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Abstract

Background: Clean cooking interventions to reduce air pollution exposure from burning 

biomass for daily cooking and heating needs have the potential to reduce a large burden of disease 

globally.

Objective: To evaluate the air pollution exposure impacts of a fan-assisted efficient biomass-

burning cookstove and a liquefied petroleum gas (LPG) stove intervention in rural Ghana.

Methods: We randomized 1 414 households in rural Ghana with pregnant mothers into a control 

arm (N = 526) or one of two clean cooking intervention arms: a fan-assisted efficient biomass-

burning cookstove (N = 527) or an LPG stove and cylinder refills as needed (N = 361). We 

monitored personal maternal carbon monoxide (CO) at baseline and six times after intervention 
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and fine particulate matter (PM2.5) exposure twice after intervention. Children received three CO 

exposure monitoring sessions.

Results: We obtained 5 655 48-hour maternal CO exposure estimates and 1 903 for children, as 

well as 1 379 maternal PM2.5 exposure estimates. Median baseline CO exposures in the Control, 

improved biomass, and LPG arms were 1.17, 1.17, and 1.30 ppm, respectively. Based on a 

differences-in-differences approach, the LPG arm showed a 47% reduction (95% CI: 34–57%) in 

mean 48-hr CO exposure compared to the control arm. Mean maternal PM2.5 exposure in the LPG 

arm was 32% lower than the control arm during the post-intervention period (52 ± 29 μg/m3 vs 77 

± 44 μg/m3). The biomass stove did not meaningfully reduce CO or PM2.5 exposure.

Conclusions: We show that LPG interventions lowered air pollution exposure significantly 

compared to three-stone fires. However, post-intervention exposures still exceeded health-relevant 

targets.

Significance: In a large controlled trial of cleaner cooking interventions, an LPG stove and fuel 

intervention reduced air pollution exposure in a vulnerable population in a low-resource setting.
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1. Introduction

Household air pollution (HAP) is one of the world’s largest environmental health risk 

factors1. Nearly three billion people rely on biomass fuels like firewood, charcoal, animal 

dung, and crop residues for their daily cooking and heating needs2. Inefficient combustion 

from burning biomass fuels in traditional open fires leads to high levels of air pollution and 

environmental degradation. In turn, HAP exposure is responsible for an estimated 1.6 

million premature deaths and 60 million disability-adjusted life years (DALYs) annually1. 

There is substantial epidemiological evidence for the adverse effects of HAP on health3–9, 

but to date there have only been a few randomized controlled trials of cookstove 

interventions to improve health10–16 and evaluating changes in personal air pollution 

exposure remains rare17–19.

While estimates of health burdens from air pollution require data on average personal 

exposure (to fine particulate matter—PM2.5—principally)20, exposure assessment remains a 

significant challenge in clean cooking intervention studies21. Clean cooking interventions 

must reduce long-term average personal air pollution exposure if they are to improve health. 

Therefore, contextualizing the results from clean cooking interventions is only possible 

through extensive personal air pollution exposure monitoring to characterize the effect of 

interventions on exposure—and thus the potential for improvements in health. Furthermore, 

personal air pollution exposure monitoring enables exposure-response analyses that are 

instrumental in establishing health risks20.

We carried out the Ghana Randomized Air Pollution and Health Study (GRAPHS) (Trial 

Registration NCT01335490), a cluster-randomized intervention trial to test the effectiveness 

of a cleaner biomass stove or a clean cooking fuel to increase birth weight and reduce 
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pneumonia incidence during the first year of life through reduced maternal and child air 

pollution exposure22. As elsewhere10,11,23,24, only households with an eligible pregnant 

mother were provided the intervention stoves, meaning most participants were surrounded 

by other family units still using traditional biomass fires for cooking.

GRAPHS makes several important contributions to the understanding of the potential for 

clean cooking interventions to improve health. GRAPHS was among the first randomized 

controlled trial to include a liquefied petroleum gas (LPG) intervention16, though there are 

others ongoing24–27. In addition, GRAPHS researchers undertook extensive personal air 

pollution exposure measurements to enable assessments of the effectiveness of the 

interventions to reduce exposure and subsequent exposure-response analyses with health 

outcomes.

The present study describes the effects of clean cooking interventions on long-term average 

personal (maternal and child) air pollution exposure from a large cluster-randomized 

intervention in Ghana. We present exposure results from intention-to-treat analyses, as well 

as an exploration of the variety of factors that affect personal exposure. In doing so, we 

provide guidance for future interventions and programs that seek to reduce air pollution 

exposure through clean cooking fuels and cleaner biomass-burning stoves.

2. Methods

The GRAPHS protocol has been described elsewhere22. Briefly, 35 clusters of 38 

communities were randomized into three study arms: control, cleaner biomass stove, and 

clean cooking fuel. Eligible women were 1) carrying a live intrauterine singleton fetus, 2) in 

their first or second trimester of pregnancy (gestational age ≤ 24 weeks as determined by 

ultrasound), 3) the primary cook in their household, and 4) a non-smoker. The protocol was 

approved by the Columbia University Medical Center and the Kintampo Health Research 

Centre Institutional Ethics Committee. All pregnant women provided written informed 

consent for their and their child’s participation. Participants were enrolled from August 2013 

to January 2014 and data collection ended in March 2016.

The study included two intervention arms. Households received two BioLite HomeStoves in 

the cleaner biomass stove study arm (BioLite Inc, Brooklyn NY). The BioLite stove 

improves heat transfer efficiency (i.e., more energy to the pot per unit fuel combusted) 

through improved geometry and also increases combustion efficiency through thermoelectric 

powered fan circulating air through the combustion chamber28,29. In the LPG intervention 

arm, households received one two-burner LPG cookstove and two 14.5 kg LPG cylinders. 

After the baseline exposure assessment, households received deliveries of one LPG cylinder 

refill and stove maintenance and repair as needed until they exited the study. Additional gas 

was available if households ran out prior to the next scheduled delivery. Stoves and 

associated hardware were repaired or replaced when needed in both intervention arms. 

Representative photographs of the stoves across the study arms are available in Figure S1. 

Research staff visited each home weekly and checked on stove status. Households in the 

control arm also received weekly visits. These were framed as bed net check-up visits.
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2.1. Study context

The study sample consisted of women and children from 38 communities in the Bono East 

Region of Ghana (formerly known as the Brong-Ahafo Region), including Kintampo North 

Municipality and South District of Ghana, West Africa. In a formative pilot study in the 

GRAPHS study population, biomass fuel use was recorded among 99% of the households30. 

A nationally-representative survey shows that 91% of rural households and 73% of all 

households relied on biomass fuels (firewood and charcoal) for cooking in 201731. The 

region is primarily a tropical savanna climate. Uniquely, West Africa experiences a season 

called Harmattan characterized by episodes of dry and dusty northeasterly winds blowing 

from the Sahara Desert over West Africa (December-March). There is also pervasive crop 

and field burning during Harmattan in this region32.

2.2. Exposure measurements

2.2.1. Rationale—Air pollution exposure assessment in GRAPHS was designed to 

optimize available technology and funds based on pilot experiences in Ghana22. Published 

pilot data indicated that area sampling (e.g., in the kitchen) was not predictive of personal 

exposures30. In line with our objective of identifying the effects of the interventions on 

personal exposure and to enable individual-level exposure-response analyses, we opted to 

monitor personal exposure. Furthermore, at the time of designing the study, the scientific 

literature indicated that personal CO exposure was a good predictor of personal PM2.5 

exposure33–35 and that 48 hours of sampling was necessary to effectively estimate long-term 

exposure36.

Mean PM2.5 exposure of the primary cook in the pilot was 129 μg/m3 (95% confidence 

interval 100–157 μg/m3; median: 122 μg/m3)—an exposure somewhat lower than other 

similar studies18,37,38. At the time of developing the study, it was believed that there would 

be a greater chance of the cooking interventions yielding observable health benefits as 

compared hypothetical higher exposures at baseline because lower exposures are closer to 

the steepest part of the PM2.5 dose-response curves for relevant health outcomes (i.e., 

approximately 15–100 μg/m3)39.

Given budgetary constraints, we opted for CO – which was cheaper to monitor than PM2.5 – 

as the primary marker air pollution exposure. Still, given the importance of PM2.5 as an 

indicator of health risk, we obtained supplemental funding to monitor personal PM2.5 for the 

majority of participants at two time points after intervention, rather than at more time points 

for fewer participants. This approach was intended to enable the development of a CO to 

PM2.5 prediction model, thus retaining a large study sample in future PM2.5 exposure-

response analyses. However, we note two limitations of this approach. First, while at the 

time of study development and during data collection the literature suggested that CO to 

PM2.5 prediction was a feasible and lower-cost alternative to direct PM2.5 measurements, 

since then the predictive power of CO to estimate personal PM2.5 exposure has come under 

question40. Second, as reported in Section 2.2.2 Monitoring Plan, PM2.5 exposure 

monitoring did not occur in the baseline period.
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2.2.2. Monitoring plan—The primary objective of air pollution exposure monitoring 

during GRAPHS was to attribute exposures to individuals to enable (forthcoming) exposure 

response analyses. Figure 1 summarizes the exposure monitoring plan. Baseline exposure 

assessments occurred after enrollment and prior to stove intervention. Field teams then 

carried out three additional post-intervention exposure assessments over the remaining 

duration of the pregnancy (approximately nine, six, and three weeks prior to delivery). 

