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Abstract

This article reviews deep learning applications in biomedical optics with a particular emphasis on 

image formation. The review is organized by imaging domains within biomedical optics and 

includes microscopy, fluorescence lifetime imaging, in vivo microscopy, widefield endoscopy, 

optical coherence tomography, photoacoustic imaging, diffuse tomography, and functional optical 

brain imaging. For each of these domains, we summarize how deep learning has been applied and 

highlight methods by which deep learning can enable new capabilities for optics in medicine. 

Challenges and opportunities to improve translation and adoption of deep learning in biomedical 

optics are also summarized.
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INTRODUCTION

Biomedical optics is the study of biological light-matter interactions with the overarching 

goal of developing sensing platforms that can aid in diagnostic, therapeutic, and surgical 

applications [1]. Within this large and active field of research, novel systems are continually 

being developed to exploit unique light-matter interactions that provide clinically useful 

signatures. These systems face inherent trade-offs in signal-to-noise ratio (SNR), acquisition 
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speed, spatial resolution, field of view (FOV), and depth of field (DOF). These trade-offs 

affect the cost, performance, feasibility, and overall impact of clinical systems. The role of 

biomedical optics developers is to design systems which optimize or ideally overcome these 

trade-offs in order to appropriately meet a clinical need.

In the past few decades, biomedical optics system design, image formation, and image 

analysis have primarily been guided by classical physical modeling and signal processing 

methodologies. Recently, however, deep learning (DL) has become a major paradigm in 

computational modeling and demonstrated utility in numerous scientific domains and 

various forms of data analysis [2, 3]. As a result, DL is increasingly being utilized within 

biomedical optics as a data-driven approach to perform image processing tasks, solve inverse 

problems for image reconstruction, and provide automated interpretation of downstream 

images. This trend is highlighted in Fig. 1, which summarizes the articles reviewed in this 

paper stratified by publication year and image domain.

This review focuses on the use of DL in the design and translation of novel biomedical 

optics systems. While image formation is the main focus of this review, DL has also been 

widely applied to the interpretation of downstream images, as summarized in other review 

articles [4, 5]. This review is organized as follows. First, a brief introduction to DL is 

provided by answering a set of questions related to the topic and defining key terms and 

concepts pertaining to the articles discussed throughout this review. Next, recent original 

research in the following eight optics-related imaging domains is summarized: (1) 

microscopy, (2) fluorescence lifetime imaging, (3) in vivo microscopy, (4) widefield 

endoscopy, (5) optical coherence tomography, (6) photoacoustic imaging, (7) diffuse 

tomography, and (8) functional optical brain imaging. Within each domain, state-of-the-art 

approaches which can enable new functionality for optical systems are highlighted. We then 

offer our perspectives on the challenges and opportunities across these eight imaging 

domains. Finally, we provide a summary and outlook of areas in which DL can contribute to 

future development and clinical impact biomedical optics moving forward.

DEEP LEARNING OVERVIEW

What is deep learning?

To define DL, it is helpful to start by defining machine learning (ML), as the two are closely 

related in their historical development and share many commonalities in their practical 

application. ML is the study of algorithms and statistical models which computer systems 

use to progressively improve their performance on a specified task [6]. To ensure the 

development of generalizable models, ML is commonly broken in two phases: training and 

testing. The purpose of the training phase is to actively update model parameters to make 

increasingly accurate predictions on the data, whereas the purpose of testing is to simulate a 

prospective evaluation of the model on future data.

In this context, DL can be considered a subset of ML, as it is one of many heuristics for 

development and optimization of predictive, task-specific models [7]. In practice, DL is 

primarily distinguished from ML by the details of the underlying computational models and 

optimization techniques utilized. Classical ML techniques rely on careful development of 
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task-specific image analysis features, an approach commonly referred to as “feature 

engineering” (Fig. 2(a)). Such approaches typically require extensive manual tuning and 

therefore have limited generalizability. In contrast, DL applies an “end-to-end” data-driven 

optimization (or “learning”) of both feature representations and model predictions [2] ((Fig. 

2(b)). This is achieved through training a type of general and versatile computational model, 

termed deep neural network (DNN).

DNNs are composed of multiple layers which are connected through computational 

operations between layers, including linear weights and nonlinear “activation” functions. 

