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Abstract

Objectives—To develop an objective quantitative method to characterize and visualize 

meningioma-brain adhesion using MR elastography (MRE)-based slip interface imaging (SII).

Methods—This retrospective study included 47 meningiomas (training dataset: n = 35; testing 

dataset: n = 12) with MRE/SII examinations. Normalized octahedral shear strain (NOSS) values 

were calculated from the acquired MRE displacement data. The change in NOSS at the tumor 

boundary (ΔNOSSbdy) was computed, from which a 3D ΔNOSSbdy map of the tumor surface was 

created and the probability distribution of ΔNOSSbdy over the entire tumor surface was calculated. 

Statistical features were calculated from the probability histogram. After eliminating highly 

correlated features, the capability of the remaining feature for tumor adhesion classification was 

assessed using a one-way ANOVA and ROC analysis.

Results—The magnitude and location of the tumor adhesion can be visualized by the 

reconstructed 3D ΔNOSSbdy surface map. The entropy of the ΔNOSSbdy histogram was 
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significantly different between adherent tumors and partially/completely non-adherent tumors in 

both the training (AUC: 0.971) and testing datasets (AUC: 0.900). Based on the cutoff values 

obtained from the training set, the ΔNOSSbdy entropy in the testing dataset yielded an accuracy of 

0.83 for distinguishing adherent versus partially/non-adherent tumors, and 0.67 for distinguishing 

non-adherent versus completely/partially adherent tumors.

Conclusions—SII-derived ΔNOSSbdy values are useful for quantification and classification of 

meningioma-brain adhesion. The reconstructed 3D ΔNOSSbdy surface map presents the state and 

location of tumor adhesion in a “clinician-friendly” manner, and can identify meningiomas with a 

high risk of adhesion to adjacent brain parenchyma.
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Introduction

Meningiomas are commonly treated by resective surgery and complete resection is the 

preferred treatment. In addition to the surgeon’s experience and ability, the success of tumor 

resection commonly depends on tumor characteristics such as tumor size, consistency, and 

adherence to the adjacent brain parenchyma or other critical structures. The adhesion of 

meningiomas to adjacent normal yet critical tissue has long been recognized to impact the 

rate of surgical complications and to influence surgical aggressiveness [1-3]. Adhesion can 

lead to longer operative times, increase the risk of stroke, or result in permanent neurologic 

deficits, especially when the meningioma location involves eloquent areas of the cortex or 

cranial nerves [4]. Therefore, preoperative imaging aimed at identifying tumor adhesion 

could allow better risk assessment, alter the surgical approach, or even change treatment to a 

non-invasive technique such as radiotherapy/radiosurgery.

Since magnetic resonance imaging (MRI) is widely used in the surgical planning and 

evaluation of meningiomas, many MRI features have been proposed to predict the adherence 

of a tumor to the brain surface, such as the peritumoral cerebrospinal fluid (CSF) cleft [5, 6], 

peritumoral edema [7, 8], tumor rim pattern [9], and tumor vascularity [7, 8]. However, these 

static methods do not directly measure tumor mobility relative to adjacent brain parenchyma 

(adhesion), but rather measure the indirect consequences of tumor adhesion. A strategy to 

overcome this limitation lies in the ability to noninvasively assess the motion of the brain 

tumor relative to the brain parenchyma. A new imaging technique, named slip interface 

imaging (SII), has been recently developed to determine tumor-brain adhesion by directly 

assessing the relative motion between the tumor and the adjacent brain parenchyma with the 

introduction of gentle external dynamic vibration [10, 11]. Another MRI-based technique 

that subtracts T2-weighted images in systolic and diastolic phases of the cardiac cycle has 

also been developed to evaluate meningioma-brain adhesion by visualizing the CSF 

pulsation at the brain/tumor interface [12]. However, the cardiac cycle-dependent motion 

amplitude of MRI detectable CSF flow varies in different intracranial locations and is 

minimal toward the vertex. SII, in contrast, uses extrinsically applied mechanical vibrations 

at a much higher frequency and its measurement approach is more sensitive to micron-range 

shear motion throughout the brain.

