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A B S T R A C T   

Safe urban public spaces are vital owing to their impacts on public health, especially during pandemics such as 
the ongoing COVID-19 pandemic. Urban public spaces and urbanscape elements must be designed with the risk 
of viral transmission in mind. This work therefore examines how the design of urbanscape elements can be 
revisited to control COVID-19 transmission dynamics. Nine proposed models of urban public seating were thus 
presented and assessed using a transient three-dimensional computational fluid dynamics (CFD) model, with the 
Eulerian–Lagrangian method and discrete phase model (DPM). The proposed seating models were evaluated by 
their impact on the normalized air velocity, the diameter of coughing droplets, and deposition fraction. Each of 
the proposed models demonstrated an increase in the normalized velocity, and a decrease in the deposition 
fraction by >29%. Diagonal cross linear and curved triangle configurations demonstrated an improved airflow 
momentum and turbulent flow, which decreased the droplets deposition fraction by 68%, thus providing an 
improved, healthier urban public seating option.   

1. Introduction 

Global urbanization, increased urban population density of cities, 
and increased environmental issues caused by anthropogenic activities 
have contributed to global human health issues [1–5]. One such issue, 
the shortage of health care services in megacities, has contributed to 
difficulties controlling global health crisis [6]. Consequently, COVID-19 
dramatically spread worldwide in late 2019 [7–14], owing to its viral 
transmission ability [15–18] through direct or indirect contact [19–21], 
has thus significantly impacted health care, social, commercial, and 
industrial activities [22–26]. 

The World Health Organization (WHO) declared the COVID-19 
epidemic a public health emergency of international concern of 
“alarming levels of spread and severity” [9,14,23,27–29]. COVID-19 can 
be transmitted through respiratory droplets, particles >5–10 μm in 
diameter, and droplet nuclei, particles <5 μm in diameter [30]. Droplet 
transmission occurs directly via the inhalation of respiratory droplets or 
when exhaled droplets (from exhaling reach either the mucosae; mouth, 
and nose, or eyes of another person, through breathing, coughing, 
sneezing, or talking) reach the mucosae of the mouth, nose, or eyes [15, 
30,31]. Indirect transmission can also occur, in which the virus is 
deposited or contaminated on surfaces and then transferred via 

subsequent hand-to-mouth, nose, or eye actions [9,15,27]. 
To mitigate the spread of COVID-19, many local and global pro-

cedures have been recommended that have heavily impacted daily life 
[13,27,31–35]. The WHO called on all countries to reduce transmission 
through specific steps like: detect, test, treat, isolate, trace, and mobilize 
citizens [33]. Consequently, countries have moved to implement these 
steps through strict protocols [27,33] that have presented challenges a 
wide variety of fields [36–40]. 

To begin addressing these issues, Ai et al. (2020) and Dudalski et al. 
(2020) aimed to clarify the process of airborne transmission, i.e., how 
infectious droplet nuclei can spread and remain suspended in the air, 
which contribute in the transmission of COVID-19, based on the air 
velocity, and particle size [41]. Others have applied this process to 
clarify how individuals can minimize the probability of infection in 
public spaces [27,33,42,43], for instance, by implementing social 
distancing guidelines and using facial masks and shields [4,44–46]. 
Consequently, many governments have announced social distancing 
guidelines to promote social relationships and escape household 
confinement while maintaining distances of 1–2 m, including in 
Australia, Qatar, USA, Canada, Spain, UAE, UK, New Zealand, Italy, and 
South Korea [47,48]. Microclimate airflow in urban public spaces has 
also been reviewed [49,50], as has the importance of variable ambient 
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air, evaporation, and turbulent flow for runners and cyclists on 
COVID-19 transmission patterns, to further clarify social distancing re-
quirements [20,46,48,51]. 