Thereby, each layer contains a unique feature representation of the input data. By using 

several layers, the model can account for both low-level and high-level representations. In 

the case of images, low-level representations could be textures and edges of the objects, 

whereas higher level representations would be object-like compositions of those features. 

The joint optimization of both feature representation at multiple levels of abstraction and 

predictive model parameters is what makes DNNs so powerful.

How is deep learning implemented?

The majority of the existing DL models in biomedical optics are implemented using the 

supervised learning strategy. At a high-level, there are three primary components to 

implement a supervised DL model: 1) labeled data, 2) model architecture, and 3) 

optimization strategy. Labeled data consist of the raw data inputs as well as the desired 

model output. Large amounts of labeled data are often needed for effective model 

optimization. This requirement is currently one of the main challenges for utilizing DL on 

small-scale biomedical data sets, although strategies to overcome this are an active topic in 

the literature, such as unsupervised [8], self-supervised [9], and semi-supervised learning 

[10]. For a typical end-to-end DL model, model architecture defines the hypothesis class and 

how hierarchical information flows between each layer of the DNN. The selection of a DNN 

architecture depends on the desired task and is often determined empirically through 

comparison of various state-of-the-art architectures. Three of the most widely used DNN 

architectures in current biomedical optics literature are illustrated in Fig. 3.

The encoder-decoder network [11] shown in Fig. 3(a) aims to establish a mapping between 

the input and output images using a nearly symmetrically structure with a contracting 

“encoder” path and an expanding “decoder” path. The encoder consists of several 

convolutional blocks, each followed by a down-sampling layer for reducing the spatial 

dimension. Each convolutional block consists of several convolutional layers (Conv2D) that 

stacks the processed features along the last dimension, among which each layer is followed 

by a nonlinear activation function, e.g. the Rectified Linear Unit (ReLU). The intermediate 

output from the encoder has a small spatial dimension but encodes rich information along 

the last dimension. These low-resolution “activation maps” go through the decoder, which 

consists of several additional convolutional blocks, each connected by a upsampling 

convolutional (Up-Conv) layer for increasing the spatial dimension. The output of the 

network typically has the same dimension as the input image.

The U-Net [12] architecture shown in Fig. 3(b) can be thought of as an extension to the 

encoder-decoder network. It introduces additional “skip connections” between the encoder 
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and decoder paths so that information across different spatial scales can be efficiently 

tunneled through the network, which has shown to be particularly effective to preserve high-

resolution spatial information [12].

The generative adversarial network (GAN) [13] shown in Fig. 3(c) is a general framework 

that involves adversarially training a pair of networks, including the “generator” and 

“discriminator”. The basic idea is to train the generator to make high-quality image 

predictions that are indistinguishable from the real images of the same class (e.g. H&E 

stained lung tissue slices). To do so, the discriminator is trained to classify that the 

generator’s output is fake, while the generator is trained to fool the discriminator. Such 

alternating training steps iterate until a convergence is met when the discriminator can 

hardly distinguish if the images produced from the generator are fake or real. When applying 

to biomedical optics techniques, the generator is often implemented by the U-Net. The 

discriminator is often implemented using an image classification network. The input image 

is first processed by several convolutional blocks and downsampling layers to extract high-

level 2D features. These 2D features are then “flattened” to a 1D vector, which is then 

processed by several fully connected layers to perform additional feature synthesis and make 

the final classification.

Once labeled data and model architecture have been determined, optimization of model 

parameters can be undertaken. Optimization strategy includes two aspects: 1) cost function, 

and 2) training algorithm. Definition of a cost function (a.k.a. objective function, error, or 

loss function) is needed to assess the accuracy of model predictions relative to the desired 

output and provide guidance to adjust model parameters. The training algorithm iteratively 

updates the model parameters to improve model accuracy. This training process is generally 

achieved by solving an optimization problem, using variants of the gradient descent 

algorithm, e.g. stochastic gradient descent and Adam [14]. The optimizer utilizes the 

gradient of the cost function to update each layer of the DNN through the principle of “error 

backpropagation” [15]. Given labeled data, a model architecture, and the optimization 

guides the model parameters towards a local minimum of the cost function, thereby 

optimizing model performance.