Yin et al. Page 2

Eur Radiol. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SII is based on the principles of brain MR elastography (MRE), which is performed by 

gently vibrating the head with a mechanical driver and simultaneously imaging the brain 

tissue displacements using a phase-contrast type MRI sequence [13]. Previous SII work has 

defined the presence of a slip interface when a large shear strain (i.e., normalized octahedral 

shear strain, NOSS) is detected as two adjacent surfaces move relative to each other [11]. A 

hyper-intense NOSS tumor interface is the characteristic of a slip boundary, where a tumor is 

not adherent to the adjacent brain parenchyma. Conversely, a high NOSS is not seen along 

the tumor interface when the tumor is tightly bonded to the adjacent tissue. Although SII 

characterization of tumor adhesion has been shown to agree well with intraoperative 

assessments, the evaluation method is subjective and relies on the visual perception of the 

NOSS signal at the tumor-brain interface compared to the adjacent parenchyma [11]. 

Therefore, objective quantitative characterization of brain tumor adhesion is needed, as it 

will contribute to the establishment of a standard method for grading tumor adherence and 

improve patient management. Moreover, the SII results are displayed in 2D images, which 

require interpolation to translate into a 3D representation. A 3D direct visualization of tumor 

adhesion would further assist precise adhesion localization for surgical planning.

Toward these goals, we have developed a new methodology based on SII in which the 

change of NOSS across the tumor boundary was used to create a quantitatively objective 

measurement to discriminate between adhesion groups. A 3D tumor surface map was also 

generated to represent the location and magnitude of tumor adhesion. The aim of this study 

was to evaluate the effectiveness of this newly developed quantitative method for analyzing 

and visualizing the SII data of tumor adherence.

Materials and methods

Patients

The research was approved by our Institutional Review Board, and all patients provided 

written informed consent. Between October 2013 and October 2019, patients that met all the 

following criteria were identified: (a) patients had brain MRE; (b) tumors were 

histopathologically confirmed as meningiomas; (c) surgical resection was performed within 

7 days after the MRE examination. Exclusion criteria were as follows: (a) recurrent tumors; 

(b) intraosseous tumors; (c) tumors with no surgical information about their adhesion to 

surrounding structures; (d) small tumors with maximum tumor diameter <2.5 cm; and (e) 

unsuccessful MRE acquisitions. The following information was collected for all patients: 

sex and age at surgery, tumor size in maximum dimension, tumor location (convexity, falx/

parasagittal, and skull base tumors), and tumor WHO grade [14].

Surgical grading of meningioma–brain adhesion

Surgical findings of tumor adhesion to the adjacent brain tissue were evaluated by one 

neurosurgeon (J.J.V.G., with 15 years of experience) blinded to SII results as described in 

prior work [11]. The degree of tumor adhesion was grouped into complete adhesion, partial 

adhesion, and no adhesion. The definitions were as follows: (1) complete adhesion—

separating the tumor from the adjacent brain was difficult and dissection had to be 

performed in a subpial fashion in more than 2/3 of the total tumor-cortex interface. (2) No 
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adhesion—a clear surgical plane was found in more than 2/3 of the surface between the 

tumor capsule and brain surface. (3) Partial adhesion—a clear surgical plane was partially 

lost where the pial membrane was adherent to the tumor in more than 1/3 and less than 2/3 

of the interface.

SII acquisition

SII is based on MRE acquisitions using a single-shot, flow-compensated, spin-echo (SE), 

echo-planner-imaging (EPI) MRE pulse sequence performed on 3-T MRI scanners [11]. 

Fourteen meningioma patients were scanned using the GE whole-body 3-T HDxt system 

(GE Healthcare); 16 patients were scanned using the GE Discovery whole-body 3-T MR750 

system (GE Healthcare); and 16 patients were scanned on a recently developed high-

performance compact 3-T scanner [15, 16]. All scans were acquired with standard 8-channel 

receive-only head coils. Briefly, low-amplitude mechanical vibrations at 60 Hz were 

introduced into the brain with a soft, pillow-like passive driver placed underneath the 

subject’s head (Fig. 1(a)). The three-dimensional brain motion was encoded into the phase 

of the MR signal with the following imaging parameters: repetition time (TR) / echo time 

(TE) = 3600/64.3 ms for the HDxt scanner; TR/TE = 4000/57.3 ms for the MR750 scanner; 

TR/TE = 4000/58.7 ms for the compact 3 T scanner; field of view (FOV) = 24 cm; 80 × 80 

image acquisition matrix reconstructed to 128 × 128; 48 continuous axial slices with a slice 

thickness of 3 mm; 2xASSET acceleration; 8 phase offsets sampled over one period of the 

60 Hz motion; 6 MRE motion encoding directions with ±x, ±y, ±z.

Anatomical image acquisition

A 3-dimensional T1-weighted (T1W) image was also collected. On the HDxt scanner, the 