Mothers and newborns received exposure assessment 1, 4, and 12 months after delivery. A 

subset of women received co-located fine particulate matter (particles with diameter smaller 

than 2.5 microns; PM2.5) and carbon monoxide (CO) monitoring. Personal exposure 

measurements were collected for 72-hour periods and trained fieldworkers visited each 

participant every 24-hours during each three-day period to record information about 

activities during the previous day and to ensure monitor wearing compliance.

2.2.3. Carbon monoxide monitoring—We used the Lascar EL-CO-USB Carbon 

Monoxide (CO) data logger (Erie, PA) as the primary personal exposure monitoring method. 

The devices were programmed to record CO concentrations every 10 seconds throughout the 

entirety of the target 72-hour monitoring period. The device reports concentrations between 

0 and 1 000 parts per million (ppm) and has a manufacturer-reported precision of +/-6%. In 

addition to factory calibration, calibrations were checked every six weeks using NIST 

traceable certified calibration gas in the KHRC laboratory. Based on these calibration 

checks, device- and time-specific correction factors were generated to adjust CO 

observations during data processing41,42.

The CO monitor was placed in a rainproof plastic housing and clipped to clothing near the 

breathing zone of the mother. For infants, monitoring equipment was clipped to swaddling 

clothes or the cloth that holds the baby on its mother’s back. Participants were instructed to 

keep the CO monitor on their person/near the baby throughout the day and to place it close 

to their head while sleeping (see Figure S2 for representative photographs).

In a subset of samples (N=132), we carried out co-deployments of the CO monitors where a 

participant would wear two monitors concurrently throughout a deployment period. Valid 

48-hour estimates between co-deployed devices were positively correlated (r = 0.62; p-value 

< 0.001). We averaged values in analyses when a participant had two valid 48-hour 

estimates.

2.2.4. Fine particulate matter monitoring—In one pre-natal and one post-natal 

maternal monitoring session, the RTI MicroPEM V3.2 monitor (Research Triangle Park, 

NC) was deployed alongside the CO monitor. The MicroPEM includes a nephelometer for 

real-time monitoring, a Teflon filter for analysis of integrated concentrations, and an 

accelerometer for assessing wearing compliance of subjects. Teflon filters were pre- and 

post-weighed on a microbalance after equilibration in an environmentally controlled 

glovebox, with static charge dissipated with a Po-210 source and correcting data for 

buoyancy, following established protocols at Columbia University described further in 

Supporting Information. Filters were installed in and removed from the MicroPEM in a 

clean air hood at the KHRC laboratory. During the first and last five-minute periods of each 
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deployment, a low back pressure HEPA filter was attached to the MicroPEM to aid in 

correction of the nephelometer baseline drift.

2.3. Identifying valid air pollution exposure estimates

The purpose of this study is to assess the effect of two clean cooking interventions on the 

personal exposure of women and children in Ghana. To best address this research question, 

we utilized a stringent data validation procedure and retained only the data in which we have 

the highest confidence. The study protocol dictated 72-hour monitoring periods for both CO 

and PM2.5 deployments. However, only 47% of CO exposure sessions achieved 72-hours of 

run time. Still, more than 90% of all CO exposure deployments achieved more than 48 hours 

of run time. Therefore, we used mean 48-hour CO exposure as the primary study outcome. 

Data after the 48-hour mark were discarded to maintain comparability across samples due to 

the diurnal patterns observed in personal exposure to air pollution (e.g., low exposures 

during the night, very high exposures during cooking events) and to not arbitrarily capture a 

different number of short-term cooking events which largely drive the average CO exposure. 

We utilized the same procedure for PM2.5 exposure; 92% of PM2.5 exposure deployments 

achieved 48 hours of run time. Full details on deployments meeting validation criteria are 

reported in the Results.

2.3.1. Carbon monoxide exposure validation—CO exposure data was validated 

according to three independent criteria described here, in the Supporting Information, and at 

length elsewhere41: 1) deployment duration; 2) visual validity of the exposure time series; 

and 3) correction factor confidence.

1. Deployment duration: Deployments lasting fewer than 48 hours were removed 

from final data analysis.

2. Visual validity (Valid, low, or invalid): With oversight from study leadership, 

two members of the research team plotted the time series exposure data and 

visually assessed the validity of the measurements according to three criteria and 

blinded to study arm, which were codified in a standard operating procedure41. 

First, patterns of “spikes” of increased exposure were assessed as valid – as 

opposed to plateaus of high exposure, increasing or decreasing CO values over 

the entire time series. Second, elevated baseline where majority of CO readings 

hover above 0 ppm were assessed as invalid. Third, long periods of baseline 0 

ppm which were evaluated on a case-to-case basis (e.g., periods of flatline at 0 

ppm while CO spikes still occur may not be problematic, but a sudden change 

from more responsive data to sudden flatline was deemed invalid). Only visually 

valid files were retained for this study.

3. Correction factor confidence (High, low, or none): Monitors were tested 

against a standardized 50 ppm CO tank every six weeks, from which we 

calculated correction factors (CF = measured value divided by the expected 

value). Confidence levels, developed after visual inspection of the data and to 

avoid large corrections, were assigned as follows: “high” if the CF is in the range 

0.6 ≤ CF ≤ 1.2, “low” if CF is > 1.2 or if 0.2 ≤ CF < 0.6, and “no” confidence if 
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CF < 0.2. Only samples with a high correction factor confidence were retained 

for this study.

2.3.2 Fine particulate matter exposure validation—Fine particulate matter 

exposure assessed using the RTI MicroPEM underwent a multi-stage validation process to 

utilize the real-time and time-integrated data and estimate 48-hour personal exposure. A full 

description of the exposure validation procedure is available in Supporting Information 

Section 1.2. Briefly, the time series data were visually validated, checking if the data 

contained negative readings, improbable plateaus of high values, “stair-step” increases and 

decreases in baseline, or if the pre- and post-deployment HEPA period readings were outside 

of the expected range (± 20 μg/m3). Only visually valid data were retained for this study.

Three corrections were done to each deployment to get final average 48-hour PM2.5 

concentrations. First, an initial baseline correction was applied where valid interpolated 

HEPA readings for each minute were subtracted from nephelometer readings. If the endline 

monitoring-period HEPA filter reading was missing, then the pre-HEPA reading was 

assumed to be valid for the entire deployment. Second, for deployments with valid 

gravimetric filter weights (no holes, tears, or lost filters), a gravimetric correction was 

carried out by multiplying each nephelometer reading by the ratio of the gravimetric PM2.5 

concentration divided by the average nephelometer PM2.5 concentration for the total 

deployment time. For deployments without valid gravimetric samples, an average correction 

factor for the individual MicroPEM device was used. Nephelometer measurements were 

assigned an average correction factor using the most recent or bracketed (before and after 

deployment) paired valid gravimetric samples. Third, all nephelometer data points were 

corrected as described above prior to averaging the first 48 hours of active data collection.

2.4 Statistical Analysis

We carried out a Difference-in-Difference analysis to assess the effect of the cooking 

interventions on maternal air pollution exposure. We also present two additional analyses 

using data subsets to 1) demonstrate the importance of leveraging the full randomized design 

to assess the effectiveness of the cooking interventions and 2) to provide a comparison to 

other studies using cross-sectional or before and after designs.

We carried out three types of regression analyses with log maternal 48-hour CO exposure as 

the primary outcome to assess the effect of interventions on exposure (see Table 1). 

Secondary outcomes included log child 48-hour CO exposure and log maternal 48-hour 

PM2.5 exposure. For all regression analyses, we utilized generalized estimating equations 

(GEEs) with robust standard errors using the “sandwich” variance estimator and an 

exchangeable correlation matrix to account for both multiple observations per participant 

and the village-level nature of the GRAPHS intervention, as implemented in other studies 

with repeated measurements among individuals nested within clusters43,44. In GEEs, 

parameter estimates of interest are interpreted as “population-averaged,” because they are 

averaged across the clusters (i.e., villages and participants in those villages).

Equation 1 assesses differences in exposure “Across Study Arms” utilizing only post-

intervention data. The parameter of interest in this model is the effect of study arm indicator 

Chillrud et al. Page 7

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2021 September 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



variables, with the improved biomass and LPG arms being compared to the control arm. 

Equation 2 carries out a “Before and After” comparison for all study arms. Here, the 

parameter of interest is the effect of the post-intervention study period indicator variable. 

This model effectively controls for subject characteristics but has limited ability to control 

for confounding by time-varying determinants of exposure. The third and final equation is a 

“Difference-in-Differences” approach that utilizes all study data and includes indicator 

variables for study arm and post-intervention study period. The main parameters of interest 

are the interaction variables between intervention groups and post-intervention study period. 

This is similar to carrying out the “Across Study Arms” comparison but with the added 

adjustment for any potential differences between study arms.

When exponentiated the parameters of interest represent the fraction of exposure 

experienced by the control group that the group of interest experienced. We transformed 

these results into the final outcome of interest: percent reduction in personal exposure due to 

treatment status. The “Difference-in-Differences” model is our primary specification 

because it fully leverages the study design and data collection and best accounts for potential 

confounding. Nonetheless, we present the “Across Study Arms” and “Before and After” 

models because they are comparable to other common study designs18 and demonstrate the 

importance of the randomized nature of our intervention.

Then, Equation 4 assessed the effectiveness of interventions disaggregated to each 

monitoring session. This analysis mirrored the “Difference-in-Differences” approach, but 

rather than treating the post-intervention period as a unit, we analyzed each session to assess 

the effectiveness of the intervention over time.