With the recent success of DL, several software frameworks have been developed to enable 

easier creation and optimization of DNNs. Many of the major technology companies have 

been active in this area. Two of the front-runners are TensorFlow and PyTorch, which are 

open-source frameworks published and maintained by Google and Facebook, respectively 

[16, 17]. Both frameworks enable easy construction of custom DNN models, with efficient 

parallelization of DNN optimization over high-performance graphics computing units 

(GPUs). These frameworks have enabled non-experts to train and deploy DNNs and have 

played a large role in the spread of DL research into many new applications, including the 

field of biomedical optics.

What is deep learning used for in biomedical optics?

There are two predominant tasks for which DL has been utilized in biomedical optics: 1) 

image formation and 2) image interpretation. Both are important applications; however, 
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image formation is a more central focus of biomedical optics researchers and consequently 

is the focus of this review.

With regards to image formation, DL has proven very useful for effectively approximating 

the inverse function of an imaging model in order to improve the quality of image 

reconstructions. Classical reconstruction techniques are built on physical models with 

explicit analytical formulations. To efficiently compute the inverse of these analytical 

models, approximations are often needed to simplify the problem, e.g. linearization. Instead, 

DL methods have shown to be very effective to directly “learn” an inverse model, in the 

form of a DNN, based on the training input and output pairs. This in practice has opened up 

novel opportunities to perform image formation that would otherwise be difficult to 

formulate an analytical model. In addition, the directly learned DL inverse model can often 

better approximate the inverse function, which in turn leads to improved image quality as 

shown in several imaging domains in this review.

Secondly, DL has been widely applied for modeling image priors for solving the inverse 

problems across multiple imaging domains. Most image reconstruction problems are 

inherently ill-posed in that the reconstructed useful image signal can be overwhelmed by 

noise if a direct inversion is implemented. Classical image reconstruction techniques rely on 

regularization using parametric priors for incorporating features of the expected image. 

Although being widely used, such models severely limit the type of features that can be 

effectively modeled, which in turn limit the reconstruction quality. DL-based reconstruction 

bypasses this limitation and does not rely on explicit parameterization of image features, but 

instead represents priors in the form of a DNN which is optimized (or “learned”) from a 

large data set that is of the same type of the object of interest (e.g. endoscopic images of 

esophagus). By doing so, DL enables better quality reconstructions.

Beyond achieving higher quality reconstructions, there are other practical benefits of DNNs 

in image formation. Classical inversion algorithms typically require an iterative process that 

can take minutes to hours to compute. Furthermore, they have stringent sampling 

requirements, which if lessened, make the inversion severely ill-posed. Due to more robust 

“learned” priors, DL-based techniques can accommodate highly incomplete or 

undersampled inputs while still providing high-quality reconstructions. Additionally, 

although DNNs typically require large datasets for training, the resulting models are capable 

of producing results in real time with a GPU. These combined capabilities allow DL-based 

techniques to bypass physical trade-offs (e.g., acquisition speed and imaging quality) and 

enable novel capabilities beyond existing solutions.

By leveraging these unique capabilities of DL methods, innovative techniques have been 

broadly reported across many imaging domains in biomedical optics. Examples include 

improving imaging performance, enabling new imaging functionalities, extracting 

quantitative microscopic information, and discovering new biomarkers. These and other 

technical developments have the potential to significantly reduce system complexity and 

cost, and may ultimately improve the quality, affordability, and accessibility of biomedical 

imaging in health care.
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DEEP LEARNING APPLICATIONS IN BIOMEDICAL OPTICS

Microscopy

Overview.—Microscopy is broadly used in biomedical and clinical applications to capture 

cellular and tissue structures based on intrinsic (e.g. scattering, phase, and autofluorescence) 

or exogenous contrast (e.g. stains and fluorescent labels). Fundamental challenges exist in 

all forms of microscopy because of the limited information that can be extracted from the 

instrument. Broadly, the limitations can be categorized based on two main sources of origin. 

The first class is due to the physical tradeoffs between multiple competing performance 

parameters, such as SNR, acquisition speed, spatial resolution, FOV, and DOF. The second 

class is from the intrinsic sensitivity and specificity of different contrast mechanisms. DL-

augmented microscopy is a fast-growing area that aims to overcome various aspects of 

conventional limitations by synergistically combining novel instrumentation and DL-based 

computational enhancement. This section focuses on DL strategies for bypassing the 

physical tradeoffs and augmenting the contrast in different microscopy modalities.

