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Abstract
Diabetic kidney disease is the leading cause of end-stage kidney disease in high-income countries. The strict control of 
glycemic oscillations is the principal therapeutic target, but this could be hard to achieve in uremic patients due to their 
unpredictable insulin sensitivity. Currently, the evaluation of the glycemic profile relies on serum markers (glycated hemo-
globin HbA1c, glycated albumin, and fructosamine), capillary glucose blood control (self-monitoring of blood glucose), 
and interstitial glucose control (continue glucose monitoring). We conducted a systematic review of published articles on 
continue glucose monitoring in hemodialysis patients with type 2 diabetes, which included 12 major articles.Four studies 
found significant fluctuations in glucose levels during hemodialysis sessions. All studies reported a higher mean amplitude 
of glucose variations on the hemodialysis day. Three studies agreed that continue glucose monitoring is better than glycated 
hemoglobin in detecting these abnormalities. Moreover, continue glucose monitoring was more accurate and perceived as 
easier to use by patients and their caregivers. In patients with type 2 diabetes on hemodialysis, glucose levels show differ-
ent variation patterns than the patients on hemodialysis without diabetes. Considering manageability, accuracy, and cost-
effectiveness, continue glucose monitoring could be the ideal diagnostic tool for the patient with diabetes on hemodialysis.
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Introduction

The long-term metabolic complications of type 2 diabetes 
(T2D), a rising epidemic [1], include macrovascular and 
microvascular disorders [2–7], which subsequently induce 
damage to multiple systems and organs, such as cardiovas-
cular dysfunction and renal impairment [8]. Macrovascular 
complications include stroke, cardiovascular, and peripheral 
artery disease. Microvascular diseases comprehend neu-
ropathy, retinopathy, and diabetic kidney disease (DKD) 
[9]. DKD affects approximately 25% of patients with T2D 
and is considered the principal cause of end-stage kidney 
disease in high-income countries [10]. Genetic variability, 
lifestyle, and diet impact the occurrence of DKD. Notably, 
the health system organization in the individual country is 
also a relevant factor [11]. Achievement and maintenance of 
optimal glycemic control is the principal therapeutic strategy 
to delay DKD progression as both hypo- and hyperglyce-
mia may exert a negative effect [12]. Intensive treatment 
regimens can bring to hypoglycemic episodes, which can 
be hazardous for specific groups of patients, such as those 
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affected by DKD [13]. Patients with diabetes and end-stage 
kidney disease are at high risk of developing coronary, cer-
ebrovascular, and peripheral vascular disease. These com-
plications are the leading causes of death among end-stage 
kidney disease patients [5, 14]. Also, numerous abnormali-
ties in the hemostatic system as well as in insulin sensitivity 
have been described in diabetic patients with end-stage renal 
disease that may play a critical role in increasing the rate of 
death in this patient’s population [15–19]. Glycemic con-
trol has emerged to be crucial in this population to improve 
clinical outcomes and significantly reduce cardiovascular 
risk and mortality. However, proper blood glucose control 
is challenging in end-stage kidney disease because of the 
abnormal tissue sensitivity to insulin [20, 21]. Furthermore, 
there is a lack of precision by classical markers of glycemic 
control (i.e., HbA1c and fructosamine) due to analytical 
interferences, to shortened half-life of red blood cells and 
to abnormal albumin level [22]. Several techniques are used 
in patients on hemodialysis for glucose measurement at 
home and during dialysis; indeed, self-monitoring of blood 
glucose is still the most used 1 and the traditional method to 
routinely monitor blood glucose [23]. Unfortunately, self-
monitoring of blood glucose does not provide continuous 
measurements, thus making the evaluation of the patient’s 
glycemic profile incomplete, resulting in glycemic fluctua-
tions. Since 1999, continuous glucose monitoring (CGM) 
is increasingly being used because it allows real-time blood 
glucose evaluation. The device records up to 280 measure-
ments per day (generally every 1–5 min) and has a transmit-
ter that stores or sends the values (generally every 5–15 min) 
to a receiver. The glucose sensor reading calibration requires 
capillary blood sugar measurement with a traditional glucose 
meter (two/four tests per day) [24]. The glucose concentra-
tion in the interstitial fluid generally closely approximates 
that of blood glucose, particularly when glucose concentra-
tions are stable [25], while during periods of rapid glucose 
change, the lag can be greater. The mean absolute relative 
difference (MARD) has become popular for evaluating the 
overall accuracy of the CGM [26]. There are two types of 
CGM: (i) RT-CGM allows real-time measurement of blood 
glucose, and (ii) r-CGM (retrospective CGM) allows to 
record a series of measures but real-time data results are not 
available directly to patients, and the physician will have 
access to them at the end of the monitoring period. In 2014, 
a new category of device was introduced, the flash glucose 
monitoring system (FGM) that allows the obtainment of 
glucose values instantly by scanning the glucose sensor 
with the reader, producing real-time on-demand glucose 
data. The aim of this review was to analyze the available 
literature on the use of continuous glucose monitoring in 
patients with type 2 diabetes on hemodialysis and demon-
strate whether CGM may represent a reliable tool to reduce 

