed in Fig. 7 , the embed-

ed GPM and LPM are necessary for boosting performance. The ad- 

antages of GPM and LPM can also be found in Table 6 . As can be

een in Table 6 , the model with embedded GPM or LPM can per-

orm competitively compared to the Backbone, and the complete 

odel including both GPM and LPM can obtain more satisfactory 

erformance than the model without LPM or GPM. To some extent, 

PM helps the proposed model to obtain excellent results in local- 

zing and counting the COVID-19 infection regions, and LPM also 

nables the model to achieve superior performance as it can accu- 

ately predict the contours of the infected regions. On the whole, 

he GPM and LPM improve the segmentation results in guiding the 

etwork to learn more informative features for the task of seg- 

enting the COVID-19 infected regions. 

Visual comparisons of the segmentation maps using different 

ariants of the proposed PGPLP on the test set are presented in 

ig. 8 . It can be observed that the results of Backbone + GPM in-

lude complete infected regions, which demonstrates that the GPM 

omponent can enable the proposed model to exactly distinguish 

he true COVID-19 lesions. Meanwhile, the infection regions ob- 

ained by the Backbone + LPM model have sharpness boundaries, 

hich verifies that the LPM component can significantly contribute 

o the fine-grained detail improvement. The optimum performance 

s gained with the joint GPM and LPM for higher emphasis on the 

tructures and contours of the infected regions. Overall, both the 

PM and LPM components play vital roles in the PGPLP model and 

ring lots of advantages to the segmentation results. 

. Conclusion 

In this paper, a novel fully convolutional encoder-decoder net- 

ork, named PGPLP, is proposed to help doctors quickly analyze 

he severity of pneumonia infections by segmenting the lung in- 

ected regions of COVID-19 from CT images. The proposed model 

mploys a global perception module and a local polishing mod- 

le to improve the localization and identification of the infection 

egions by more effectively retaining and assembling multi-level 

tructure information and multi-scale detail information. Moreover, 

he multi-scale multi-level feature recursive aggregation strategy is 

xploited to integrate the multi-scale and multi-level features in a 

rogressive manner, which not only substantially narrows the se- 

antic gaps between the encoder and decoder blocks but also de- 

elops parallel inter-linking among multi-scale and multi-level fea- 

ures, thus greatly alleviates the vanishing gradient problem. Fur- 
10 
hermore, our boundary-aware multiple supervision achieves con- 

iderable improvement over traditional single supervision methods 

or introducing more boundary information to produce finer de- 

ails. Extensive experiments show that the proposed PGPLP archi- 

ecture is capable of segmenting the infection regions of COVID-19 

esions under challenging conditions such as blurred infected inte- 

iors, diffusive infecting regions, and scattered boundaries. 

Automated image segmentation enabled by our research offers 

pportunities to quantify the COVID-19 lesions, visualize the in- 

ection regions, and rapidly tracking the disease changes in the 

linical workflow with minimal human intervention. Moreover, the 

roposed method has the potential to detect the abnormal areas 

etween healthy tissues and lesions caused by other viruses. 

Although promising results are achieved, one limitation of the 

roposed PGPLP model is the difficulty in detecting the small in- 

ection regions from the CT images with poor contrast. Those CT 

mages require enhancement and more intelligent AI architectures 

o that additional features representing new knowledge can be 

earned and eventually applied to segmentation. In the future, the 

nternal context information can be extracted using attention fea- 

ures and will be added to the training dataset to optimize the per- 

ormance of the proposed model. We are optimistic that the limi- 

ation mentioned above can be overcome. Furthermore, our future 

lan also includes the integration of the segmentation data with 

he clinical presentation and laboratory results to help physicians 

etter examine and diagnose COVID-19. 
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