Overcoming physical tradeoffs.—An ideal microscopy technique often needs to satisfy 

several requirements, such as high resolution in order to resolve the small features in the 

sample, low light exposure to minimize photo-damage, and a wide FOV in order to capture 

information from a large portion of the sample. Traditional microscopy is fundamentally 

limited by the intrinsic tradeoffs between various competing imaging attributes. For 

example, a short light exposure reduces the SNR; a high spatial resolution requires a high-

magnification objective lens that provides a small FOV and shallow DOF. This section 

summarizes recent achievements in leveraging DL strategies to overcome various physical 

tradeoffs and expand the imaging capabilities.

1. Denoising. Enhancing microscopy images by DL-based denoising has been 

exploited to overcome the tradeoffs between light exposure, SNR, and imaging 

speed, which in turn alleviates photo-bleaching and photo-toxicity. The general 

strategy is to train a supervised network that takes a noisy image as the input and 

produces the SNR-enhanced image output. Weigert et al. [18] demonstrated a 

practical training strategy of a U-Net on experimental microscopy data that 

involves taking paired images with low and high light exposures as the noisy 

input and high-SNR output of the network (Fig. 4(a)). This work showed that the 

DNN can restore the same high-SNR images with 60-fold fewer photons used 

during the acquisition. Similar strategies have been applied to several microscopy 

modalities, including widefield, confocal, light-sheet [18], structured 

illumination [24], and multi-photon microscopy [25].

2. Image reconstruction. Beyond denoising, the imaging capabilities of several 

microscopy techniques can be much expanded by performing image 

reconstruction. To perform reconstruction by DL, the common framework is to 

train a DNN, such as the U-Net and GAN, that takes the raw measurements as 

the input and the reconstructed image as the output. With this DL framework, 

three major benefits have been demonstrated. First, Wang et al. showed that 

GAN-based super-resolution reconstruction allows recovering high-resolution 
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information from low-resolution measurements, which in turn provides an 

enlarged FOV and an extended DOF [19] (Fig. 4(b)). For widefield imaging, [19] 

demonstrated super-resolution reconstruction using input images from a 10×/0.4-

NA objective lens and producing images matching a 20×/0.75-NA objective lens. 

In a cross-modality confocal-to-STED microscopy transformation case, [19] 

showed resolution improvement from 290 nm to 110 nm. Similar results have 

also been reported in label-free microscopy modalities, including brightfield 

[26], holography [27], and quantitative phase imaging [20] (Fig. 4(c)).

Second, DL-based 3D reconstruction technique allows drastically extending the imaging 

depth from a single-shot and thus bypasses the need for physical focusing. In [21], Wu et al. 
demonstrated 20× DOF extension in widefield fluorescence microscopy using a conditional 

GAN (Fig. 4(d)). Recent work on DL-based extended DOF has also shown promising results 

on enabling rapid slide-free histology [28].

Third, DL significantly improves both the imaging acquisition and reconstruction speeds and 

reduces the number of measurements for microscopy modalities that intrinsically require 

multiple measurements for the image formation, as shown in quantitative phase microscopy 

[20, 29, 30] (Fig. 4(c)), single molecule localization microscopy [31–33], and structured 

illumination microscopy [24]. For example, in [20], a 97% data reduction as compared to the 

conventional sequential acquisition scheme was achieved for gigapixel-scale phase 

reconstruction based on a multiplexed acquisition scheme using a GAN.

Augmenting contrasts.—The image contrast used in different microscopy modalities 

can be broadly categorized into endogenous and exogenous. For example, label-free 

microscopy captures endogenous scattering and phase contrast, and is ideal for imaging 

biological samples in their natural states, but suffers from lack of molecular specificity. 

Specificity is often achieved by staining with absorbing or fluorescent labels. However, 

applications of exogenous labeling are limited by the physical staining/labeling process and 

potential perturbation to the natural biological environment. Recent advances in DL-

augmented microscopy have the potential to achieve the best of both label-free and labeled 

microscopy. This section summarizes two most widely used frameworks for augmenting 

microscopy contrast with DL.