Hollander (2020) asserted that the COVID-19 pandemic promotes 
the significance of urban public spaces, implicating current urban de-
signs and future architectural and urban design research [52–54]. 
Planners, and architects thus have the unique opportunity to build and 
develop more resilient open spaces, and equitable urban communities, 
which can promote inequality through design outdoor spaces, which 
promote residents’ lives [39,55–57]. Consequently, researchers world-
wide have discussed the urgent need for designing and planning open 
spaces in response to COVID-19 around the world, which are important 
social and ecological determinants in high-density cities that provide 
residents with the opportunity for physical activity, mental innovation, 
social health, and improves overall wellbeing [33,58–60], as well as 
improve the city’s air temperature and quality [60–63]. Honey-Rosés 
et al. (2020) discussed among planners, designers, architects, urban-
scape managers how this pandemic will lead to a revisiting of residents’ 
relationship with public spaces. Megahed and Ghoneim (2020) and 
Ronchi and Lovreglio (2020) both emphasized the importance of hori-
zontal extension with more available open spaces, which may prevent 
the spread of infections and diseases. Further, Gouveia and Kanai 
(2020), Hollander (2020), Rice et al. (2020), and Samuelsson et al. 
(2020) declared how social behavior in urban public spaces can be 
considered a source of resilience, where people can enjoy urban spaces 
and socialize while following social distancing guidelines to reduce 
COVID-19 transmission. 

However, the design of urbanscape elements in such places, 
including seating design, to reduce transmission of infectious diseases 
has not yet been adequately investigated. This work therefore aims to 
examine urban public seating configurations and their impact on 
COVID-19 transmission using computational fluid dynamics (CFD) 
model. To do so, a computational model is proposed, verified, and then 
applied to a case study, as summarized in (Fig. 1). 

The methodology and computational design of these studies are 
presented in Section 2; the results are then presented and analyzed in 
Section 3. An in-depth discussion of the impact of design configurations 
studied and backrest placement is then presented in Section 4 before 
concluding remarks are detailed in Section 5. 

2. Methodology 

Building upon advances in computational resources, in particular 
CFD, an integrated modeling approach using numerical modeling [64] is 
employed to investigate the influence of the design of urban public seats 
on COVID-19 transmission in urban public spaces. CFD has been applied 
in a wide variety of fields, engineering flow analysis, building structure 
design, urban wind flow prediction, and air pollution dispersion to 
urban design, and urbanscape planning [65,66], enabling urbanscape 
designers, urban designers, and planners to develop design alternatives 
[67–69]. Further, researchers have recently discussed, and used CFD to 
simulate the flow behavior, transition, and the deposition of COVID-19 
[7,70], such as the transmission, evaporation, and airflow around 
COVID-19 droplets emitted by exhaling walkers or runners examined by 
Blocken et al. (2020a). Here, a numerical model based on transient CFD 
simulations is developed to investigate the influence of urban public 
seating configurations on the transmission of COVID-19. A CFD verifi-
cation study is then performed to confirm the reliability of the proposed 
model. The computational settings including boundary conditions, 
computational domain, meshing size, and turbulence model are 
established. 

2.1. Computational model 

The numerical model was developed using Ansys Fluent (Ansys, Inc. 
Canonburg, PA, USA) for three-dimensional (3D) transient-state simu-
lations. The 3D Eulerian–Lagrangian method for multiphase flow was 
employed. The 3D Eulerian method can simulate realistic outdoor 
airflow conditions using the governing equations as follows: 

∂uj

∂xj
= 0 (1)  
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where (uj) represents the fluid velocity, (p) is the ambient pressure, gi =

9.81 ms− 2 is the gravitational constant aligned in the positive x-direc-
tion, and (τij)presents the viscous stress tensor, which can be expressed 
as 
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3D Reynolds-averaged Navier–Stokes (RANS) equations with RNG k- 
epsilon turbulence model were employed, as recommended by Refs. 
[71–73]. Here the turbulent kinetic energy (K), and turbulent dissipa-
tion rate (ε) can be respectively expressed as 
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where (z) represents the height, (δ) presents the boundary layer depth, 
and the Von Kàrmàn constant (K) and (Cμ) were set to 0.40 and 0.09 
respectively. 