T1W image was acquired with an inversion recovery-prepared spoiled gradient echo (IR-

SPGR) pulse sequence with the following parameters: sagittal orientation; superior-inferior 

frequency-encoding direction; TR/TE = 7.0/2.8 ms; 11° flip angle; inversion time = 400 ms; 

FOV = 27 cm; 256 × 256 acquisition matrix; 1.75× array spatial sensitivity encoding 

technique acceleration; and 196 slice locations with 1.2-mm spacing. On the MR750 scanner 

and the compact 3-T scanner, the T1W image was acquired with a magnetization-prepared 

rapid gradient echo (MP-RAGE) pulse sequence with the following parameters: sagittal 

orientation; superior-inferior frequency encoding direction; TR/TE = 7.4/3.0 ms; 8° flip 

angle; inversion time = 900 ms; FOV = 26 cm; 256 × 256 acquisition matrix; and 166 slice 

locations with 1.2-mm spacing.

Brain and tumor segmentation

All tumors were manually segmented by manually delineating the tumor boundaries on each 

slice by an experienced radiologist (X.L., with 20 years of experience) who was blinded to 

the clinical information of the patients using an in-house developed Matlab-based program. 

The boundaries were agreed upon by one other investigator (Z.Y., an MRI scientist with 10 

years of experience in MRE) at the time of segmentation. Brain masks were computed by 

segmentation of the T1W images to produce probabilistic maps of gray matter, white matter, 

and CSF using SPM5 [17]. A brain mask was defined by voxels in which the gray matter 

content plus the white matter content was greater than the CSF content. The T1W image, 

brain mask, and tumor mask were then registered and resliced to the MRE space. Trilinear 
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interpolation was used for resampling the T1W image and the brain and tumor masks were 

resampled with nearest-neighbor interpolation.

Quantitative SII analysis and 3D visualization

For each patient, the NOSS map was calculated from the unwrapped phase image as 

described in prior work [11]. The phase data was unwrapped with an iterative 3D graph cuts-

based unwrapping algorithm [18, 19]. The OSS was calculated for each phase offset [20] 

and a final OSS map was calculated as the mean of the eight sets of OSS data. The NOSS 

map was generated by normalizing OSS to the combined amplitude (square root of the sum 

of squares) of the first harmonic of the complex x/y/z-axis shear waves.

The change in NOSS at the tumor boundary (ΔNOSSbdy) was calculated from the tumor 

periphery as illustrated in Fig. 1. First, with morphological operations (erosion and dilation) 

in 3D, a 3-pixel wide tumor shell was created, consisting of the one-pixel layer just outside 

the tumor mask and the two outermost pixel layers inside the tumor mask. A brain shell was 

also created, consisting of the outermost three pixel layers inside the brain mask. Because 

the focus is on the interface between the tumor and brain surface, the non-brain interface 

regions were excluded from the tumor shell by excluding the intersection of the tumor shell 

and the brain shell.

The following processing was performed in 2D using an in-house developed Matlab-based 

program. For each slice containing the tumor, lines orthogonal to the tumor surface were 

created at each contour point (only half of these normal lines are shown in Fig. 1d for 

illustration purposes). The absolute values of the directional derivative of the NOSS values 

along these lines were calculated for the three points in the tumor shell, using finite 

differences. The ΔNOSSbdy value at each contour point was taken to be the largest of these 

three values, to allow for possible errors in segmentation. The ΔNOSSbdy values were 

calculated for the entire tumor surface, allowing for the creation of a 3D ΔNOSSbdy map of 

the tumor surface (Fig. 1f). The 3D surface map can also be visualized using a Hammer 

projection in which spatial ratios are maintained (Fig. 1g) [21]. A non-adherent region with 

a visible NOSS contour is expected to have a large ΔNOSSbdy value as it represents the 

NOSS variation of voxels across the tumor boundary.

Statistical analysis

Statistical analyses were performed using JMP software (v. 14.1.0, SAS Institute). 

Continuous variables were expressed as mean ± one standard deviation (SD); categorical 

variables were reported as counts or percentages. All tests were 2 sided andp <0.05 was 

considered statistically significant. To build and validate the predictive model using 

ΔNOSSbdy, the enrolled patients were split semi-randomly (complete:partial:no adhesion 

ratio retained) into two subsets (3:1 ratio): 35 for training and 12 for testing. The one-way 

ANOVA test (for continuous variables) and chi-square test (for categorical variables) were 

used to assess differences in demographic and clinical data within and between the training 

and testing sets.