1. Virtual staining/labeling. The main idea of virtual staining/labeling is to 

digitally transform the captured label-free contrast to the target stains/labels. DL 

has been shown to be particularly effective to perform this “cross-modality image 

transformation” task. By adapting this idea to different microscopy contrasts, two 

emerging applications have been demonstrated. First, virtual histological staining 

has been demonstrated for transforming a label-free image to the brightfield 

image of the histologically-stained sample (Fig. 4(e)). The label-free input 

utilized for this task include autofluorescence [22, 34], phase [35, 36], multi-

photon and fluorescence lifetime [37]. The histological stains include H&E, 

Masson’s Trichrome and Jones’ stain. Notably, the quality of virtual staining on 

tissue sections from multiple human organs of different stain types was assessed 

by board-certified pathologists to show superior performance [22]. A recent 
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cross-sectional study has been carried out for clinical evaluation of unlabeled 

prostate core biopsy images that have been virtually stained [38]. The main 

benefits of the virtual staining approach include saving time and cost [22], as 

well as facilitating multiplexed staining [34]. Interested readers can refer to a 

recent review on histopathology using virtual staining [39].

Second, digital fluorescence labeling has been demonstrated for transforming 

label-free contrast to fluorescence labels [23, 40–43] (Fig. 4(f)). In the first 

demonstration [23], Christiansen et al. performed 2D digital labeling using 

transmission brightfield or phase contrast images to identify cell nuclei (accuracy 

quantified by Pearson correlation coefficient PCC = 0.87–0.93), cell death (PCC 

= 0.85), and to distinguish neuron from astrocytes and immature dividing cells 

(PCC = 0.84). A main benefit of digital fluorescence labeling is digital 

multiplexing of multiple subcellular fluorescence labels, which is particularly 

appealing to kinetic live cell imaging. This is highlighted in [40], 3D multiplexed 

digital labeling using transmission brightfield or phase contrast images on 

multiple subcellular components are demonstrated, including nucleoli 

(PCC~0.9), nuclear envelope, microtubules, actin filaments (PCC~0.8), 

mitochondria, cell membrane, Endoplasmic reticulum, DNA+ (PCC~0.7), DNA 

(PCC~0.6), Actomyosin bundles, tight junctions (PCC~0.5), Golgi apparatus 

(PCC~0.2), and Desmosomes (PCC~0.1). Recent advances further exploit other 

label-free contrasts, including polarization [41], quantitative phase map [43], and 

reflectance phase-contrast microscopy [42]. Beyond predicting fluorescence 

labels, recent advances further demonstrate multiplexed single-cell profiling 

using the digitally predicted labels [42].

In both virtual histopathological staining and digital fluorescence labeling, the U-

Net forms the basic architecture to perform the image transformation. GAN has 

also been incorporated to improve the performance [22, 38].

2. Classification Instead of performing pixel-wise virtual stain/label predictions, 

DL is also very effective in holistically capturing complex ‘hidden’ image 

features for classification. This has found broad applications in augmenting the 

label-free measurements and provide improved specificity and classify disease 

progression [44, 45] and cancer screening [46–48], as well as detect cell types 

[49, 50], cell states [44, 51], stem cell lineage [52–54], and drug response [55]. 

For example, in [44], Eulenberg et al. demonstrated a classification accuracy of 

98.73% for the G1/S/G2 phase, which provided 6× improvement in error rate as 

compared to the previous state-of-the-art method based on classical ML 

techniques.

Opportunities and challenges.—By overcoming the physical tradeoffs in traditional 

systems, DL-augmented microscopy achieves unique combinations of imaging attributes 

that are previously not possible. This may create new opportunities for diagnosis and 

screening. By augmenting the contrast using virtual histological staining techniques, DL can 

open up unprecedented capabilities in label-free and slide-free digital pathology. This can 

significantly simplify the physical process and speed up the diagnosis. By further advancing 
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the digital fluorescence labeling techniques, it can enable high-throughput and highly 

multiplexed single-cell profiling and cytometry. Beyond clinical diagnoses, this may find 

applications in drug screening and phenotyping.