glucose variability and improve diabetes management in that 
fragile patient’s population.

Methods

Sources

We used MEDLINE (1976–present) and Cochrane Library 
as the primary sources of literature search. We considered 
only human subjects and the English language. We under-
took a literature review searching for multiple pairs of key-
words, including “continuous glucose monitoring and hemo-
dialysis,” “continuous glucose monitoring and end-stage 
renal disease,” and “continuous glucose monitoring and 
dialysis.” We considered any study, including case reports, 
observational studies, and RCT. Our research with key 
relevant search words produced 552 results. We excluded 
duplicates. We excluded studies on pediatric patients. The 
majority of the studies reviewed included patients with type 
2 diabetes. There were only a few articles which had a popu-
lation of patient with type 1 diabetes and secondary diabetes. 
With regard to kidney replacement therapy, hemodialysis, 
and peritoneal dialysis, only three studies analyzed a popu-
lation of peritoneal dialysis patients, and one of them was a 
case report [27]; therefore and because of different daily glu-
cose profile, peritoneal dialysis studies were not included in 
the analysis. Moreover, one article utilized CGM to compare 
the efficacy of two oral glucose-lowering drugs [28]. After 
reviewing all studies’ titles and abstracts, we selected 12 of 
them as appropriate for full-text reading and further analysis 
[24, 29–39]. Table 1 shows baseline patient’s characteristics, 
while studies design, the outcome of interest, and findings 
are reported in Table 2. The main outcome in 10 out of the 
12 studies analyzed was to monitor the glycemic profile and 
assess blood glucose variability in hemodialysis patients. In 
one study the main endpoint was to evaluate the effective-
ness of glycated albumin in monitoring the glycometabolic 
control as compared to glycated hemoglobin in hemodialysis 
patients [30]. In one study the main endpoint was to assess 
whether glycemic monitoring may guide therapeutic deci-
sion on insulin treatment in hemodialysis patients [36].

Results

CGM and hypoglycemic risk in hemodialysis

The augmented risk of TBR (time below range) during 
dialysis days and a greater reliability of CGM, compared 
to glycated hemoglobin, has been hypothesized by Kazem-
pour-Ardebili et al. [34]. The study showed average 24-h 
glucose values significantly higher during non-dialysis 
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days than dialysis days independent of energy intake, with 
a higher risk of TBR within 24 h of dialysis. The difference 
between average 24-h glucose levels for the dialysis-free day 
to the dialysis day ranged from −2.1 to 10.4 mmol/l (−38 
to 187 mg/dl). Similar conclusions were obtained by Gai 
et al. [24]. They analyzed the utility of CGM as an extended 
glycemic control method in 12 patients with T2D on hemo-
dialysis. During dialysis, serum glucose diminished, while 
TAR (time above range) episodes were more frequent in the 
post-dialysis period. CGM was an excellent method to detect 
these fluctuations. The association of hemodialysis treatment 
and TBR risk was evaluated also by Jung et al. [33]. In 9 
patients with T2D on hemodialysis using CGM, daily glu-
cose fluctuations were not associated, while hypoglycemia 
was, with hemodialysis. Also, Riveline et al. [38] evaluated 
the clinical performance of CGM in patients with T2D on 
hemodialysis. The study compared 19 patients with T2D 
on hemodialysis with 39 patients with T2D not on hemo-
dialysis. The comparison between hemodialysis day and 
non-hemodialysis days differed remarkably in the first 3 h 
of dialysis. During this time, the mean glucose concentra-
tion was significantly lower than in non-hemodialysis days, 
although only two patients had intra-dialytic hypoglycemia 
(< 70 mg/dl). Recently, a case report by Mori et al. [37] 
described a patient with T2D on hemodialysis monitored 
with CGM, in which several TBR episodes were recorded 
during hemodialysis session. To summarize, there is a gen-
eral agreement that CGM reduces TBR episodes in patients 
with T2D on hemodialysis.