The 3D Lagrangian method can also be used to examine the transport 
of cough droplets [74,75]. A Discrete Phase Model (DPM) can be used to 
track the transmission of COVID-19 in urban public spaces emitted from 
a cough, a most common respiratory activity, via the cough flow field, 
droplet transport, and size change and deposition of the emitted drop-
lets. The governing equation of the 3D Lagrangian method with a DPM 
was defined as: 

d
dt
(
mdud,i

)
=FD

i +FL
i +FBM

i + FG
i (6) 

Fig. 1. Roadmap of further study structure.  
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while (FD
i ), (FL

i ), (FBM
i ), and (FG

i ) represent the drag force, lift force, 
Brownian motion-inducted force, and gravity respectively. Here, (FD

i ) 
can be defined as 

FD
i =

1
8
πρd2

dCD(u
⇀
− ud

⇀
) − |u⇀ − ud

⇀
|

/

Cc
(7)  

where (dd) is the diameter of the droplet, (Cc) presents the Cunninggham 
correction factor, and (CD) is the drag force coefficient, which can be 
expressed as: 

CD = a1 +
a2

Red
+

a3

R2
ed

(8) 

While the constants (a1), (a2), and (a3) are calculated by the Rey-
noholds number of the droplet. As (FBM

i ), just droplets evaporate into 
small sizes, its value can be considered significant. While according to 
the condensation, and evaporation of water vapor in both of ambient air, 
and the cough droplet, the mass, and energy balance for each droplet can 
be expressed as 

dmd

dt
= −

∑k

e=1

∫

surf

nedA ≈ −
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e=1
(ne × A) (9)  

ne =
ρgShD̃eCm

dd
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1 − Ye,∞

1 − Ye,surf
(10)  

here k = 1 for water, and (ne) represents the average mass flux of 
evaporable component (e) on the surface, and can be determined by: 

in which (ρg) presents the density of the ambient air, (Ye,∞), and 
(Ye,surf ) present the mass fractions of evaporable component (e) in the 
gas phase far from the droplet, and on droplet surface respectively, as 
well the Sherwood number (Sh) can be calculated by: 

Sh =
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√
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while Sc =
μ

ρDe 
is the Schmit number, and De express the mass diffusivity 

of component (e). Furthermore, (Cm) is Fuchs-Knudsen number correc-
tion, which determined by the following formula: 

Cm =
1 + Kn

1 +

(
4

3αm
+ 0.377

)

Kn + 4
3αm

Kn2
(12)  

where the Knudsen number Kn = 2λ/dd
, (λ) is the ratio between the 

diffusion coefficient of water vapor, the mean thermal velocity of the 
condensing water vapor, and (αm) presents the mass thermal accom-
modation coefficient. In addition, (Ye,surf ) can be calculated as 

Ye,surf = yexeKe
Pve.sat(Td)

ρReTd
(13)  

in which (ye) presents the activity of component (e), (xe) is the mole 
fraction of (e) in the droplet, (Re) is gas constant, (Td) express the droplet 
temperature, Pve.sat(Td) is the saturation pressure of component (e) at 
temperature (Td), and (Ke) is the correction factor for the Kelvin effect, 
which can be calculated as 

Ke = exp
(

4σMe

RρdddTd

)

(14)  

while (σ) presents the surface tension of the droplet, (Me) is the molar 
mass of component (e), (R) is the universal gas constant, as well (ρd) is 
the droplet density. 

Finally, the energy balance equation can be determined by the fol-
lowings: 

∑m

i=1
md,icd,i ⋅ ΔT = πddλgNu(Tα − Td) −

∑k

e=1
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d
neLedA (15)  

where (Nu) represents the Nusselt number, calculated as 

Nu=(1 + RedPr)
1 /

3max
[
1,Re0.077

d

]
(16)  

where (Red) is the Reynolds number of the droplet, and (Pr) represents 
the Prandtl number. 

2.2. CFD verification study 

Several researchers have developed and verified experimental 
studies and numerical models related to the transmission of COVID-19 
droplets through coughing and sneezing, as summarized in (Table 1). 
Such studies and models focused on the transmission of COVID-19 
droplets during various conditions and states, which proposed wealth 
resources for many applications. This study analyzed these studies ac-
cording to their method of analysis, state of simulation, validation and 
state of human. Therefore the authors selected [76] for its diversity in 
inflow conditions including the wind velocity, relative humidity, and 
wealth findings during time sequence in outdoor spaces. 