In an additional analysis, we examined the association between population density 

surrounding participants and personal exposure. We calculated the number of individuals 

living within a 50 m radius of each study household using local census data to estimate 

population density45, and therefore potentially capture neighboring air pollution emissions. 

We considered measuring population density as the number of individuals living within 100 

m and 200 m radii, too, finding similar associations in analysis, limited changes in 

population density ranking. Therefore, we opted for the closest distance to ensure the 

plausibility of the association as a measure of contributions from neighboring cooking 

events.

As a check of robustness, we jointly applied the CO and PM2.5 validation procedures to 

sessions with co-deployed CO and PM2.5 monitors to obtain a smaller, “paired high-

validity” maternal PM2.5 and CO exposure dataset (N=1 048). We observe consistency 

between our main results and those obtained in this paired exposure dataset and only report 

these results in Supporting Information Section 2.1.

All analyses were performed in R software version 3.6.046. GEEs were implemented using 

“geepack”47 . Code that supports the analyses presented in this study will be made available 

upon publication.
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3. Results

Table 2 reports descriptive statistics for the GRAPHS study participants with a valid CO 

exposure estimate. Participants were non-smoking pregnant women, on average in their late 

20s, with approximately two years of completed formal education on average. Households 

had on average between six and seven members. Most households had their primary cooking 

location fully outside, though many had multiple cooking locations, one of which was at 

least semi-enclosed (95%). Approximately half of households shared their primary cooking 

location with another household – though study households were the sole users of their 

intervention stoves. In addition, half of study households had a dedicated room in the house 

for cooking. Firewood was the dominant primary cooking fuel for households prior to 

randomization, though half used charcoal as a secondary fuel. Households in the LPG 

cluster had a slightly higher average number of persons living within 50 meters of the 

household. The use of tobacco products was relatively rare; only one-fifth of households had 

a smoker (almost exclusively men). Observed household- and individual-level differences 

across study arms resulted from randomization taking place at the community level22.

3.1. Exposure measurements and validation

The GRAPHS study team carried out 11 898 CO exposure deployments (8 540 maternal and 

3 358 child) on 1 405 mothers and 1 083 children. More than 75% of mothers received six or 

seven sessions and more than 75% of children received all three of their intended sessions 

(Table S2). Nearly all mothers (97%) received baseline exposure monitoring and at least one 

post-intervention monitoring session. The percentage of mothers and children receiving 

exposure monitoring during each session is detailed in Table S3.

Figure S3 summarizes the air pollution exposure validation process. Overall, two-thirds of 

maternal CO exposure sessions resulted in a high-validity 48-hour exposure estimate; the 

percentage was slightly smaller for child exposure monitoring sessions (57%) (Table S4). 

Estimates were removed according to validation criteria: 10% lasted less than 48 hours 

(maternal median = 71.85 hours, child median = 71.93 hours); less than one-quarter were 

not visually valid (maternal: 16.3%, child: 23.9%); and some had an invalid calibration 

factor (maternal: 18.9%, child: 24.5%) (Table S5). Figure S4 shows representative images in 

each visual validity category. Approximately 70% of samples were valid in the pre-natal 

period, but in the post-natal period the fraction of valid samples declined to around 60% 

(Table S6).

A final sample of 5 655 valid 48-hour maternal CO exposure estimates and 1 903 valid 48-

hour child CO estimates was obtained after the validation criteria were applied and after 

removing a small number of sessions for having an improbable 48-hour CO concentration of 

0 ppm (maternal N=4; child N=4) and averaging valid co-deployments (maternal N=92). 

Mothers (N=16) and children (N=1) with no valid exposure estimates were dropped from 

analyses.

The GRAPHS study team also carried out 1 750 PM2.5 monitoring sessions for 980 women, 

conducted in conjunction with a subset of the CO monitoring sessions. A procedure similar 

to the CO validation procedure was conducted for the PM2.5 measurements (see Section 
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2.3.2). A small number were removed due to insufficient run time (N=134), low visual 

validity (N=184), and missing gravimetric sample validity (N=29). In total, more than 80% 

of PM2.5 monitoring sessions resulted in high-validity 48-hour exposure estimates (N=1 

389). Ten of these high-validity estimates were removed because they took place during the 

baseline period.

3.2. Summarizing maternal and child air pollution exposure

In the baseline period, 0.6% of 24-hour maternal CO exposure estimates exceeded the World 

Health Organization (WHO) CO 24-hour guideline of 6.11 ppm (equivalent to 7 mg/m3)37. 

Table 3 provides descriptive statistics for maternal CO, maternal PM2.5, and child CO 

exposure estimates. Baseline CO exposures did not differ significantly across study arms. 

CO exposure decreased in the post-intervention period for all study arms. The distributions 

of post-intervention 48-hour maternal CO and PM2.5 and child CO exposures for each study 

arm are visualized in Figure S5. In the post-intervention period, the percent of 24-hour 

maternal CO exposure estimates in excess of the WHO 24-hour guideline was 1.4% in the 

Control study arm, 0.7% in the improved biomass study arm, and 0.6% in the LPG study 

arm.

Mean child CO exposure was lower than maternal CO exposure in all study arms. Among 

paired samples where child and maternal CO exposure was monitored during the same 

session, the two exposures were weakly correlated (Pearson’s r = 0.36) (Figure S6). The 

median ratio between child and maternal CO exposure was 0.78 (interquartile range: 0.30 – 

1.79), though observed ratios varied greatly across paired samples (Figure S7).

Figure 2 shows a time series of 48-hour maternal CO and PM2.5 exposure estimates from all 

study arms throughout the post-intervention period (November 2013 – February 2016). 

Here, two patterns emerge. First, CO exposure appears to decline throughout the study 

period. Second, PM2.5 exposure shows a marked seasonal pattern with periods of higher 

exposures during the Harmattan season. As a result of these observed patterns, we carried 

out several different analyses to assess the effect of cooking interventions on exposure.

3.3. Estimating the effect of clean cooking interventions on personal air pollution 
exposure

Before conducting our “Difference-in-Differences” primary specification, we assessed the 

effect of cooking interventions on exposure using two approaches: 1) “Across Study Arms” 

and 2) “Before and After.”

Table 4 reports results from the “Across Study Arm” approach (Equation 1). As compared to 

the control arm, both the LPG and improved biomass arms had reduced mean maternal CO 

exposure (LPG: 42% lower, 95% confidence interval (CI): 35–48% lower; improved 

biomass: 10% lower, 95% CI: 1–18% lower). An exploration of seasonal patterns found that 

exposure reductions in the intervention arms were greatest among the sub-sample of sessions 

obtained during Non-Harmattan months (April-November, representing 59% of maternal 

samples). The difference in CO exposure between the LPG arm and the control arm was 

somewhat attenuated during Harmattan months (35% lower, 95% CI: 22–45%) and we 

observed no difference between the Improved study arm and the control arm during these 
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months (3% lower, 95% CI: 17% lower – 12% higher). We found that child CO exposure 

was only reduced in the LPG arm as compared to the control arm (22% lower, 95% CI: 6–

35% lower; improved biomass: 6% lower, 95% CI: 21% lower – 11% higher).

Two-thirds of post-intervention mean maternal 48-hour PM2.5 exposure estimates exceeded 

the WHO Annual Interim-I guideline (35 μg/m3)37 in the LPG study arm, with the fraction 

for the improved biomass and Control arms being higher (86% and 88%, respectively) 

(Table S7). In addition, more than 85% of mean maternal 24-hour PM2.5 exposure estimates 

exceeded the WHO 24-hour guideline of 25 μg/m3 and nearly all exposure estimates were 

above the 10 μg/m3 annual guideline. Mean maternal PM2.5 exposure was only reduced 

among the LPG arm as compared to the control arm (32% lower, 95% CI: 26–38% lower; 

improved biomass: 4% lower, 95% CI: 11% lower – 4% higher). PM2.5 exposure estimates 

were higher among Harmattan sub-samples and during this season we observed no 

significant differences in exposure across the study arms. The reductions of the LPG 

intervention arm were larger during the non-Harmattan season than the reduction observed 

when including all monitoring sessions.

In comparison to the “Across Study Arms” models, the “Before and After” models 

described in Equation 2 incorporate data from the baseline period in addition to the post-

intervention study period for each study arm. Exposure fell significantly in the post-

intervention study period among all study arms as compared to the baseline (Table 4; Figure 

S8). Indeed, even the control group had an estimated 32% lower (95% CI: 24–39% lower) 

mean maternal CO exposure in the post-intervention period. This trend makes the 

“Difference-in-Differences” approach where we use all exposure estimates obtained during 

GRAPHS particularly important.

In the “Difference-in-Differences” analysis, then, we see that as compared to the change 

observed in the control arm in the post-intervention period, only the LPG arm experienced a 

significantly greater CO exposure reduction (47% lower, 95% CI: 36–56% lower) (Table 5). 

Using the same approach, but with a non-logarithmized outcome, we estimate the absolute 

reduction in personal CO exposure attributable to the LPG intervention is 0.52 ppm (95% 

CI: 0.28–0.75 ppm lower). In contrast, the change in exposure after the intervention in the 

improved biomass study arm was not different from the control arm (8% lower, 95% CI: 

21% lower to 8% higher).