CGM and glucose variability in hemodialysis

Blood glucose variability in patients with T2D on hemo-
dialysis was quite extensively investigated. Mirani et al. 
[36] studied 12 patients with T2D on hemodialysis for two 
days, including one hemodialysis day and the following 
non-hemodialysis day. The mean 24-h glycemic value and 
the mean amplitude of glycemic excursions (MAGE) were 
significantly higher in the hemodialysis day than the non-
hemodialysis day. The study also showed a direct correla-
tion between the mean glucose concentration and glycated 
hemoglobin, whereas no association existed between the 
glucose profile variability and glycated hemoglobin. Jin 
et al. [31] aimed to characterize the blood glucose fluctua-
tions during hemodialysis with CGM. Glycemic variability 
was assessed by measuring the MAGE. Forty-six patients 
were divided into 2 groups: 36 patients with T2D on hemo-
dialysis and 10 patients without T2D on hemodialysis. They 
found out that the first group had larger and more significant 
glycemic fluctuations. Moreover, glycated hemoglobin was 
inaccurate since it did not reflect the correct blood glucose 
variability during an extended period. Similar conclusions 
have been reported by Chantrel et al. [29]. They analyzed 33 
patients with T2D on hemodialysis in insulin treatment with 
3 CGM sessions of 48 h each, including a dialysis session, 
over 3 months. CGM results were analyzed during and after 
hemodialysis and in other different day periods according 
to meals. Mean glucose values, MAGE, and coefficient of 
variation (%) improved, whereas the frequency of TBR was 
higher during hemodialysis sessions. Moreover, significant 

Table 1   Baseline patients’ characteristics of the selected studies (n = 12)

ESDKD end-stage diabetic kidney disease, ESKD end-stage kidney disease

References Patient’s characteristics

No. of patients Age (years) Sex Types of diabetes Diabetes duration 
(months)

Dialysis duration 
(months)

Male Female

Gai et al. [24] 12 62 ± 14 9 (75%) 3 (25%) II 39.6 (1.9−125.4) 21.2 (2.2−41.7)
Jin et al. [31] ESDKD 36 62 ± 13 29 (79%) 7 (21%) II 156 ± 84 /

ESKD 10 65 ± 13 8 (80%) 2 (20%) / 0 ± 0 /
Jung et al. [33] 9 67 ± 9 / / II 288 ± 108 /
Képénékian et al. [29] 27 66 ± 9 9 (32%) 19 (68%) II 273 ± 117 43 ± 30
Chantrel et al. [29] 33 66 ± 8 19 (58%) 14 (42%) II 276 ± 132 46 ± 31
Mirani et al. [36] 12 62 ± 10 7 (58%) 5 (42%) II 180 ± 96 27.6 ± 15.6
Riveline et al. [38] ESDKD 19 64 ± 10 8 (42%) 11 (58%) II 252 ± 132 24 (13−35)

Non-HD 39 65 ± 6 25 (64%) 14 (36%) / 204 ± 84 /
Kazempour-Ardebili et al. 