In addition, several emerging DL techniques can further enhance the capabilities of 

microscopy systems. First, DL can be applied to optimize the hardware parameters used in 

microscopy experiments. In quantitative phase microscopy, DL was applied to optimized the 

illumination patterns to reduce the data requirement [30, 56]. In single molecule localization 

microscopy, DL was used to optimize the point spread functions to enhance the localization 

accuracy [33, 57]. DL has also been used to optimize the illumination power [58] and focus 

positions [59–61].

Second, new DL frameworks are emerging to significantly reduce the labeled data 

requirements in training, which is particularly useful in biomedical microscopy since 

acquiring a large-scale labeled training data set is often impractical. For example, a novel 

denoising approach, known as Noise2Noise [62], has been developed that can be trained 

using only independent pairs of noisy images, and bypasses the need for ground-truth clean 

images. Following this work, self-supervised denoising DL approaches have been advanced 

to further alleviate the training data requirement. Techniques, such as Noise2Void, 

Noise2Self and their variants, can be directly trained on noisy data set without the need for 

paired noisy images [63–65]. In addition, semi-supervised and unsupervised DL approaches 

have also been developed to reduce or completely remove the need for labeled training data 

during training, which have been demonstrated for vessel segmentation [66, 67]. Lastly, 

physics-embedded DL opens up a new avenue for reducing training requirements by 

incorporating the physical model of the microscopy technique [68, 69].

Finally, uncertainty quantification techniques address the need for assessing the reliability of 

the DL model by quantifying the confidence of the predictions, and has recently been 

applied in quantitative phase reconstruction [20].

Fluorescence Lifetime Imaging

Overview.—Fluorescence imaging has become a central tool in biomedical studies with 

high sensitivity to observe endogenous molecules [70, 71] and monitor important 

biomarkers [72]. Increasingly, fluorescence imaging is not limited to intensity-based 

techniques but can extract additional information by measuring fluorophore lifetimes [73–

75]. Fluorescence lifetime imaging (FLI) has become an established technique for 

monitoring cellular micro-environment via analysis of various intracellular parameters [76], 

such as metabolic state [77, 78], reactive oxygen species [79] and/or intracellular pH [80]. 

FLI is also a powerful technique for studying molecular interactions inside living samples, 

via Förster Resonance Energy Transfer (FRET) [81], enabling applications such as 

quantifying protein-protein interactions [82], monitoring biosensor activity [83] and ligand-

receptor engagement in vivo [84]. However, FLI is not a direct imaging technique. To 

quantify lifetime or lifetime-derived parameters, an inverse solver is required for 

quantification and/or interpretation.
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To date, image formation is the main utility of DL in FLI. Contributions include 

reconstructing quantitative lifetime image from raw FLI measurements, enabling enhanced 

multiplexed studies by leveraging both spectral and lifetime contrast simultaneously, and 

facilitating improved instrumentation with compressive measurement strategies.

Lifetime quantification, representation, and retrieval.—Conventionally, lifetime 

quantification is obtained at each pixel via model-based inverse-solvers, such as least-square 

fitting and maximum-likelihood estimation [85], or the fit-free phasor method [86, 87]. The 

former is time-consuming, inherently biased by user-dependent a priori settings, and 

requires operator expertise. The phasor method is the most widely-accepted alternative for 

lifetime representation [87]. However, accurate quantification using the phasor method 

requires careful calibration, and when considering tissues/turbid-media in FLI microscopy 

(FLIM) applications, additional corrections are needed [87, 88]. Therefore, it has largely 

remained qualitative in use.

Wu et al. [89] demonstrated a multilayer perceptron (MLP) for lifetime retrieval for ultrafast 

bi-exponential FLIM. The technique exhibited an 180-fold faster speed then conventional 

techniques, yet it was unable to recover the true lifetime-based values in many cases due to 

ambiguities caused by noise. Smith et al. [90] developed an improved 3D-CNN, FLI-Net, 

that can retrieve spatially independent bi-exponential lifetime parameter maps directly from 

the 3D (x, y, t) FLI data. By training with a model-based approach including representative 

noise and instrument response functions, FLI-Net was validated across a variety of 

biological applications. These include quantification of metabolic and FRET FLIM, as well 

as preclinical lifetime-based studies across the visible and near-infrared (NIR) spectra. 