3.4. Effect of interventions on exposure over time

Maternal CO exposure fell throughout the study period for all study arms, including the 

control arm (Figure S9). We conducted a session-specific difference-in-differences analysis 

to evaluate whether the effect of the intervention diminished over time. In the LPG arm, no 

attenuation of the intervention effect was seen during the prenatal period. In the postnatal 

period, the intervention effect was somewhat attenuated, but still significant as compared to 

control. Similar trends over time were observed in the improved biomass arm, although 

reductions in exposure were not significant as compared to the control arm (Figure 3).
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3.5 Assessment of population density and exposure

Given the focus on intervening during pregnancy, participants in the intervention study arms 

were in close proximity to households not enrolled in the study. Close proximity to non-

intervention households using three-stone fires may have affected personal air pollution 

exposure in intervention study arms. Population density across the study groups varied 

somewhat (Control mean (SD) persons within 50 m: 48.4 (29.6); improved biomass mean 

(SD): 48.6 (31.9); LPG mean (SD): 53.9 (35.0)). Households in the LPG study arm living 

with more than 50 persons within 50 m (approximately the median) had average 48-hr CO 

exposure of 1.00 ppm (SD: 2.58), whereas those living with fewer than 50 persons within 50 

m had average 48-hr CO exposure of 0.72 ppm (SD: 0.88).

4. Discussion

In this study, we presented the results from the largest randomized clean cooking 

intervention trial to report air pollution exposure results to date. First, we described the 

validation procedures we employed to ensure high confidence in exposure estimates. Then, 

we described the overall results of CO and PM2.5 maternal and child exposure deployments, 

characterizing both the distribution of deployments over the study period and across study 

arms. We showed that the LPG stove significantly reduced personal CO exposure as 

compared to the control three-stone fire and that PM2.5 exposure was lower in the LPG arm 

as compared to the control in the post-intervention period. We also showed that there was no 

attenuation of the intervention effect during the prenatal period among LPG stove users, but 

that there was some evidence of effect attenuation after birth. We also demonstrated that a 

fan-assisted biomass stove did not lead to statistically significant reductions in CO or PM2.5 

exposure as compared to the control.

This study makes several important contributions to the field. Although the validation 

procedures were stringent, GRAPHS nonetheless yielded more than 5 600 48-hour maternal 

CO exposure estimates, 1 903 48-hour child CO exposure estimates, and 1 379 48-hour 

maternal PM2.5 exposure estimates, one of the largest personal air pollution exposure 

monitoring efforts in the context of clean cooking interventions to date. Low within-subject 

correlation across all exposure measurements justified our repeated measurements approach 

(see Supporting Information Section 2.1). GRAPHS marks one of the largest deployments to 

date of a clean cooking fuel intervention in a randomized controlled trial, and the first time 

the impact of LPG stoves on personal exposure to air pollution has been rigorously tested. 

While there are some clean cooking fuel intervention efforts ongoing48, few prior studies 

have presented exposure results18,49. This study also offers insights into air pollution 

exposure among pregnant women, a particularly sensitive group where exposure reductions 

can yield substantial public health benefits.

The main results from the present study show that the mothers in the LPG study arm 

experienced 47% lower mean 48-hour CO exposure compared to the control arm using pre- 

and post-intervention data and 32% lower mean 48-hour PM2.5 exposure using post-

intervention data. We also show that a fan-assisted biomass stove did not reduce CO nor 

PM2.5 exposure in statistically significant ways. These results further support the findings 

from a recent meta-analysis that concludes that improved biomass-burning stoves have not 
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reduced personal PM2.5 exposure below WHO air quality guidelines18. Stoves using clean 

fuels like gas, electricity, or alcohol have the potential to reduce air pollution exposure much 

more than “cleaner” biomass stoves in real-world use. Our study demonstrates that 

statistically significant exposure reductions are possible through an LPG stove intervention. 

Still, two-thirds of post-intervention mean maternal 48-hour PM2.5 exposure estimates in the 

LPG study arm exceeded the WHO Annual Interim-I guideline of 35 μg/m3.

There have been multiple reasons proposed in the literature to explain the failures of 

improved and/or clean fuel stoves to achieve expected exposure reductions, notably: (i) 

insufficient emissions reductions over the long-term due, potentially, to stove breakage 

and/or maintenance issues over time; (ii) continued traditional biomass stove use in parallel 

to the intervention stove (termed, “stove stacking” or “fuel stacking” when referring to the 

use of multiple fuels) for a variety of different reasons50–53; and (iii) high levels of ambient 

air pollution due to interventions in single households in communities where the majority of 

households continue to use traditional stoves.

The LPG arm experienced significantly lower exposure compared to the control arm 

throughout the entire study period (median time between first and final sessions: 357 days). 

Furthermore, we observed consistent LPG stove use during the entire study period and 

before and after birth (Figure S10–S11). Improved biomass stove use, however, declined 

over time and exposure in the improved biomass study arm was not different from the 

control arm throughout the majority of the study period.

Given the growing body of literature discussing the potential for clean cooking intervention 

to improve health, it is valuable to contextualize our results. First, we note that there are 

relatively few directly comparable studies—that is, randomized controlled trials with clean 

fuel interventions reporting personal CO exposure measurements. The most comparable 

study to our own to present results to date is the Randomized Exposure Study of Pollution 

Indoors and Respiratory Effects (RESPIRE)—a randomized controlled trail with an 

improved solid fuel stove with a chimney in Guatemala. Geometric mean maternal CO 

exposure declined by 61% (95% CI: 57–65% lower; baseline concentration 3.4 ppm) in 

RESPIRE, though throughout the study only 529 personal CO exposure estimates were 

collected17. A review of eight studies that examines pre- and post-improved-solid-fuel-

stoves-with-chimney intervention personal CO exposure estimated a weighted mean 

reduction of 52% (3.4 ppm to 1.6 ppm) (totaling 778 estimates, most coming from 

RESPIRE)18. This same review only found three studies that included a clean fuel 

intervention—one for LPG in Sudan (N=57 estimates) and two for ethanol in in Ethiopia 

and Madagascar (N=85 estimates combined)—though neither utilized personal air pollution 

exposure monitoring and instead only had kitchen monitoring. These studies reported 

declines in kitchen CO concentrations between 76–82%, though pre-intervention 

concentrations were between 11 and 33 ppm. The currently-underway Household Air 

Pollution Intervention Network trial—a large multisite randomized controlled efficacy trial 

providing unlimited LPG refills to 3,200 households for 18 months54—will increase the 

available evidence on the potential for clean fuels to reduce personal air pollution exposure.
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The observed estimates of personal air pollution exposure in this study are somewhat low in 

comparison to other similar studies. As noted above, a review of eight studies18 with 

personal CO exposure estimate a weighted pre-intervention mean of 3.4 ppm and post-

intervention at 1.6 ppm. However, these studies came from a range of geographic contexts—

largely Central and South America—that may not be as relevant to Sub-Saharan Africa. In a 

cross-sectional study in Accra, Ghana—a large urban city—households only using LPG had 

mean PM2.5 exposure of 24 μg/m³, though households also reporting wood use or charcoal 

use had somewhat higher exposures (between 31 and 79 μg/m³)55. A study in rural Kenya 

estimated 48-hour personal CO exposure to be between 0.8 ppm to 1.3 ppm—concentrations 

comparable to those presented in this study56. A study in Rwanda reported mean 48-hour 

personal PM2.5 exposure to be around 220 μg/m³ across intervention and control arms (no 

difference in exposure), though the interquartile range extended from about 95 to 300 μg/

m³57.

In summary, personal air pollution exposure concentrations are highly variable within and 

across contexts and while exposure estimates in this study may be somewhat lower than in 

other studies, there is significant overlap in the distributions. In addition, the range of 

exposures observed in this study fall in ranges of the integrated exposure-response functions 

for PM2.5 and lower respiratory infections39, for example, where even modest declines in 

exposure might yield meaningful reductions in relative risk.

4.1 Limitations

The results of this study should be considered in light of its limitations. The methods and 

protocols for this study were developed between 2010 and 2013, with data collection 

occurring between 2013 and 2016. Since then, there have been shifts in the air pollution 

exposure technology and the state-of-the-science knowledge on best practices, so we report 

extensively on the limitations of this study as advice for future similar studies.

First, as we have discussed previously in the Methods, due to resource constraints, CO was 

used as the primary exposure metric in GRAPHS. Chronic and short-term CO exposure is an 

important health risk factor associated with asthma, cardiovascular disease, and impaired 

neurological development and acute symptoms and mortality, respectively58. Furthermore, 

CO is a marker of incomplete combustion and is included in the World Health 

Organization’s Air Quality Guidelines for Household Fuel Combustion alongside PM2.5
37. 

Still, PM2.5 is thought to be the best indicator of health risk from air pollution21,59,60. When 

designing the study, we planned to use CO as a proxy for PM2.5 exposure. Now, evidence is 

accumulating that CO may perform poorly as a proxy for PM2.5 exposure in HAP studies40, 

but these findings were not available during the design phase of GRAPHS. Still, our findings 

show that across-arm exposure reductions were of a similar magnitude for CO and PM2.5 

samples. We report an additional limitation that PM2.5 exposure measurements did not take 

place at baseline, limiting our PM2.5-related analysis to cross-sectional post-intervention 

assessments.

Second, ambient air pollution was not measured during the GRAPHS study period due to 

limited resources. Our results showing the positive association between population density 

around a participant and air pollution exposure indicate the potential for neighbors’ air 
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pollution to have affected participants’ air pollution exposure. The lack of ambient 

monitoring limits our ability to determine the relative contribution of a household’s own 

cooking practices from community-level ambient air pollution to personal exposure. 