[34]
17 61 ± 9 13 (76%) 4 (23%) II 225 ± 91 48 ± 31.2

Divani et al. [30] 37 62 ± 17 20 (54%) 17 (46%) / / 37.0 ± 16.9
Mori et al. [37] 1 68 1 (100%) 0 (0%) / 492 216
Joubert et al. [32] 15 61 ± 15 8 (53%) 7 (47%) I and II 230 ± 91.2 78 ± 83
Yajima T et al. [39] 13 63.5 ± 11.3 11 (85%) 2 (15%) II / 7.3 (4.3−28.4)
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differences were observed in glucose levels before and 2 h 
after breakfast. Patients with T2D on hemodialysis are sub-
ject to the high variability of glucose profiles, and standard 
laboratory assays would miss such variations. Also, the use 
of hypoglycemic drug may enhance glucose variability and 
increase the risk for hospitalization in these patients [40]. In 
conclusion, CGM would be a handy tool to detect such vari-
ations and manage these complex patients properly.

CGM and improvement of diabetes 
management in hemodialysis

The role of CGM as a tool to manage the insulin regimen 
in patients with T2D on hemodialysis was tested by Képé-
nékian et al. [35]. CGM was applied for 54 h at baseline and 

a 3-month follow-up in 28 patients to adapt insulin therapy 
to the CGM values. After 3 months, patients demonstrated a 
significant reduction of glycated hemoglobin and CGM glu-
cose values, with no episodes of severe hypoglycemia. Fur-
thermore, patients experienced less episodes of TAR with 
reduction in insulin requirements. The study did not focus on 
analyzing glycemic profiles on hemodialysis days compared 
with non-hemodialysis days, even though it underscored the 
absence of intra-dialytic TBR episodes. Képénékian et al. 
concluded that the CGM-adapted insulin regimen could be 
a useful tool for managing diabetes in patients on hemo-
dialysis. Also, the DIALYDIAB pilot study [32] aimed to 
analyze the use of CGM to detect glucose fluctuations in 
patients with diabetes on hemodialysis. Fifteen patients were 
enrolled and were studied for the first period by self-moni-
toring blood glucose 3 times a day and then for the second 

Table 2   Outcomes of interests and findings of the selected studies (n = 12)

PTS patients, HD hemodialysis, CGM continuous glucose monitoring, ESDKD end-stage diabetic kidney disease, ESKD end-stage kidney dis-
ease

References No. of pts Design Arms Type of CGM Follow-
up 
(Days)

Outcome of interest Findings

Gai et al. [24] 36 Perspective observa-
tional

1 r-CGM 6 Glycemic monitoring 
in HD

Glycemic fluctuations 
and hypoglycemia 
during HD

Jin et al. [31] 46 Perspective observa-
tional

2 r-CGM 3 Glycemic monitoring 
in HD

Glycemic fluctuations 
during HD

Jung et al. [33] 9 Perspective observa-
tional

1 r-CGM 6 Glycemic monitoring 
in HD

No glycemic fluctua-
tions but increased 
risk of hypoglycemia 
during HD

Chantrel et al. [29] 33 Perspective observa-
tional

1 rt-CGM 90 Glycemic monitoring 
in HD

Glycemic fluctuations 
and hypoglycemia 
during HD

Mirani et al. [36] 12 Perspective observa-
tional

1 r-CGM 2 Glycemic monitoring 
in HD

Large glycemic fluc-
tuations during HD

Riveline et al. [38] 58 Perspective observa-
tional

2 r-CGM 4 Glycemic monitoring 
in HD

No glycemic fluctua-
tions during HD

Kazempour-Ardebili 
et al. [34]