To compare ΔNOSSbdy values among three adhesion groups, the probability distribution of 

ΔNOSSbdy over the entire tumor surface was constructed by quantizing the ΔNOSSbdy 
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values into 40 bins spanning the range from 0 to 0.4. We chose 5 commonly used statistics 

features to describe the ΔNOSSbdy distribution at the tumor boundary: mean, standard 

deviation, skewness, kurtosis, and entropy. To test for significant group-wise differences 

while controlling for nuisance variables, a linear model was then fit to each ΔNOSSbdy 

feature with predictors including age, sex, scanner system, and group. The ΔNOSSbdy 

features were then corrected for age, sex, and scanner system.

In the training cohort, to eliminate the redundant features, we removed highly correlated 

features by calculating the absolute correlation coefficient (ACC) between the features with 

Spearman’s rank correlation. If two variables had a strong correlation (ACC > 0.7), we 

calculated the mean absolute correlation of each variable and kept only the variable with the 

smallest mean absolute correlation, removing the variable with the larger absolute 

correlation. The discrimination ability of the remaining age-/sex-/scanner-corrected features 

(mean and entropy) to classify tumor adhesion was investigated by using a one-way ANOVA 

with post hoc Steel-Dwass multiple comparisons. For comparison, the mean and entropy of 

absolute NOSS values calculated from the tumor margin (also corrected for age, sex, and 

scanner system) were also analyzed (see Appendix-E1). To further evaluate the classification 

ability of the ΔNOSSbdy feature, the receiver operating characteristics (ROC) curves were 

derived in both the training and testing cohorts. The optimal cutoff value of the ΔNOSSbdy 

feature determined by the ROC curve in the training cohort was applied to the testing set to 

derive the accuracy. Area under the curve (AUC) and diagnostic accuracy to distinguish the 

degree of adhesion was derived in both the training dataset and testing dataset.

Results

Demographic and clinical characteristics of patients

Between October 2013 and October 2019, a total of 60 patients with a meningioma were 

diagnosed via histopathology. Among these patients, 14 patients were excluded because of 

recurrent tumors (n = 2), intraosseous tumors (n = 4), tumors with no surgical information 

about their adhesion to surrounding structures (n = 3), small tumors with maximum tumor 

diameter < 2.5 cm (n = 3), and unsuccessful MRE acquisition owing to large patient motion 

(n = 1) and mechanical failure (n = 1). A total of 47 meningiomas in 46 patients (one patient 

had two meningiomas) were included in the study (Fig. 2).

The patients’ demographic and clinical data in the training and testing cohorts are presented 

in Table 1. The mean age of patients was 59.76 (age range of 38–80 years), 35 of which 

(74%) were female. It was determined at surgery that the interface between the tumor 

capsule and the adjacent brain parenchyma in the 47 cases showed complete adhesion in 8 

(17%), partial adhesion in 16 (34%), and no adhesion in 23 (49%). No significant 

differences were found between the training and testing datasets for all demographic and 

clinical characteristics. Age, sex, tumor size, and tumor location did not correlate with 

meningioma adhesiveness in both training and testing datasets. The correlation between the 

WHO grade and adhesion groups was significant in the training dataset (p = 0.01). All WHO 

grade II tumors in the training set (n = 6) were found to be adherent to the brain parenchyma 

in more than 1/3 of the tumor interface, suggesting that WHO grade II meningiomas are 

more likely to be adherent tumors. However, by dividing into histological subtypes, no 
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significant difference was observed between tumor histological subtype and adhesion (p 
>0.1).

ΔNOSSbdy features

Figure 3 shows representative probability histograms of ΔNOSSbdy values from one 

completely adherent, one partially adherent, and one non-adherent meningioma. Note that 

the distributions change with the degree of adhesion; the histograms broaden and shift 

toward the right from complete adhesion to no adhesion, implying both an increase in 

ΔNOSSbdy and its variation in the tumor periphery with decreasing adhesion. Among the 

five histogram parameters (mean, standard deviation, skewness, kurtosis, and entropy) after 

correction for age, sex, and scanner system, ACC tests were performed on each pair of 

parameters to remove highly correlated features in the training group. After this analysis, 2 

histogram parameters remained (mean and entropy). Spearman’s correlation coefficients are 

summarized in Table 2.