However, it is rare for entire communities to transition from biomass-based cooking to the 

exclusive use of clean fuels, so the intention-to-treat analysis in this study still offers useful 

real-world results of a clean fuel stove and fuel refill intervention. LPG stove uptake in rural 

communities in Ghana was uncommon during the study period61, suggesting that it is 

unlikely that neighboring transitions from solid fuel use to clean fuel use would have 

changed ambient air pollution over the course of the study. Still were there to be such a 

transition, we do not expect that any shifts would occur differentially across study arms.

Third, we carried out only limited pre-trial field measurements with the Lascar CO exposure 

monitor—though we did consult with other research teams experienced in its use. While we 

did not observe any evidence of issues with deployment, more extensive pre-trial testing can 

be a valuable and important step for establishing good practices for data collection, cleaning, 

and analysis as well as establishing internal and external credibility of exposure estimates.

Fourth, although post hoc truncating exposure estimates to 48 hours was intended to ensure 

having a similar number of cooking events per deployment, this truncation also induced a 

limitation of our PM2.5 estimates. We only used the first 48 hours of the gravimetric-

corrected light-scattering nephelometer data, even though the correction factor was based on 

the full deployment length (median = 72 hours). As such, any significant variations in 

particle-sources with different optical properties during the first 48 hours as compared to the 

entire deployment may bias our estimates. However, there is limited likelihood that the 

truncated time period after 48 hours captured different particle sources that would 

significantly impact our estimates because 48 hours comprises a large proportion of the full 

deployment length. Furthermore, a strength of our use of the microPEM is that the device 

provides a gravimetric correction for every deployment, rather than a common approach of 

co-locating nephelometer-only sensors with gravimetric-only monitors in a small subset of 

deployments that is subject to bias62.

Fifth, stove stacking may also have played a role in the levels of air pollution exposure 

observed in this study. This study focused on intention-to-treat analyses, categorizing 

households according to treatment irrespective of cooking fuel use patterns in the household. 

A limitation of GRAPHS is that there was not comprehensive stove use monitoring during 

all personal air pollution monitoring sessions or throughout the longer study period. Use of 

non-intervention stoves was reported during GRAPHS based on weekly household surveys, 

as reported in the Supporting Information and published elsewhere63. However, given the 

lack of complete stove use monitoring we are unable to undertake a full analysis of the 

contributions of stove use to observed personal exposure. Future studies may benefit from 

comprehensive stove use monitoring paired with personal air pollution exposure to assess 

the degree to which the benefits of stove interventions are attenuated by fuel stacking with 

polluting fuels like biomass and kerosene. Additionally, stove use monitoring can enable the 

analysis of the contribution of cooking events to time-resolved personal air pollution 

exposure, potentially disentangling overall air pollution exposure from those directly 
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affected by cooking interventions and thus whether reductions in exposure during cooking 

are the primary drivers of overall differences in exposure.

Sixth, our strategy using visual validation of the data lacked a formal evaluation of inter-

rater reliability. Due to the highly-localized nature of air pollution exposure trends from day 

to day, visual validation remains a top way to detect deviations from the norm and—

potentially—indications of sensor failure in addition to objective monitoring criteria and 

survey-based questions to the participant on exposure monitoring wearing behaviors during 

the monitoring period.

5. Conclusions

There is increasing demand for interventions to reduce household air pollution exposure and 

improve health in Sub-Saharan Africa and the rest of the world as researchers and 

policymakers learn more about the health and climate effects of biomass combustion. The 

particular interventions that will be best suited to achieve these goals remain a subject of 

debate. Ghana, and other countries in the region, are establishing national clean cooking 

programs to scale-up clean cooking fuels – especially LPG – to reduce forest degradation 

while also improving livelihoods and population health61. In this study, we provide evidence 

from a controlled trial in a low-income setting demonstrating that an LPG stove intervention 

outperformed a fan-assisted biomass stove intervention in reducing air pollution exposure 

among a population of pregnant women vulnerable to the adverse health impacts of air 

pollution. Recent studies from around the world emphasize the importance of cost and 

access in determining the sustained use of clean fuels in the long-term64. Future work should 

investigate how clean fuel stoves can be adopted sustainably in real life and over the long 

term to reduce air pollution exposure among vulnerable populations.
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Figure 1. Personal exposure to air pollution monitoring plan for GRAPHS.
Participants (pregnant women) received baseline carbon monoxide (CO) exposure 

monitoring at the time of enrollment in the study or shortly after (77% the same day; 86% 

within a week). Three weeks after intervention stove delivery (itself 1–2 weeks after 

enrollment), all participants received personal CO exposure monitoring and a subset of 

participants (65%) each received simultaneous personal CO and personal PM2.5 exposure 

monitoring. Sessions 3 and 4 were personal CO exposure monitoring only, spaced at three-

week intervals prior to birth. One month after birth, both the mother and newborn received 

personal CO exposure monitoring. Three months later, all mothers received personal CO 

exposure monitoring and a subset (65%, partially overlapping with the first subset) received 

simultaneous personal CO and personal PM2.5 exposure monitoring. At this time, all 

newborns received personal CO exposure monitoring. Newborns did not receive personal 

PM2.5 exposure monitoring due to the size of the monitor. Eight months later, at child age 1 

year, the mother and child received personal CO exposure monitoring. Session numbers (1–

7) are associated with the relative timing of the planned monitoring sessions (i.e., baseline = 

1, three weeks before birth = 4, four months after birth = 6).
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Figure 2. Post-intervention 48-hour CO and PM2.5 exposure measurements during the GRAPHS 
study period shows seasonality during Harmattan.
Time series of post-intervention 48-hour measurements of maternal CO (upper panel) and 

PM2.5 (lower panel) exposure from November 2013 to February 2016. Points display 48-

hour individual measurements from all study arms. Solid lines show a local weighted 

smoothing (LOESS) function with light grey areas showing the 95% confidence interval of 

the local mean. Time periods shaded grey depict Harmattan season (December-March) when 

episodes of dry dusty winds are typically more prevalent.
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Figure 3. CO exposure differences between the LPG study arm and improved biomass study arm 
compared to the Control study arm throughout the study.
Results from models described in Equation 4 – the “Session-specific Difference-in-

Differences” regression approach – to explore the potential interaction between the effect of 

the intervention over time by cluster. Point estimates are the percent change in CO exposure 

as compared to the control study arm baseline period with 95% confidence intervals. Models 

account for within-subject clustering over time and the cluster-randomized nature of the 

intervention using generalized estimating equations.

Chillrud et al. Page 23

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2021 September 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chillrud et al. Page 24

Ta
b

le
 1

.

A
pp

ro
ac

he
s 

to
 e

st
im

at
in

g 
th

e 
ef

fe
ct

 o
f 

in
te

rv
en

tio
n 

on
 e

xp
os

ur
e1

#
A

pp
ro

ac
h

D
at

a
O

bj
ec

ti
ve

E
qu

at
io

n 
an

d 
Te

rm
s

1
A

cr
os

s 
St

ud
y 

A
rm

s
A

ll 
Po

st
-

In
te

rv
en

tio
n

es
tim

at
es

 th
e 

di
ff

er
en

ce
 in

 
st

ud
y 

ar
m

 
m

ea
n 

48
-h

ou
r 

ex
po

su
re

 a
s 

co
m

pa
re

d 
to

 
m

ea
n 

in
 

C
on

tr
ol

 s
tu

dy
 

ar
m

 (
β 1

)

lo
g(

y ij
)=

 β
0i

j+
 β

1S
tu

dy
Ar

m j
+

ε ij
y i

j =
 m

ea
n 

48
-h

ou
r 

ai
r 

po
llu

tio
n 

ex
po

su
re

 (
ei

th
er

 C
O

 o
r 

PM
2.

5)
 f

or
 p

ar
tic

ip
an

t i
 in

 s
tu

dy
 a

rm
 j,

St
ud

yA
rm

j =
 p

ar
tic

ip
an

t’
s 

as
si

gn
ed

 s
tu

dy
 a

rm
 in

 tw
o 

du
m

m
y 

va
ri

ab
le

s 
fo

r 
im

pr
ov

ed
 b

io
m

as
s 

an
d 

L
PG

 s
tu

dy
 a

rm
s 

(r
ef

: C
on

tr
ol

),
ε i

j=
 e

rr
or

 te
rm

 f
or

 p
ar

tic
ip

an
t i

 in
 s

tu
dy

 a
rm

 j.

2
B

ef
or

e 
an

d 
A

ft
er

A
ll 

D
at

a,
 

st
ud

y 
ar

m
 

by
 s

tu
dy

 
ar

m

es
tim

at
es

 th
e 

di
ff

er
en

ce
 in

 
m

ea
n 

48
-h

ou
r 

ex
po

su
re

 a
s 

co
m

pa
re

d 
to

 
th

e 
ba

se
lin

e 
pe

ri
od

 (
β 1

)

lo
g(

y ik
)=

 β
0i

k
+

 β
1P

os
tI

nt
er

ve
nt

io
n k

+
ε ik

y i
k 

=
 m

ea
n 

48
-h

ou
r 

C
O

 e
xp

os
ur

e 
fo

r 
pa

rt
ic

ip
an

t i
 in

 in
te

rv
en

tio
n 

pe
ri

od
 k

,
Po

st
In

te
rv

en
tio

n k
 =

 d
um

m
y 

va
ri

ab
le

 f
or

 e
xp

os
ur

e 
es

tim
at

e 
be

in
g 

be
fo

re
 o

r 
af

te
r 

th
e 

in
te

rv
en

tio
n 

(r
ef

: P
re

-I
nt

er
ve

nt
io

n)
, a

nd
ε i

k=
 e

rr
or

 te
rm

 f
or

 p
ar

tic
ip

an
t i

 in
 in

te
rv

en
tio

n 
pe

ri
od

 k
.