2.2.1. Computational modeling 
As presented in (Fig. 2), two humans in a cuboid space located 1.83 

m apart were modeled. A cough droplets is simulated by having, the 
mouth of the human on the left open with a hydraulic diameter equal of 
10 mm, as detailed by Ref. [76]. 

2.2.2. Computational settings 
With regard to the boundary conditions, the cough droplets are 

injected from the mouth of the virtual human on the left. The left and 
right planes of the domain represent a velocity inlet and a zero gradient 
pressure outlet respectively. Symmetry boundary conditions were set at 
the last three side planes, as presented in (Fig. 2). According to the 
computational settings (Table 2), the verification and case study 
assembled in cough conditions, as outlined in Ref. [76], and the tem-
perature of ambient air. 

On the other hand, the case study focused on only the inflow wind 
velocity of 5.5 m/s, temperature of 27 ◦C and 40% relative humidity 
among the inflow conditions of verification study to simulate summer 
time in Delta and Cairo region in Egypt. It’s worth mentioning that the 
inflow direction was perpendicular to humans in both verification and 
case study. 

Table 1 
Literature review of modeled COVID-19 transmission via droplets expelled 
during coughing and sneezing.  

Space References Method Solution 
CFD state 

Validated 
with 

Human 
status 

Outdoor 
spaces 

[20] Simulation& 
Wind tunnel 
experiment 

Steady [77,78] Running 

[76] Simulation Transient [79–82] Standing 
[83] Simulation Steady —————— Walking 
[70] Simulation Steady [84] Standing 

Indoor 
spaces 

[85] Simulation& 
Cough 
chamber 
experiment 

Transient —————— Sitting 

[8] Simulation Steady [86] Sitting 
[87] Simulation Steady [88] Sitting 
[89] Simulation Transient [87] Sitting  
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2.3. Case study 

As urban spaces have been increasingly rediscovered owing to 
COVID-19 lockdown, the importance of urban public spaces [90] and in 
particular, the design of urbanscape elements, to promote social be-
haviors has increased. Whereas urban public spaces, including parks, 
streets, squares, and pedestrian areas, can host vibrant functions, which 
promote the character of cities and the quality of life [91–95]. In addi-
tion, urban public spaces can be realized as a vital constituent of the 
cities and an important social determinant of physical and mental health 
[59,61,63,96]. However, the safety of such spaces must be analyzed, as 
wearing face coverings may be difficult in some situations, as detailed by 
Sakharov, and Zhukov (2020). Further, various configurations of con-
structions such as buildings, kiosks, and other urbanscape elements can 
promote vortex formation, turbulence intensity and impact the air 
quality [97–101], and promote urban ventilation, which in turn in-
fluences the transmission of COVID-19. Thus, to contribute to the design 
of a safe environment that promotes health and wellbeing, the authors 
have fixed the computational modeling, and settings of urban space to 
computationally assess the design of proposed urban public seating 
models according to their COVID-19 transmission dynamics. 

2.3.1. Urban public seating models 
The nine proposed models of benches were compared with the 

common model of traditional urban public benches, shown in (Fig. 3), 
which is 1.50 m in length, 0.50 m in width, and 0.50 m in height with a 
one-way backrest that in many cases cannot provide a safe physical 
distance between individuals, or eddies of ambient air. As the linear 
shape of bench with specified backrest enables sitting next to each other 
in one direction without committing to social distances, besides 
decreasing the ability of air ventilation owing to weak eddies of ambient 
air. 

The design of nine proposed models aims to promote both recircu-
lation regions through increased localized airflow momentum and tur-
bulence intensity. As a result, air velocities can be enhanced, which 
subsequently can impact on the transmission of COVID-19. The nine 
proposed models of benches can be defined based on three main criteria, 
as summarized in (Table 3): shape (linear or centered), number of sides 
(3–8), and rotation. With respect to models one to four, the diagonal 
linear shapes represented the main form. As the first model based on 
three symmetric diagonal cross linear shape, with similar angles, which 
provides air eddies. Also, model two resembles the first one with 
inversed direction, and circular seats. Additionally, four symmetric di-
agonal cross linear seats were provided in model three, besides a hori-
zontal seat as a divider between four crossed linear seats was presented 
in model four. 