Relationships between ΔNOSSbdy features and tumor surgical grading

The entropy of the probability histogram of ΔNOSSbdy (Fig. 4) proved to be significant for 

distinguishing completely adherent meningiomas from partially (p = 0.0089) and non-

adherent meningiomas (p = 0.0015) in the training dataset. No significant difference was 

found between the partially and non-adherent tumors. The mean of the probability histogram 

did not show significant inter-group differences.

Predictive Performance of ΔNOSSbdy Features

Figure 5 a and b show the ROC analyses of tumor adhesion prediction using the entropy of 

the probability histogram of ΔNOSSbdy in both training and testing cohorts. The entropy has 

excellent predictive performance with an AUC of 0.971 (95% CI: 0.924–1.108) in the 

training set and an AUC of 0.900 (95% CI: 0.815–0.985) in the testing set for distinguishing 

complete adhesion versus partial/no adhesion. The AUC was 0.765 (95% CI: 0.645–0.885) 

and 0.722 (95% CI: 0.595–0.849) for distinguishing no adhesion versus partial/complete 

adhesion in the training and testing sets, respectively. Based on the cutoff value obtained 

from the training set (3.48 for distinguishing complete versus partial/no adhesion), the 

entropy of ΔNOSSbdy yielded an accuracy of 0.91 in the training set and 0.83 in the testing 

set. The cutoff (3.72) for distinguishing no versus complete/partial adhesion yielded an 

accuracy of 0.71 and 0.67 for the training and testing sets, respectively. The ΔNOSSbdy 

entropy for each patient in the training and testing cohorts sorted by the classification of 

tumor adhesion is depicted in Fig. 5 c and d.

Illustrative cases

Examples from the SII evaluations are presented in Fig. 6 that include 3D surface maps and 

the corresponding 2D Hammer projections of ΔNOSSbdy from patients with completely, 

partially, and non-adherent meningiomas. A small ΔNOSSbdy indicates less NOSS change at 

the tumor periphery, therefore a more adhesive tumor. Compared to the 2D slice, the 3D 

display of ΔNOSSbdy on the tumor surface enables better visualization of the magnitude and 

location of the tumor adhesion.
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Discussion

In this study, we have developed a new methodology based on SII to quantify and visualize 

tumor adhesion. NOSS data were utilized to build a quantitative metric (i.e., ΔNOSSbdy) 

from the periphery pixels at the tumor margin. A color-encoded ΔNOSSbdy surface map of 

the tumor can be generated to enable the 3D visualization of the tumor adhesion. A 

ΔNOSSbdy-based statistical feature (i.e., entropy) was constructed and was found to 

successfully distinguish completely adherent tumors, which require tedious dissection away 

from surrounding tissues, from non-adherent tumors.

Meningiomas arise from arachnoidal cap cells and most are well isolated from the brain 

surface. However, some meningiomas (such as type II atypical) may behave invasively, 

leading to adherence with adjacent brain parenchyma. We found that the WHO grading is 

significantly correlated with the surgical adhesion grading in the training dataset, but not in 

the testing set. When dividing into different subtypes, no significant differences were found. 

We believe this may be due to the small sample size, and uneven distribution of adhesions 

groups and pathological subtype groups.

Evaluation of tumor-brain adhesion with SII is based on the dynamic relationship between 

the tumor and adjacent brain parenchyma motion while undergoing vibration introduced 

from an external source. In previous studies, a qualitative assessment of the presence of a 

hyper-intense NOSS contour was performed based on the relative contrast within the image 

[11]. This can be performed directly from the scanner as the first evaluation of tumor 

adhesion by neuroradiologists. However, because of its qualitative nature, NOSS has limited 

use when it comes to quantification. We have demonstrated that the absolute values of NOSS 

did not show a significant difference between the three adhesion groups (Figure A in 

Appendix). Although NOSS has been normalized to eliminate wave amplitude variations at 

the interface within each patient, its value may still vary between subjects due to differences 

in the head-driver mechanical coupling. Therefore, it is important to develop another metric 

that could provide predictive value in the quantification of tumor adhesion in addition to the 

visual inspection. As a result, ΔNOSSbdy was developed to reduce the within-subject 

variation by calculating the maximum change of NOSS across the tumor surface. ΔNOSSbdy 

values thus quantify the slip-induced change of shear strain and its distribution reflects 

different adhesion patterns at the tumor periphery.