Further, the approach was generalized across two data acquisition technologies – Time-

correlated Single Photon Counting (TCSPC) and Intensified Gated CCDs (ICCD). FLI-Net 

has two advantages. First, it outperformed classical approaches i’n the presence of low 

photon counts, which is a common limitation in biological applications. Second, FLI-Net 

can output lifetime-based whole-body maps at 80 ms in wide-field pre-clinical studies, 

which highlights the potential of DL methods for fast and accurate lifetime-based studies. In 

combination with DL in silico training routines that can be crafted for many applications and 

technologies, DL is expected to contribute to the dissemination and translation of FLI 

methods as well as to impact the design and implementation of future-generation FLI 

instruments. An example FLI-Net output for metabolic FLI is shown in Fig. 5.

Emerging FLI applications using DL.—The technologies used in FLI have not 

fundamentally shifted over the last two decades. One bottleneck for translation is a lack of 

sensitive, widefield NIR detectors. Advances in computational optics have sparked 

development of new approaches using structured light [91], such as single-pixel methods 

[92]. These methods are useful when widefield detectors are lacking, such as in applications 

with low photon budget and when higher dimensional data are sought [93] (e.g., 

hyperspectral imaging [94]). However, these computational methods are based on more 

complex inverse models that require user expertise and input.

Yao et al. [95] developed a CNN, NetFLICS, capable of retrieving both intensity and 

lifetime images from single-pixel compressed sensing-based time-resolved input. NetFLICS 
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generated superior quantitative results at low photon count levels, while being four orders of 

magnitude faster than existing approaches. Ochoa-Mendoza et al. [96] further developed the 

approach to increase its compression ratio to 99% and the reconstruction resolution to 

128×128 pixels. This dramatic improvement in compression ratio enables significantly faster 

imaging protocols and demonstrates how DL can impact instrumentation design to improve 

clinical utility and workflow [97].

Recent developments have made hyperspectral FLI imaging possible across microscopic 

[98] and macroscopic settings [99]. Traditionally, combining spectral and lifetime contrast 

analytically is performed independently or sequentially using spectral decomposition and/or 

iterative fitting [100]. Smith et al. [101] proposed a DNN, UNMIX-ME, to unmix multiple 

fluorophore species simultaneously for both spectral and temporal information. UNMIX-ME 

takes a 4D voxel (x, y, t, λ) as the input and outputs spatial (x, y) maps of the relative 

contributions of distinct fluorophore species. UNMIX-ME demonstrated higher performance 

during tri- and quadri-abundance coefficient retrieval. This method is expected to find utility 

in applications such as autofluorescence imaging in which unmixing of metabolic and 

structural biomarkers is challenging.

Although FLI has shown promise for deep tissue imaging in clinical scenarios, FLI 

information is affected by tissue optical properties. Nonetheless, there are several 

applications that would benefit from optical property-corrected FLI without solving the full 

3D inverse problem. For optical guided surgery, Smith et al. [102] proposed a DNN that 

outputs 2D maps of the optical properties, lifetime quantification, and the depth of 

fluorescence inclusion (topography). The DNN was trained using a model-based approach in 

which a data simulation workflow incorporated “Monte Carlo eXtreme” [103] to account for 

light propagation through turbid media. The method was demonstrated experimentally, with 

real-time applicability over large FOVs. Both widefield time-resolved fluorescence imaging 

and Spatial Frequency Domain Imaging (SFDI) in its single snapshot implementation were 

performed with fast acquisition [91] and processing speeds [104]. Hence, their combination 

with DL-based image processing provides a possible future foundation for real-time 

intraoperative use.

While recent advances in FLI-based classification and segmentation are limited to using 

classical ML techniques [105–107], Sagar et al. [108] used MLPs paired with bi-exponential 

fitting for label-free detection of microglia. However, DL approaches often outperform such 

“shallow learning” classifiers. Although reports using DL for classification based on FLI 

data are currently absent from the literature, it is expected that DL will play a critical role in 

enhancing FLI classification and semantic segmentation tasks in the near future.