On the other hand, the models from five to nine depended on the 
central shapes. Models five, and six included tripartite form, like a tri-
angle, and parabola shape. Otherwise, the hexagonal, octal, and circular 
central forms were provided in the seventh, eighth, and ninth models 
respectively. 

2.3.2. Computational modeling, and settings 
In accordance with vertical and lateral guidelines to keep the 

blockage ratio below 3%–5% as recommended by Refs. [102,103], the 
computational domain was set to 43.8 × 12 × 8.8 m3 (length, width, 
height, respectively), as shown in (Fig. 4). As outlined in (Table 2), an 
inflow wind velocity of 5.5 ms− 1, temperature of 27 ◦C and relative 
humidity of 40% were selected to simulate summer time in Delta and 
Cairo region in Egypt. It’s worth to mention that the perpendicular 
inflow direction in case study includes both traditional and proposed 
urban public benches, which reflects significant impact on the localized 
airflow momentum and turbulence intensity hence COVID-19 
transmission. 

A mesh independence study and time step analysis were first 

Fig. 2. Schematic of boundary conditions and domain dimensions of verifica-
tion study. Source the authors after [76]. 

Table 2 
Computational settings of verification, and case study. Source the authors after [76].   

Verification study Case study 

Solver settings 3D transient RANS equations with the commercial CFD code Fluent in Ansys software 
Domain 3 × 3 × 3 m3 43.8 × 12 × 8.8 m3 

Cough Temperature 37◦C 
Droplets’ diameters 2: 2000 μm 
Ingredients 10.4% NaCl & 89.6% water 

Inflow Air velocity V = 0, 1, 3.9, & 5.5 m/s V = 5.5 m/s 
Temperature 27◦C 
Relative humidity RH = 40% & RH = 99.5% RH = 40% 

Mesh High-resolution hexahedral grid meshes were generated using Ansys 14.5 Meshing. The minimum dimension of cells equals: 
0.0001 m 0.001 m owing to a mesh independence study 
in regions close to the injection of COVID-19 droplets, with a growth rate of less than 1.2 between sequential cells. The final number of the 
computational cells: 
3,257,192 cells 1,075,552 cells 

Time duration Intel (R) Core (TM) i7-7700 CPUs, 3.60 GHz processors, and 32 GB of RAM memory per computer used to simulate 0.4 s, every numerical 
simulation occupied approximately: 
72 h with a time step =
0.0001 s 

140 h with a time step = 0.001 s, due to time step analysis 

Measuring points The point of respiratory organs of 
standing humans, at 1.5 m high sitting humans, at 1.1 m high  
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Fig. 3. The common model of traditional urban public benches.  

Table 3 
Proposed models of urban public seats.  

Model (M.) Shape Rotation No. sides Illustration 
Scale: 1/100 

1 Linear Diagonal 3 

2 

3 4 

4 Diagonal/Perpendicular 5 

5 Centered Paralel 3 

6 

7 6 

8 8 

9 Paralel/Perpendicular ∞ 
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Fig. 4. Schematic of boundary conditions and domain dimensions of the case study with seated humans and their backrests.  

Fig. 5. Variation in deposition fraction on the right human when varying the a) mesh size, using a time step of 0.001 s, and b) the time step, using a fine mesh.  

Fig. 6. Normalized velocity of verification study. Source the authors after [76].  
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performed using coarse, medium, fine, and superfine meshes, and time 
steps of 0.005, 0.001, and 0.0005 s, respectively; the results are sum-
marized in Fig. 5, respectively. No significant differences were observed 
in the deposition fraction based on the fine and superfine meshes. Only 
negligible differences were observed in the deposition fraction when 
time steps of 0.005 and 0.001 s were used. Therefore, a fine mesh with a 
grid size of 0.001 m and a time step of 0.001 s were selected for further 
numerical simulation. 

3. Results analysis 

In this section, the results of the CFD verification study and the case 
study are presented and analyzed in terms of normalized air velocity, the 
average diameter of suspended droplets after a cough (dd), and deposi-
tion fraction of cough droplets. 