We have found that a histogram feature, the entropy of ΔNOSSbdy over the entire tumor 

surface, is an important index to quantify the tumor adhesion. In previous work with a visual 

inspection, NOSS correlated well with the etermination of partial and no adhesion [11]. In 

our study, the ability of ΔNOSSbdy entropy in distinguishing between partial and no 

adhesion is limited. This may be partially due to the different sample sizes, and partially due 

to the qualitative nature of our reference standard and visual inspection, where the current 

overall results of the tumor adhesion are determined by the surgeon’s impression, so the 

evaluations were generally descriptive. Moreover, brain tumor resection is performed piece-

by-piece in a small operation field, making it difficult at times to accurately quantify the 

percentage of tumor adhesion. It is also interesting to find that there is no difference in the 

Yin et al. Page 8

Eur Radiol. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



histogram means between adhesion groups. This may be due to the heterogeneity of the 

adhesion across the tumor surface within each group.

The grade of adhesion can be heterogeneous across the tumor surface. With a 2D 

representation, the neurosurgeon and neuroradiologist routinely rely on the 2D images to 

create a 3D mental image of the lesion and its surrounding structures. However, 2D images 

cannot accurately convey the complexities of human anatomy and hence interpretation of 

complex anatomy in 2D images requires training and experience. Non-experienced 

individuals may have difficulty integrating the 3D anatomy or adjusting to the variabilities in 

3D space. The 3D surface map of ΔNOSSbdy and its Hammer projection demonstrated both 

the anatomical and adhesive relationship between the tumor and the surrounding brain 

tissue. This approach could facilitate preoperative adhesion localization as well as patient-

specific planning, and together with navigation, potentially provide the surgeon with 

interactively displayed 3D visual information about the tumor adhesion during surgery.

Our study has some limitations. First, the ΔNOSSbdy calculation is highly dependent on 

accurate tumor segmentation. In this study, the tumors were segmented manually, which is 

tedious and time-consuming. Utilizing an automated or semi-automated tumor segmentation 

tool may increase the precision of tumor boundary demarcation. As state-of-the-art 

computerized segmentation is introduced into clinical practice, SII could be integrated into 

daily clinical practice for presurgical 3D planning and intraoperative navigation during 

routine neurosurgical procedures. Second, the current EPI-based MRE pulse sequence is 

relatively low-resolution and prone to image distortion caused by local susceptibility-

induced B0 in homogeneities, which may distort the displacement field near the tumor 

boundary. This hinders the ability to detect tumor adhesion with other critical structures 

(such as cranial nerves or vessels) especially near a bone interface such as the skull base. 

This could be addressed in future studies by acquiring high-resolution distortion-free MRE 

images with multiband DIADEM-MRE [22]. In addition, the current processing only 

calculates ΔNOSSbdy values in-plane. This may lead to loss of spatial complexity in the slice 

direction. This could be addressed in future work by defining the center of the mass for the 

tumor and then calculating the 3D normal lines to the tumor surface. Finally, this study was 

retrospective and included only a relatively small number of meningiomas as brain MRE is 

not widely available in clinical practice due to the required specialized hardware.

Despite these limitations, ΔNOSSbdy has demonstrated potential usefulness in providing 

surgeons with the degree of tumor-brain adhesion preoperatively. This technique has the 

potential to be widely applicable to target the adhesive relationships between all tumors and 

their surrounding structures. With the increasing evidence and technical development, 

ΔNOSSbdy could contribute to the establishment of a standard method for grading tumor 

adherence and facilitate the clinical evaluation of tumor adhesion preoperatively.

Conclusion

In conclusion, this study demonstrated that SII-derived ΔNOSSbdy values are useful for 

quantification and classification of meningioma-brain adhesion. The reconstructed 3D 

ΔNOSSbdy surface map presents the state and location of tumor adhesion in a 
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comprehensible, “clinician-friendly” manner. This technology can be used to identify 

meningiomas that have a high risk of adhesion with the adjacent brain parenchyma.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

ACC Absolute correlation coefficient

EPI Echo planner imaging

FOV Field of view

IR-SPGR Inversion recovery-prepared spoiled gradient echo

MP-RAGE Magnetization-prepared rapid gradient echo

MRE Magnetic resonance elastography

NOSS Normalized octahedral shear strain

OSS Octahedral shear strain

SE Spin echo

SII Slip interface imaging

TE Echo time

TR Repetition time

References

1. Sindou MP, Moussa A (1998) Most intracranial meningiomas are not cleavable tumors: anatomic-
surgical evidence and angiographic predictibility. Neurosurgery 42:476–480 [PubMed: 9526980] 