17 Perspective observa-
tional

1 r-CGM 2 Glycemic monitoring 
in HD

Glycemic fluctuations 
and hypoglycemia 
during HD

Divani et al. [30] 37 Perspective observa-
tional

1 r-CGM 7 Validity/accuracy of 
CGM in HD

CGM is accurate in 
glycemic monitoring

Képénékian et al. [29] 27 Perspective observa-
tional

1 rt-CGM 90 Improving DM therapy 
in HD

Improved glycemic 
control with CGM

Joubert et al. [32] 15 Perspective observa-
tional

1 r-CGM 90 Improving DM therapy 
in HD

Large glycemic 
fluctuations during 
HD and improved 
glycemic control 
with CGM

Mori et al. [37] 1 Case report / rt-CGM 2 Glycemic monitoring 
in HD

Glycemic fluctuations 
and hypoglycemia 
during HD

Yajima T et al. [39] 13 Perspective observa-
tional

1 r-CGM/ FGM 2 Glycemic monitoring 
in HD

Accuracy of FGM 
in HD
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period by CGM. They observed that during CGM monitor-
ing, treatment changes took place more frequently, resulting 
in better blood glucose control and fewer TBR episodes. 
Finally, Divani et al. [30] compared various monitoring 
blood glucose methods over 7 days in hemodialysis patients 
using CGM. The study concluded that 7-day-long CGM is 
better to assess poor glycometabolic control as compared to 
glycated hemoglobin. This study also underscored the accu-
racy of CGM. Regarding the accuracy of FGM in hemodi-
alysis patients, Yajima et al. [39] studied 13 uremic patients 
undergoing simultaneously FGM, CGM and self-monitoring 
blood glucose during hemodialysis and non-hemodialysis 
days. Their conclusions showed that the use of FGM may be 
clinically relevant in this population, but MARDs for TBR 
and TIR were significantly higher than MARD for TAR. 
Moreover, MARD for FGM was significantly higher than 
for CGM, in both hemodialysis and non-hemodialysis day, 
while MARD for CGM on hemodialysis day was signifi-
cantly higher than that on non-hemodialysis day, due to the 
higher glycemic excursion as reported by Jin et al. [31]. 
More detailed studies are needed to evaluate comparison 
between FGM or CGM during and after hemodialysis.

Conclusions

The review of the literature surrounding the use of CGM 
in hemodialysis revealed few important messages. First 
and foremost, the mean amplitude of glucose variations 
was higher in the hemodialysis days than in those without 
hemodialysis. The glucose concentration in the dialysis fluid, 
hemodialysis sessions duration, hemofiltration of drugs, and 
the time frame between meals and hemodialysis sessions are 
probably the factors responsible for the observed differences. 
Second, the use of CGM may reduce hypoglycemic episodes 
which appeared increased during hemodialysis. The conclu-
sion is that CGM would be a useful tool in detecting these 
abnormalities and in improving the management of diabetes 
[32]. All the studies identified CGM as an appropriate and 
reliable tool to detect glycemic variations and hypoglycemic 
episodes in this population, particularly on the hemodialysis 
day. Furthermore, several studies have shown that CGM is 
much better perceived by patients and their caregivers, who 
appreciated the possibility of easily accessing blood glucose 
data [41]. The device provides trend arrows that add context 
to each glucose reading; this has a critical impact on insulin 
dosing decision and hypoglycemia prevention. Only 1 study 
assessed CGM’s cost-effectiveness, but it considered only 
patients with type 1 diabetes and anyway CGM was cost-
effective [42]. In patients without chronic kidney disease 
(CKD), the accuracy of the CGM may vary depending on the 
blood glucose concentration and the rate of blood glucose 
change [43, 44]. A comparison of the accuracy of FGM and 

CGM in non-CKD patients recently demonstrated that both 
systems perform safely and efficiently but accuracy of the 
CGM sensor appear higher across all glucose values except 
in hypoglycemia [45]. This review has several limitations, 
including the limited number of patients and the short-term 
follow-up. Despite the prospective nature, most of the stud-
ies remained observational studies and almost all of them 
without a comparison arm. Besides, not all studies focused 
on the same parameters, some observed glycemic variations, 
while others focused on the modulation of diabetes treatment 
based on the CGM device results. In conclusion, the use 
of CGM in patients with diabetes on hemodialysis ensures 
the improvement in glucose control and reduces the risk 
of hypoglycemia, especially in adults with type 1 diabetes, 
still experiencing suboptimal glycemic control. CGM could 
improve patients’ management and quality of life and it is 
cost-effective.
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