3.1. Results of verification study 

The calculated normalized air velocity was in good agreement 
overall with the reference data, as shown in (Fig. 6). The approaching 
wind provided airflow to channel towards the infected human, which 
impacted eddies and thus the normalized air velocity near the healthy 
human. At an air velocity of 1 m/s, the channeling airflow provided few 
eddies near the left human, thus leading to a low normalized air velocity 
near the right human. Increasing the air velocity to 3.9 m/s and then 
again to 5.5 m/s increased the intensity of eddies and thus increased the 
normalized air velocity near the right human. 

Good agreement was also observed for the average diameter of sus-
pending droplets in the 0–0.40 s time sequence at both relative humidity 
levels (40% and 99%), as shown in (Fig. 7). At the lower humidity level, 
the average diameter of the droplets decreased with time, whereas that 
at the higher humidity level increased with time. 

The resulting percentage of droplet deposition from the reference 
and simulated cases proposed model were also in good qualitative 
agreement for both relative humidity levels and all wind velocities 

studied, as shown in (Fig. 8). The percentage of deposited droplets varies 
with the position of the coughing human, wind velocity, and relative 
humidity. With an increasing wind velocity, the deposition fraction 
gradually increased on the left coughing human, whereas on the ground, 
the deposition fraction gradually decreased with increasing wind ve-
locity, and the deposition fraction on the right healthy human fluctuated 
and lastly decreased at 5.5 m/s. 

3.2. Results of case study 

The nine proposed urban seating models were then examined using 
the three parameters; normalized velocity, the average diameter of 
cough suspending droplets and percent of deposition fraction. 

The resulting trends of normalized air velocity, which promotes air 
vortex and thus affects COVID-19 transmission, are shown in (Fig. 9). In 
this context, this study calculated the normalized of air velocity by 
dividing the air velocity in the proposed seating model by that in the 
common case, as several studies were based on normalized values to 
highlight the impact of variables, as calculated in Refs. [70,76,104]. The 
normalized velocity was higher than the baseline value (1.0) in each of 
the nine proposed seating configurations, thus demonstrating their in-
fluence in providing the vertical transmission of COVID-19 instead of 
only the horizontal transmission, in addition to the vertical turbulent 
shear intensification. 

The normalized air velocity near the front coughing human signifi-
cantly exceeded the baseline value in all models except model eight, 
where wake flow caused a near-baseline value. Further, the normalized 
air velocity near this human reached nearly 5.0 in models three, four, 
and five, owing to the increased upwind ventilation and turbulent flow. 

Models four to nine each had one or more additional healthy humans 
located between the infected and back healthy human, referred to as the 
middle healthy human. The normalized air velocity surrounding this 
human was significantly increased in models four and six, as upwind 
flow promoted vertical turbulence. The normalized velocity surrounding 
the back healthy human ranged from 3.0 to 5.0, demonstrating an 
overall improvement to the divergence and convergence of the main 
airflow in each case. Overall, seating models two, four, and five increase 
eddy circulation, thus improving both the horizontal and vertical 
downwind flow. 

This improved upwind and downwind airflow also helped decrease 
the average diameter of suspended droplets in all of the proposed seating 
arrangements, as shown in (Fig. 10). Models four, seven, and eight had 
the highest average diameter, approximately 30 μm; however, this still 
represents a reduction of the common model average diameter. The 
lowest average diameter, 2.80 μm, was found in seating model one, 
owing to the promoted localized airflow momentum and turbulence 
intensity. This decreased average diameter of suspended droplets con-
tributes to the decline of droplet movement, which impacts COVID-19 
transmission after a cough in each of the nine proposed seating 
arrangements. 

The deposition fraction of expelled droplets within the first 0.40 s 
varied according to which human was coughing. When front human 
coughed, the deposition fraction generally decreased with time, as 
illustrated in (Fig. 11), thus decreasing the risk of COVID-19 
transmission. 

In model three, the overall deposition fraction was reduced from the 
baseline model by 27%; similarly, a 40% reduction was observed in 
models one and eight, and 47%, 52%, and 60% reductions were 
observed in models two, four, and five, respectively. In models seven 
and nine, however, the deposition fractions at 0.10 and 0.20 s were 
exceeded, leading to an overall increase in deposition fraction by 6%, 
thereby demonstrating poorer droplet dispersion owing to a lack of 
recirculation zones in the air vortex. 