2. Little KM, Friedman AH, Sampson JH, Wanibuchi M, Fukushima T (2005) Surgical management of 
petroclival meningiomas: defining resection goals based on risk of neurological morbidity and 
tumor recurrence rates in 137 patients. Neurosurgery 56:546–559 [PubMed: 15730581] 

3. Ouyang T, Zhang N, Wang L, Li Z, Chen J (2015) Sphenoid wing meningiomas: surgical strategies 
and evaluation of prognostic factors influencing clinical outcomes. Clin Neurol Neurosurg 134:85–
90 [PubMed: 25974397] 

4. Ottenhausen M, Rumalla K, Younus I, Minkowitz S, Tsiouris AJ, Schwartz TH (2018) Predictors of 
postoperative motor function in rolandic meningiomas. J Neurosurg. 10.3171/2017. 
12.JNS172423:1–6

5. Takeguchi T, Miki H, Shimizu T et al. (2003) Evaluation of the tumor-brain interface of intracranial 
meningiomas on MR imaging including FLAIR images. Magn Reson Med Sci 2:165–169 [PubMed: 
16222110] 

Yin et al. Page 10

Eur Radiol. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. Thenier-Villa JL, Alejandro Galárraga Campoverde R, Ramón De La Lama Zaragoza A, Conde 
Alonso C (2017) Predictors of morbidity and cleavage plane in surgical resection of pure convexity 
meningiomas using cerebrospinal fluid sensitive image subtraction magnetic resonance imaging. 
Neurol Med Chir (Tokyo) 57:35–43

7. Alvernia JE, Sindou MP (2004) Preoperative neuroimaging findings as a predictor of the surgical 
plane of cleavage: prospective study of 100 consecutive cases of intracranial meningioma. J 
Neurosurg 100:422–430 [PubMed: 15035277] 

8. İldan F, Tuna M, Göcer AP et al. (1999) Correlation of the relationships of brain—tumor interfaces, 
magnetic resonance imaging, and angiographic findings to predict cleavage of meningiomas. J 
Neurosurg 91:384–390 [PubMed: 10470811] 

9. Enokizono M, Morikawa M, Matsuo T et al. (2014) The rim pattern of meningioma on 3D FLAIR 
imaging: correlation with tumor-brain adhesion and histological grading. Magn Reson Med Sci 
13:251–260 [PubMed: 25167879] 

10. Yin Z, Glaser KJ, Manduca A et al. (2015) Slip interface imaging predicts tumor-brain adhesion in 
vestibular schwannomas. Radiology 277:507–517 [PubMed: 26247776] 

11. Yin Z, Hughes JD, Trzasko JD et al. (2017) Slip interface imaging based on MR-elastography 
preoperatively predicts meningioma–brain adhesion. J Magn Reson Imaging 46:1007–1016 
[PubMed: 28194925] 

12. Yamada S, Taoka T, Nakagawa I et al. (2015) A magnetic resonance imaging technique to evaluate 
tumor–brain adhesion in meningioma: brain-surface motion imaging. World Neurosurg 83:102–
107 [PubMed: 23403345] 

13. Yin Z, Romano AJ, Manduca A, Ehman RL, Huston JI (2018) Stiffness and beyond: what MR 
elastography can tell us about brain structure and function under physiologic and pathologic 
conditions. Top Magn Reson Imaging 27:305–318 [PubMed: 30289827] 

14. Louis DN, Perry A, Reifenberger G et al. (2016) The 2016 World Health Organization 
Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131:803–
820 [PubMed: 27157931] 

15. Tan ET Lee SK, Weavers PT et al. (2016) High slew-rate head-only gradient for improving 
distortion in echo planar imaging: preliminary experience. J Magn Reson Imaging 44:653–664 
[PubMed: 26921117] 

16. Foo TKF, Laskaris E, Vermilyea M et al. (2018) Lightweight, compact, and high-performance 3T 
MR system for imaging the brain and extremities. Magn Reson Med 80:2232–2245 [PubMed: 
29536587] 

17. Vemuri P, Gunter JL, Senjem ML et al. (2008) Alzheimer’s disease diagnosis in individual subjects 
using structural MR images: validation studies. Neuroimage 39:1186–1197 [PubMed: 18054253] 

18. Bioucas-Dias JM, Valadao G (2007) Phase unwrapping via graph cuts. IEEE Trans Image Process 
16:698–709 [PubMed: 17357730] 