3
D

if
fe

re
nc

e-
in

-
D

if
fe

re
nc

es
 

(p
ri

m
ar

y 
sp

ec
if

ic
at

io
n)

A
ll 

D
at

a
es

tim
at

es
 th

e 
di

ff
er

en
ce

 in
 

m
ea

n 
48

-h
ou

r 
ex

po
su

re
 

ob
se

rv
ed

 in
 th

e 
po

st
-

in
te

rv
en

tio
n 

pe
ri

od
 f

ro
m

 
th

e 
ba

se
lin

e 
pe

ri
od

 a
s 

co
m

pa
re

d 
to

 
th

e 
sa

m
e 

di
ff

er
en

ce
 

oc
cu

rr
in

g 
in

 
th

e 
C

on
tr

ol
 

ar
m

 (
β 3

)

lo
g(

y ij
k)

=
 β

0i
jk

+
 β

1S
tu

dy
Ar

m j
+

β 2
Po

stI
nt

er
ve

nt
io

n k
+

β 3
St

ud
yA

rm
j×

Po
stI

nt
er

ve
nt

io
n k

+
ε ij

k
y i

jk
 =

 m
ea

n 
48

-h
ou

r 
C

O
 e

xp
os

ur
e 

fo
r 

pa
rt

ic
ip

an
t i

 in
 s

tu
dy

 a
rm

 j 
in

 in
te

rv
en

tio
n 

pe
ri

od
 k

,
St

ud
yA

rm
j =

 p
ar

tic
ip

an
ts

 a
ss

ig
ne

d 
cl

us
te

r 
in

 tw
o 

du
m

m
y 

va
ri

ab
le

s 
fo

r 
im

pr
ov

ed
 b

io
m

as
s 

an
d 

L
PG

 s
tu

dy
 a

rm
s 

(r
ef

: C
on

tr
ol

),
Po

st
In

te
rv

en
tio

n k
 =

 d
um

m
y 

va
ri

ab
le

 f
or

 e
xp

os
ur

e 
es

tim
at

e 
be

in
g 

be
fo

re
 o

r 
af

te
r 

th
e 

in
te

rv
en

tio
n 

(r
ef

: P
re

-I
nt

er
ve

nt
io

n)
,

St
ud

yA
rm

j
× 

Po
st

In
te

rv
en

tio
n k

 =
 d

um
m

y 
va

ri
ab

le
s 

fo
r 

in
te

ra
ct

io
n 

te
rm

s 
be

tw
ee

n 
St

ud
yA

rm
j a

nd
 P

os
tI

nt
er

ve
nt

io
n k

 d
um

m
y 

va
ri

ab
le

s 
(r

ef
: C

on
tr

ol
 a

nd
 P

re
-

In
te

rv
en

tio
n)

, a
nd

ε i
jk

=
 e

rr
or

 te
rm

 f
or

 p
ar

tic
ip

an
t i

 in
 s

tu
dy

 a
rm

 j 
an

d 
in

te
rv

en
tio

n 
pe

ri
od

 k
.

4
Se

ss
io

n-
sp

ec
if

ic
 

D
if

fe
re

nc
e-

in
-

D
if

fe
re

nc
es

A
ll 

D
at

a
es

tim
at

es
 

ch
an

ge
 in

 
se

ss
io

ns
 

co
m

pa
re

d 
to

 
ch

an
ge

 f
ro

m
 

ba
se

lin
e 

in
 

C
on

tr
ol

 s
tu

dy
 

ar
m

 (
β 3

)

lo
g(

y ij
l)

=
 β

0i
jl

+
 β

1S
tu

dy
Ar

m j
+

β 2
M

on
ito

rin
gS

es
sio

n l
+

β 3
St

ud
yA

rm
j×

M
on

ito
rin

gS
es

sio
n l

+
ε ij

l
y i

jl 
=

 m
ea

n 
48

-h
ou

r 
C

O
 e

xp
os

ur
e 

fo
r 

pa
rt

ic
ip

an
t i

 in
 s

tu
dy

 a
rm

 j 
du

ri
ng

 m
on

ito
ri

ng
 s

es
si

on
 l,

St
ud

yA
rm

j =
 p

ar
tic

ip
an

ts
 a

ss
ig

ne
d 

cl
us

te
r 

in
 tw

o 
du

m
m

y 
va

ri
ab

le
s 

fo
r 

im
pr

ov
ed

 b
io

m
as

s 
an

d 
L

PG
 s

tu
dy

 a
rm

s 
(r

ef
: C

on
tr

ol
),

M
on

ito
ri

ng
Se

ss
io

n l
 =

 d
um

m
y 

va
ri

ab
le

 f
or

 m
on

ito
ri

ng
 s

es
si

on
 o

f 
ex

po
su

re
 e

st
im

at
e,

 e
.g

., 
Se

ss
io

n 
1,

 S
es

si
on

 2
, S

es
si

on
 3

 (
re

f:
 S

es
si

on
 1

),
St

ud
yA

rm
j

× 
M

on
ito

ri
ng

Se
ss

io
n l

 =
 d

um
m

y 
va

ri
ab

le
s 

fo
r 

in
te

ra
ct

io
n 

te
rm

s 
be

tw
ee

n 
St

ud
yA

rm
j a

nd
 e

ac
h 

M
on

ito
ri

ng
Se

ss
io

n l
 d

um
m

y 
va

ri
ab

le
 (

re
f:

 C
on

tr
ol

 
an

d 
Se

ss
io

n 
1)

, a
nd

ε i
jl=

 e
rr

or
 te

rm
 f

or
 p

ar
tic

ip
an

t i
 in

 s
tu

dy
 a

rm
 j 

an
d 

m
on

ito
ri

ng
 s

es
si

on
 l.

1 T
hi

s 
ta

bl
e 

de
sc

ri
be

s 
th

e 
ap

pr
oa

ch
 w

e 
to

ok
 to

 e
st

im
at

e 
th

e 
ef

fe
ct

 o
f 

cl
ea

n 
co

ok
in

g 
in

te
rv

en
tio

ns
 o

n 
pe

rs
on

al
 a

ir
 p

ol
lu

tio
n 

ex
po

su
re

 a
nd

 is
 in

te
nd

ed
 to

 il
lu

st
ra

te
 th

e 
de

pe
nd

en
t a

nd
 in

de
pe

nd
en

t v
ar

ia
bl

e 
sp

ec
if

ic
at

io
ns

, h
ig

hl
ig

ht
in

g 
th

e 
co

ef
fi

ci
en

ts
 o

f 
in

te
re

st
. H

ow
ev

er
, a

ll 
an

al
ys

es
 a

re
 c

on
du

ct
ed

 u
til

iz
in

g 
ge

ne
ra

liz
ed

 e
st

im
at

in
g 

eq
ua

tio
ns

, a
 n

on
-p

ar
am

et
ri

c 
es

tim
at

io
n 

fr
am

ew
or

k 
th

at
 e

st
im

at
es

 p
op

ul
at

io
n 

av
er

ag
ed

 e
ff

ec
ts

. S
ta

nd
ar

d 
er

ro
rs

 in
 th

e 
G

E
E

s 
ac

co
un

t f
or

 m
ul

tip
le

 o
bs

er
va

tio
ns

 p
er

 p
ar

tic
ip

an
t a

nd
 th

e 
vi

lla
ge

-c
lu

st
er

ed
 n

at
ur

e 
of

 th
e 

in
te

rv
en

tio
n 

de
pl

oy
m

en
t.

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2021 September 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chillrud et al. Page 25

Ta
b

le
 2

.

B
as

el
in

e 
de

sc
ri

pt
iv

e 
st

at
is

tic
s 

of
 G

R
A

PH
S 

po
pu

la
tio

n 
w

ith
 a

 v
al

id
 C

O
 e

xp
os

ur
e 

es
tim

at
e

C
on

tr
ol

Im
pr

ov
ed

 b
io

m
as

s
L

P
G

C
lu

st
er

 S
iz

e
51

5
51

9
35

5

M
at

er
na

l C
ha

ra
ct

er
is

ti
cs

 
A

ge
, M

ea
n 

(S
D

)
27

.6
 (

8.
3)

28
.1

 (
7.

6)
26

.8
 (

6.
7)

 
L

ev
el

 o
f 

ed
uc

at
io

n 
co

m
pl

et
ed

, N
 (

%
)

 
 

N
o 

fo
rm

al
 e

du
ca

tio
n

18
8 

(3
7%

)
19

8 
(3

8%
)

12
0 

(4
7%

)

 
 

Pr
im

ar
y 

sc
ho

ol
14

1 
(2

7%
)

16
2 

(3
1%

)
55

 (
20

%
)

 
 

M
id

dl
e 

/ j
un

io
r 

hi
gh

 s
ch

oo
l

16
3 

(3
2%

)
14

0 
(2

7%
)

71
 (

28
%

)

 
 

G
re

at
er

 th
an

 m
id

dl
e 

/ j
un

io
r 

hi
gh

 s
ch

oo
l

23
 (

4%
)

19
 (

4%
)

15
 (

5%
)

H
ou

se
ho

ld
 C

ha
ra

ct
er

is
ti

cs

 
N

um
be

r 
of

 p
eo

pl
e 

in
 th

e 
ho

us
eh

ol
d,

 M
ea

n 
(S

D
)

6.
6 

(3
.6

)
6.