Regarding the middle human, the overall deposition fraction was 
below the common model value for each of the seating models proposed; 
further, the deposition fraction at each time point was also below the 

Fig. 7. Average diameter of suspending droplets of verification study. Source 
the authors after [76]. 
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common model value, except for that of model four at time t = 0.10 s. As 
a result, model four had a more modest overall reduction from the 
common model value (27%) than did models six, seven, eight, and nine 
(78%). 

Similarly for the back human, the deposition fraction at each time 
point was below the common model value, except in models one and 
three at t = 0.10 s. Consequently, models three and one had a more 
modest decrease in droplet deposition fraction (30% and 35%, respec-
tively) than did models seven (53%) and models two, four, five, six, 
eight, and nine (58%). This variation is due to the latter models having 
an enhanced dispersion of droplets owing to the turbulent airflows. 

4. Discussion 

Building upon the importance of urban seat design in COVID-19 
transmission, the impact of seat configuration and backrest location 
and the limitations and potential implications of these results are dis-
cussed in this section. 

4.1. Impact of design configurations 

The proposed models can provide safer options for urban public 

seating, especially during the ongoing COVID-19 pandemic, due to the 
increased normalized air velocity and decreased deposition fraction and 
average droplet diameter of droplets expelled during a cough, as sum-
marized in (Fig. 12). The diagonal linear configurations in models one, 
two, three, and four promoted recirculation regions through increased 
localized airflow momentum and turbulence intensity, which led to 
higher normalized air velocities, which confirmed in Refs. [64,70]. 
Furthermore, this also led to a decreased average droplet diameter and 
droplet deposition [76]. 

Small-diameter droplets cannot obtain sufficient momentum to 
conquer their inertia and disperse backward, as highlighted in Ref. [76]. 
Therefore, the high diameter values of coughing droplets receded, 
without proceeding with the backward recirculation flow. Additionally, 
the localized airflow momentum and turbulence intensity impacted the 
deposition fraction for both front, middle, and back humans. As the 
droplets cannot disperse backward, they rather dispersed toward the 
front coughing human, in line with a previous studies [105–107]. 

The performance of the centered configurations (i.e., models five to 
nine) varied according to the upwind design configuration. Models five, 
six, and nine allowed high normalized velocity and turbulence intensity; 
the smooth and curved configurations clearly impacted the local airflow 
velocities. In particular, the triangle configurations of models five and 

Fig. 8. Deposition fraction of verification study. Source the authors after [76].  

A.M. Hassan and N.A. Megahed                                                                                                                                                                                                            



Building and Environment 204 (2021) 108131

9

six allowed for the main vortex and secondary eddies to be promoted, 
more so than the circular configuration of model nine. The polygonal 
configurations of models seven and eight showed a decreased local up-
wind airflow velocity near the front and middle humans; however, the 
secondary eddies increase the downward airflow velocity, which affects 
both the turbulence intensity and deposition faction. 

The decreased average droplet diameter indicates that the droplets’ 
momentum and energy were lower in the case of smooth and curved 
configurations, whereas in the case of the polygonal configurations of 
models seven and eight, the convection effect was promoted, thereby 
promoting their initial momentums. 

Such variations impacted the deposition fraction, as the smooth and 
curved configurations allowed for a lower deposition fraction for the 

front, middle, and back humans in models five and six, and for the front 
and middle humans in model nine, where the droplets were dispersed 
backward. The polygonal configurations of models seven and eight 
allowed for a decrease in the deposition fraction because of the 
enhanced eddies, except for the back human in model seven owing to the 
decreased normalized velocity near the middle oblique edges. 

4.2. Impact of backrest place 

The location of the backrest place of urban seats was also demon-
strated to impact the average droplet diameter and deposition fraction, 
and on the risk of COVID-19 transmission, as shown in (Fig. 13). The 
droplets expelled from a cough can more efficiently disperse when the 

Fig. 9. Normalized air velocity of proposed seating models.  

Fig. 10. Average diameter of suspending droplets.  
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Fig. 11. Deposition fraction of proposed models.  