19. Kolmogorov V, Zabih R (2004) What energy functions can be minimized via graph cuts? IEEE 
Trans Pattern Anal Mach Intell 26:147–159 [PubMed: 15376891] 

20. McGarry MD, Van Houten EE, Perrinez PR, Pattison AJ, Weaver JB, Paulsen KD (2011) An 
octahedral shear strain-based measure of SNR for 3D MR elastography. Phys Med Biol 56:N153–
N164 [PubMed: 21654044] 

21. Gloschat C, Aras K, Gupta S et al. (2018) RHYTHM: an open source imaging toolkit for cardiac 
panoramic optical mapping. Sci Rep 8:2921 [PubMed: 29440763] 

22. Sui Y, In M, Yin Z, Bernstein MA, Ehman RL, Huston JI (2020) High-resolution distortion-free 
whole-brain MR elastography using multiband DIADEM (DIADEM-MRE). 2020 International 
Society for Magnetic Resonance in Medicine Virtual Conference & Exhibition No 185

Yin et al. Page 11

Eur Radiol. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Key points

• MR elastography (MRE)–based slip interface imaging shows promise as an 

objective tool to preoperatively discriminate meningiomas with a high risk of 

intraoperative adhesion.

• Measurement of the change of shear strain at meningioma boundaries can 

provide quantitative metrics depicting the state of adhesion at the tumor-brain 

interface.

• The surface map of tumor adhesion shows promise in assisting precise 

adhesion localization, using a comprehensible, “clinician-friendly” 3D 

visualization.
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Methodology

• retrospective

• observational

• performed at one institution

Yin et al. Page 13

Eur Radiol. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
(a) Brain MR elastography (MRE) setup. (b–g) The diagram of the ΔNOSSbdy calculation. 

(b) An example slice of T1W image with a manually delineated tumor margin. (c) The 

tumor shell after dilation, erosion, and exclusion of non-interface regions. (d) Black lines 

orthogonal to the tumor surface placed at contour points. For illustration purposes, only half 

of the orthogonal lines are shown. (e) The surface mesh is generated by MATLAB from the 

tumor volume and smoothed by a box filter with the kernel size of 3 × 3 × 3. (f) The 3D 

surface map with ΔNOSSbdy values projected onto the 3D surface. The gray color indicates 

a non-interface region that was not included in the calculation. (g) A 2D Hammer projection 

of the ΔNOSSbdy surface map unfolded along the z-direction to facilitate the 3D data 

visualization
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Fig. 2. 
Flowchart of patient selection
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Fig. 3. 
The probability histograms of ΔNOSSbdy values generated from the tumor shells for 

representative complete, partial, and non-adherent tumors. The histogram fitting curve of the 

adherent tumor is high and sharp, while the histogram fitting curve of the non-adherent 

tumor is wide and flat
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Fig. 4. 
Group comparison of (a) entropy and (b) mean of the probability histogram of ΔNOSSbdy 

values among completely, partially, and non-adherent meningiomas in the training cohort. *p 
was tested with one-way ANOVA with post hoc Steel-Dwass multiple comparisons
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Fig. 5. 
Receiver operating characteristic (ROC) curves for the entropy of the probability histogram 

of the ΔNOSSbdy values in the (a) training and (b) testing cohorts. (c, d) The ΔNOSSbdy 

entropy for each patient sorted by the classification of tumor adhesion in the training and 

testing cohorts. (c) Complete adhesion versus partial/no adhesion. (d) No adhesion versus 

partial/complete adhesion. The dotted lines represent the best cutoff values for 

distinguishing tumor adhesion
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Fig. 6. 
Illustrative cases. (a) A 46-year-old female. The surgeons described the brain-tumor 

interface as extremely poor, and there was sub-pial invasion all around this tumor. Although 

the NOSS map shows a faint line of slightly increased NOSS value at the tumor periphery 

(arrow), both the 3D surface map of the ΔNOSSbdy and the 2D Hammer map indicate that 

the majority of the tumor surface was adhesive. (b) A 52-year-old female. It was noted at the 

surgery that this tumor had no adhesion on the medial side adjacent to the falx, but was 

adherent to the lateral side of the brain, which correlates well with the ΔNOSSbdy surface 

map. The NOSS map shows a faint hyper-intensity NOSS contour. (c) A 51-year-old female. 

This was a non-adherent tumor. Both the NOSS map and 3D surface map of the ΔNOSSbdy 

agreed well with the surgical evaluation. Rotating 3D animation of the tumor surface maps 

are shown in the electronic supplementary material
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