4 
(3

.4
)

6.
7 

(3
.8

)

 
Pe

rs
on

s 
liv

in
g 

w
ith

in
 5

0 
m

et
er

s,
 M

ea
n 

(S
D

)
46

.8
 (

29
.0

)
50

.1
 (

33
.3

)
53

.3
 (

35
.2

)

 
E

le
ct

ri
ci

ty
 a

cc
es

s,
 N

 (
%

)
17

1 
(3

3%
)

13
3 

(2
6%

)
32

 (
9%

)

 
Pr

im
ar

y 
co

ok
in

g 
lo

ca
tio

n,
 N

 (
%

)

 
 

Fu
lly

 o
ut

si
de

30
6 

(7
3%

)
29

6 
(6

8%
)

23
0 

(7
9%

)

 
 

Fu
lly

 e
nc

lo
se

d
96

 (
23

%
)

10
9 

(2
5%

)
46

 (
16

%
)

 
 

Se
m

i-
E

nc
lo

se
d

20
 (

5%
)

31
 (

7%
)

14
 (

5%
)

 
Se

co
nd

ar
y 

co
ok

in
g 

lo
ca

tio
n 

is
 f

ul
ly

 o
ut

si
de

, N
 (

%
)

76
 (

19
%

)
68

 (
18

%
)

35
 (

14
%

)

 
C

oo
ki

ng
 lo

ca
tio

n 
sh

ar
ed

 b
y 

an
ot

he
r 

fa
m

ily
, N

 (
%

)
25

6 
(5

0%
)

30
7 

(6
0%

)
18

5 
(5

2%
)

 
Se

pa
ra

te
 r

oo
m

 in
 h

ou
se

ho
ld

 d
ed

ic
at

ed
 to

 c
oo

ki
ng

, N
 (

%
)

23
4 

(4
5%

)
25

5 
(4

9%
)

14
4 

(4
1%

)

 
C

ha
rc

oa
l i

s 
us

ed
 f

or
 c

oo
ki

ng
, N

 (
%

)

 
 

Pr
im

ar
y 

fu
el

17
 (

3%
)

18
 (

4%
)

20
 (

6%
)

 
 

Se
co

nd
ar

y 
fu

el
27

3 
(5

3%
)

21
7 

(4
2%

)
17

6 
(5

0%
)

 
Pr

in
ci

pa
l m

et
ho

d 
fo

r 
ob

ta
in

in
g 

fi
re

w
oo

d,
 N

 (
%

)

 
 

G
at

he
r

47
6 

(9
3%

)
49

0 
(9

5%
)

31
0 

(8
7%

)

 
 

Pu
rc

ha
se

18
 (

4%
)

7 
(1

%
)

13
 (

4%
)

 
 

G
at

he
r 

an
d 

pu
rc

ha
se

13
 (

3%
)

11
 (

2%
)

21
 (

6%
)

 
So

m
eb

od
y 

in
 th

e 
ho

us
eh

ol
d 

sm
ok

es
 to

ba
cc

o 
pr

od
uc

ts
, N

 (
%

)
94

 (
18

%
)

11
0 

(2
1%

)
72

 (
20

%
)

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2021 September 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chillrud et al. Page 26

Ta
b

le
 3

.

D
es

cr
ip

tiv
e 

st
at

is
tic

s 
of

 v
al

id
 m

at
er

na
l a

nd
 c

hi
ld

 p
er

so
na

l e
xp

os
ur

e 
m

on
ito

ri
ng

 d
ep

lo
ym

en
ts

 d
ur

in
g 

G
R

A
PH

S.

M
at

er
na

l
C

hi
ld

St
ud

y 
P

er
io

d
C

O
1

P
M

2.
52

C
O

1

C
on

tr
ol

Im
pr

ov
ed

 
bi

om
as

s
L

P
G

C
on

tr
ol

Im
pr

ov
ed

 
bi

om
as

s
L

P
G

C
on

tr
ol

Im
pr

ov
ed

 
bi

om
as

s
L

P
G

B
as

el
in

e

 
H

ou
se

ho
ld

s3
38

0
36

3
25

9

 
M

ea
su

re
s4

38
0

36
3

25
9

 
[M

ed
ia

n 
(I

Q
R

)]
5

1.
17

 (
0.

62
 –

 
2.

09
)

1.
17

 (
0.

64
 –

 1
.9

4)
1.

30
 (

0.
70

 –
 

2.
13

)

 
[M

ea
n 

(S
D

)]
5

1.
49

 (
1.

2)
1.

47
 (

1.
20

)
1.

56
 (

1.
15

)

 
R

an
ge

0.
04

 –
 8

.4
6

0.
02

 –
 8

.1
9

0.
04

 –
 8

.2
3

P
os

t-
In

te
rv

en
ti

on

 
H

ou
se

ho
ld

s
49

5
50

6
34

7
35

6
32

1
20

2
39

5
40

5
28

3

 
M

ea
su

re
s5

17
34

17
51

11
67

57
8

50
4

29
7

68
5

71
9

49
9

 
[M

ed
ia

n 
(I

Q
R

)]
5

0.
82

 (
0.

37
 –

 
1.

65
)

0.
74

 (
0.

33
 –

 1
.4

7)
0.

52
 (

0.
20

 –
 

1.
16

)
67

 (
46

 –
 9

6)
67

 (
44

 –
 9

4)
44

 (
32

 –
 6

4)
0.

48
 (

0.
17

 –
 

1.
23

)
0.

51
 (

0.
17

 –
 

1.
10

)
0.

39
 (

0.
12

 –
 

0.
94

)

 
[M

ea
n 

(S
D

)]
5

1.
33

 (
2.

15
)

1.
14

 (
1.

84
)

0.
89

 (
2.

01
)

77
 (

44
)

73
 (

41
)

52
 (

28
)

1.
06

 (
1.

92
)

0.
98

 (
2.

15
)

0.
89

 (
1.

92
)

 
[R

an
ge

]
<

0.
01

–4
6.

36
<

0.
01

–3
9.

54
<

0.
01

–5
6.

01
5 

– 
31

7
2 

– 
41

4
6 

– 
17

8
<

0.
01

 –
 2

3.
56

<
0.

01
 –

 3
6.

93
<

0.
01

 –
 

29
.4

9

O
ve

ra
ll

 
H

ou
se

ho
ld

s
51

5
52

0
35

4
35

6
32

1
20

2
39

5
40

5
28

3

 
M

ea
su

re
s5,

6
21

14
21

14
14

26
57

8
50

4
29

7
68

3
71

6
49

9

 
M

ea
su

re
s 

pe
r 

pa
rt

ic
ip

an
t, 

M
ea

n
4.

68
4.

64
4.

51
1.

62
1.

57
1.

47
2.

05
2.

08
2.

05

 
D

ep
lo

ym
en

t L
en

gt
h 

(h
ou

rs
)7

 
M

ed
ia

n 
(I

Q
R

)
72

.3
 (

71
.0

–7
3.

7)
72

.0
 (

70
.7

–7
3.

6)
71

.7
 (

70
.5

–
73

.0
)

72
.1

 (
71

.1
–

73
.5

)
72

.3
 (

71
.3

–7
3.

9)
72

.1
 (

70
.6

–
72

.9
)

72
.4

 (
71

.2
–

73
.8

)
72

.2
 (

70
.9

–7
4.

0)
72

.1
 (

70
.7

–
73

.2
)

 
M

ea
n 

(S
D

)
72

.3
 (

4.
6)

72
.1

 (
4.

7)
71

.6
 (

3.
8)

71
.3

 (
5.

9)
72

.1
 (

8.
7)

71
.0

 (
5.

5)
72

.7
 (

4.
4)

72
.4

 (
4.

9)
72

.1
 (

4.
4)

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2021 September 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chillrud et al. Page 27
1 V

al
ue

s 
fo

r 
m

ed
ia

n,
 m

ea
n,

 a
nd

 r
an

ge
 r

ep
re

se
nt

 c
on

ce
nt

ra
tio

ns
 in

 p
ar

ts
 p

er
 m

ill
io

n 
(p

pm
).

2 V
al

ue
s 

fo
r 

m
ed

ia
n,

 m
ea

n,
 a

nd
 r

an
ge

 r
ep

re
se

nt
 c

on
ce

nt
ra

tio
ns

 in
 m

ic
ro

gr
am

s 
pe

r 
cu

bi
c 

m
et

er
 (

μg
/m

3 )
.

3 In
di

ca
te

s 
th

e 
nu

m
be

r 
of

 h
ou

se
ho

ld
s 

fo
r 

w
ho

m
 a

 v
al

id
 e

st
im

at
e 

w
as

 o
bt

ai
ne

d.

4 In
di

ca
te

s 
th

e 
nu

m
be

r 
of

 m
ea

su
re

s 
ob

ta
in

ed
. T

he
se

 m
ea

su
re

s 
yi

el
de

d 
a 

sm
al

le
r 

nu
m

be
r 

of
 e

st
im

at
es

 d
ue

 to
 in

st
ru

m
en

t c
o-

de
pl

oy
m

en
ts

.