Fig. 12. The influence of seat configuration on the normalized air velocity, deposition fraction, and average droplet diameter.  
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coughing human sits facing upwind. Whereas coughing human sits 
facing downwind, leads to larger droplets and increased deposition, due 
to their faster movement and higher droplet concentration; these larger 
droplets better maintain their initial momentum, owing to their rela-
tively high Stokes number. 

Further, backward backrests can enhance the magnitude of the ve-
locity as well as the turbulence intensity in the recirculation zone. Such 
an enhancement can significantly promote crossing the main vortex, 
with secondary vortices divergence, and convergence of the shear layer 
vortices, besides shape the vertical turbulent velocities, as well turbulent 
diffusion, as indicated in Refs. [64,104]. 

4.3. Limitations 

Here, the impact of urban seating configurations was examined 
under limited microclimate conditions. Moreover, a limited number of 
specific configurations were selected; further configurations can be 
developed according to the real microclimate conditions, local identity, 
urban context, and urban vibrancy. Although a small sample size was 
used that may not be generalized for all urban spaces, these findings 
offer a significant step toward developing urban seating configurations 
that allow residents safe outdoor socializing during a pandemic. 

4.4. Potential implications 

These findings help clarify the impact of urban seat design on viral 
transmission, which is particularly relevant during the ongoing COVID- 
19 pandemic. Such findings can be used to help improve urbanscape 
element design, which would allow for better urban ventilation and 
urban health. Improving the design of urbanscape elements can provide 
social resilience to encourage urban vibrancy, especially during the 
COVID-19 pandemic. Further, this can contribute to societal sustain-
ability and thus offer social, psychological, economic, and quality-of-life 
benefits. 

Furthermore, this work can contribute to the development of outdoor 
public spaces, by providing a framework for studying infection control 
mechanisms under microclimate conditions, in line with a previous 
study [20]. Urban planners, urbanscape specialists, policymakers, and 
corporate and public administrators are recommended to consider such 
infection control mechanisms to develop strategies and guidelines to 
promote urban health during the COVID-19 pandemic and decrease the 
possibility of viral infections in public spaces. 

5. Conclusion 

In this work, nine urban public seating designs, including diagonal 

linear, diagonal cross linear, and centered configurations, were pro-
posed and analyzed based on a transient CFD model. A 3D Euler-
ian–Lagrangian method using the RNG k-epsilon turbulence model was 
validated to simulate and assess the proposed models based on the 
normalized air velocity, average droplet diameter, and droplet deposi-
tion fraction. The following conclusions were drawn.  

• Models two, three, four, five, and six, with diagonal and tripartite 
form, allowed for the highest average normalized air velocity, which 
provides air vortex and thus affects the transmission of COVID-19. 
The lowest average diameter of suspended droplets was present in 
models one, three, and five, owing to the promoted localized airflow 
momentum and turbulence intensity, which contributed to a reduc-
tion of droplet movement and ambient air concentration. Further-
more, all proposed models demonstrated a decrease in the deposition 
fraction (>29% reduction); in particular, the deposition fraction was 
decreased by 68% when using models two, five, six, and eight.  

• Each of the proposed models decreased the risk of viral transmission 
than the common model. In particular, the diagonal cross linear and 
curved triangle configurations demonstrated an improved airflow 
momentum and turbulent flow, decreasing the deposition of droplets 
expelled from a cough.  

• The placement of backrests on urban seats can also impact viral 
transmission risk; as backward fixing backrests had a higher depo-
sition fraction than did their frontal-fixed counterparts. 

This work contributes to the design and development of urbanscape 
elements, especially public seating, which contributes to a healthy urban 
public environment. Investigations into this approach are ongoing to 
confirm such impacts during the COVID-19 pandemic. 

Further efforts should emphasize detailed analyses of other urban-
scape elements, such as shades or pergolas to investigate their impact on 
the transmission of COVID-19. The development or redesign of indoor 
public seats and natural ventilation mechanisms should also be inves-
tigated to provide healthy indoor spaces, as well. Such investigations 
into the design process of indoor and outdoor seating and socializing 
areas are necessarily interdisciplinary and require advanced wind tunnel 
investigations to validate such findings. Furthermore, such in-
vestigations can highlight the generative design to optimize such design 
process with various disciplines from architects, mechanical engineers, 
and software developers. 
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