5 Fi
gu

re
 S

5 
sh

ow
s 

th
e 

di
st

ri
bu

tio
ns

 o
f 

ba
se

lin
e 

an
d 

po
st

-i
nt

er
ve

nt
io

n 
ex

po
su

re
s 

fo
r 

M
at

er
na

l C
O

 a
nd

 P
M

2.
5 

an
d 

C
hi

ld
 C

O
 in

 b
ox

 a
nd

 v
io

lin
 p

lo
ts

.

6 T
he

 to
ta

l n
um

be
r 

of
 C

O
 e

xp
os

ur
e 

es
tim

at
es

 o
bt

ai
ne

d 
w

as
 5

 6
55

, h
ow

ev
er

, o
ne

 o
f 

th
e 

ho
us

eh
ol

ds
 d

id
 n

ot
 h

av
e 

an
 id

en
tif

ia
bl

e 
cl

us
te

r 
an

d 
th

er
ef

or
e 

is
 o

m
itt

ed
 f

ro
m

 a
ll 

cl
us

te
r-

sp
ec

if
ic

 a
na

ly
se

s 
an

d 
fi

gu
re

s.

7 A
s 

de
sc

ri
be

d 
in

 S
ec

tio
n 

2.
3,

 v
al

id
 d

ep
lo

ym
en

ts
 w

er
e 

tr
un

ca
te

d 
at

 4
8-

ho
ur

s 
in

 a
na

ly
si

s.

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2021 September 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chillrud et al. Page 28

Ta
b

le
 4

.

Su
m

m
ar

y 
of

 p
er

so
na

l e
xp

os
ur

e 
af

te
r 

in
te

rv
en

tio
n.

N
C

on
tr

ol
 (

m
ed

ia
n,

 I
Q

R
)

Im
pr

ov
ed

 B
io

m
as

s 
(m

ed
ia

n,
 

IQ
R

)
In

te
rv

en
ti

on
 e

ff
ec

t1 

(P
er

ce
nt

, 9
5%

 C
I)

L
P

G
 (

m
ed

ia
n,

 I
Q

R
)

In
te

rv
en

ti
on

 e
ff

ec
t1 

(P
er

ce
nt

, 9
5%

 C
I)

M
ot

he
r 

C
O

 (
pp

m
)

A
ll

46
52

0.
82

 (
0.

37
 –

 1
.6

5
0.

74
 (

0.
33

 –
 1

.4
7)

−
10

 (
−1

8,
−1

)
0.

52
 (

0.
20

 –
 1

.1
6)

−4
2 

(−
48

,−
35

)

H
ar

m
at

ta
n

18
94

0.
76

 (
0.

33
 –

 1
.6

9)
0.

78
 (

0.
32

 –
 1

.5
8)

−
3 

(−
17

,1
2)

0.
56

 (
0.

20
 –

 1
.2

3)
−3

5 
(−

45
,−

22
)

N
on

-H
ar

m
at

ta
n

27
58

0.
86

 (
0.

38
 –

 1
.6

1)
0.

73
 (

0.
34

 –
 1

.4
1)

−1
6 

(−
25

,−
5)

0.
49

 (
0.

19
 –

 1
.0

7)
−4

7 
(−

53
,−

39
)

C
hi

ld
 C

O
 (

pp
m

)

A
ll

19
03

0.
48

 (
0.

17
 –

 1
.2

3)
0.

51
 (

0.
17

 –
 1

.1
0)

−
6 

(−
21

,1
1)

0.
39

 (
0.

12
 –

 0
.9

4)
−2

2 
(−

35
,−

6)

H
ar

m
at

ta
n

59
8

0.
47

 (
0.

16
 –

 1
.2

1)
0.

39
 (

0.
12

 –
 1

.0
1)

−
16

 (
−

37
,1

4)
0.

38
 (

0.
14

 –
 0

.9
4)

−
5 

(−
33

,3
3)

N
on

-H
ar

m
at

ta
n

13
03

0.
48

 (
0.

18
 –

 1
.2

7)
0.

56
 (

0.
21

 –
 1

.1
3)

−
1 

(−
19

,2
1)

0.
42

 (
0.

12
 –

 0
.9

4)
−2

8 
(−

42
,−

11
)

M
ot

he
r 

P
M

2.
5 

(μ
g/

m
³)

A
ll

13
79

67
 (

46
 –

 9
7)

67
 (

44
 –

 9
4)

−
4 

(−
12

,3
)

45
 (

32
 –

 6
5)

−3
2 

(−
38

,−
26

)

H
ar

m
at

ta
n

36
5

80
 (

57
 –

 1
06

)
78

 (
59

 –
 9

9)
1 

(−
12

,1
1)

72
 (

56
 –

 9
6)

−
11

 (
−

22
,1

)

N
on

-H
ar

m
at

ta
n

10
14

63
 (

41
 –

 8
7)

61
 (

40
 –

 9
0)

−
2 

(−
11

,7
)

38
 (

29
 –

 5
3)

−3
7 

(−
43

,−
31

)

1 E
st

im
at

es
 a

re
 d

er
iv

ed
 f

ro
m

 th
e 

m
od

el
s 

de
sc

ri
be

d 
in

 E
qu

at
io

n 
1 

fo
r 

Im
pr

ov
ed

 B
io

m
as

s 
or

 L
PG

, r
es

pe
ct

iv
el

y.
 E

st
im

at
es

 r
ef

er
 to

 th
e 

pe
rc

en
t d

if
fe

re
nc

e 
in

 m
ea

n 
ex

po
su

re
 a

cr
os

s 
th

e 
st

ud
y 

ar
m

 d
ur

in
g 

th
e 

po
st

-
in

te
rv

en
tio

n 
pe

ri
od

.

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2021 September 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chillrud et al. Page 29

Ta
b

le
 5

.

E
st

im
at

es
 o

f 
th

e 
ef

fe
ct

 o
f 

th
e 

co
ok

in
g 

in
te

rv
en

tio
ns

 o
n 

m
at

er
na

l 4
8-

ho
ur

 C
O

 e
xp

os
ur

e 
us

in
g 

di
ff

er
en

t m
od

el
 s

pe
ci

fi
ca

tio
ns

, e
xp

re
ss

ed
 a

s 
a 

pe
rc

en
t c

ha
ng

e 

in
 m

ea
n 

ex
po

su
re

.

N
D

if
fe

re
nc

e
95

%
 C

I

B
ef

or
e 

an
d 

A
ft

er
1

 
C

on
tr

ol
2 

11
4

−3
2%

(−
49

%
, −

24
%

)

 
Im

pr
ov

ed
 b

io
m

as
s

2 
11

4
−3

7%
(−

44
%

, −
30

%
)

 
L

PG
1 

42
6

−6
4%

(−
69

%
, −

59
%

)

D
if

fe
re

nc
e-

in
-D

if
fe

re
nc

es
2

5 
65

4

 
Im

pr
ov

ed
 b

io
m

as
s

−
8%

(−
21

%
, 8

%
)

 
L

PG
−4

7%
(−

56
%

, −
36

%
)

1 E
st

im
at

es
 a

re
 d

er
iv

ed
 f

ro
m

 th
e 

m
od

el
s 

de
sc

ri
be

d 
in

 E
qu

at
io

n 
2,

 w
hi

ch
 a

re
 c

ar
ri

ed
 o

ut
 f

or
 e

ac
h 

st
ud

y 
ar

m
 in

de
pe

nd
en

tly
.

2 E
st

im
at

es
 a

re
 d

er
iv

ed
 f

ro
m

 m
od

el
s 

de
sc

ri
be

d 
in

 E
qu

at
io

n 
3 

(p
ri

m
ar

y 
sp

ec
if

ic
at

io
n)

, w
hi

ch
 le

ve
ra

ge
 a

ll 
da

ta
 in

cl
ud

ed
 in

 th
e 

st
ud

y 
an

d 
co

ns
tit

ut
e 

ou
r 

be
st

 e
st

im
at

e 
of

 th
e 

ef
fe

ct
 o

f 
cl

ea
n 

co
ok

in
g 

in
te

rv
en

tio
ns

 
on

 a
ir

 p
ol

lu
tio

n 
ex

po
su

re
. I

n 
th

is
 a

pp
ro

ac
h,

 th
e 

ch
an

ge
 in

 b
ef

or
e 

an
d 

af
te

r 
ch

an
ge

 in
 e

xp
os

ur
e 

am
on

g 
th

e 
co

nt
ro

l a
rm

 is
 it

se
lf

 th
e 

re
fe

re
nc

e 
fo

r 
th

e 
di

ff
er

en
ce

s 
ob

se
rv

ed
 in

 th
e 

in
te

rv
en

tio
n 

ar
m

s.

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2021 September 03.


	Abstract
	Introduction
	Methods
	Study context
	Exposure measurements
	Rationale
	Monitoring plan
	Carbon monoxide monitoring
	Fine particulate matter monitoring

	Identifying valid air pollution exposure estimates
	Carbon monoxide exposure validation
	Fine particulate matter exposure validation

	Statistical Analysis

	Results
	Exposure measurements and validation
	Summarizing maternal and child air pollution exposure
	Estimating the effect of clean cooking interventions on personal air pollution exposure
	Effect of interventions on exposure over time
	Assessment of population density and exposure

	Discussion
	Limitations

	Conclusions
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.