In vivo microscopy

Overview.—In vivo microscopy (IVM) techniques enable real-time assessment of intact 

tissue at magnifications similar to that of conventional histopathology [113]. As high-

resolution assessment of intact tissue is desirable for many biomedical imaging applications, 

a number of optical techniques and systems have been developed which have trade-offs in 

FOV, spatial resolution, achievable sampling rates, and practical feasibility for clinical 

deployment [113]. However, a commonality of IVM systems used for clinical imaging is the 
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need for image analysis strategies to support intraoperative visualization and automated 

diagnostic assessment of the high-resolution image data. Currently, three of the major IVM 

techniques for which DL is being utilized are optical coherence tomography (OCT) [114], 

confocal laser endomicroscopy (CLE, Fig. 6) [115], and reflectance confocal microscopy 

(RCM) [116]. This section focuses on DL approaches for CLE and RCM. More specifically, 

endoscopic imaging using probe-based CLE (pCLE) and dermal imaging for RCM. OCT is 

discussed in a subsequent section.

Automated diagnosis.—Automated diagnostic classification has been the earliest and 

most frequent application of DL within IVM. Most commonly, histopathology analysis of 

imaged specimens provides a ground truth categorization for assessing diagnostic accuracy. 

The limited size of pCLE and RCM datasets and logistical challenges in precisely 

correlating them with histopathology remain two ongoing challenges for training robust 

classifiers. To address these challenges, a variety of strategies have been applied which range 

from simple classification schemes (benign vs malignant) using pre-trained CNNs [110] to 

more complicated tasks, such as cross-domain feature learning and multi-scale encoder-

decoder networks [112, 117]. The following section contrasts recent reports and methods 

utilizing DL for diagnostic image analysis of pCLE and RCM image datasets.

1. CNNs and transfer learning approaches. Early reports on DL-based image 

classification for CLE and RCM have demonstrated that transfer learning using 

pre-trained CNNs can outperform conventional image analysis approaches, 

especially when data is limited as is often the case for CLE and RCM [110, 118–

120].

Aubreville et al. published an early and impactful study comparing the 

performance of two CNN-based approaches to a textural feature-based classifier 

(random forest) on pCLE video sequences acquired during surgical resection of 

oral squamous carcinoma (Fig. 6b) [110]. Of their two CNN-based approaches, 

one was a LeNet-5 architecture and was trained to classify sub-image patches 

whereas the other utilized transfer learning of a pre-trained CNN (Fig. 6c) for 

whole image classification. Using leave-one-out cross validation on 7,894 frames 

from 12 patients, the two CNN-based approaches both outperformed the textural 

classifier.

Transfer learning is one strategy to overcome limited dataset sizes, which 

remains a common challenge for CLE and RCM. As larger CLE and RCM 

datasets are obtainable in the future, transfer learning is unlikely to be an optimal 

strategy for image classification; however, it can remain a useful benchmark for 

the difficulty of image classification tasks on novel, small-scale datasets moving 

forward. The subsequent sections introduce alternatives to transfer learning 

which utilize video data as well as cross-domain learning.

2. Recurrent convolutional approaches. CLE and RCM are typically used in 

video recording while the optical probe is physically or optically scanned to 

obtain images over a larger tissue area or at varying depths. Some reports have 

utilized recurrent convolutional networks to account for spatial and/or temporal 
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context of image sequences [121–123]. The additional spatial/temporal modeling 

provided by recurrent networks is one promising approach to leverage video 

data. [121–123].

3. Cross-domain learning. A novel approach, termed “transfer recurrent feature 

learning”, was developed by Gu et al. which leveraged cross-domain feature 

learning for classification of pCLE videos obtained from 45 breast tissue 

specimens [112]. Although this method relied on data acquired ex vivo, the data 

itself is not qualitatively different from other pCLE datasets and still provides a 

proof-of-principle. Their model utilized a cycle-consistent GAN (CycleGAN) to 

first learn feature representations between H&E microscopy and pCLE images 

and to identify visually similar images (Fig. 6e). The optimized discriminator 

from the CycleGAN is then utilized in conjunction with a recurrent neural 

network to classify video sequences (Fig. 6f). The method outperformed other 

DL methods and achieved 84% accuracy in classifying normal, benign, and 

malignant tissues.

4. Multiscale segmentation. Kose et al. [117] developed a novel segmentation 

architecture, “multiscale encoder-decoder network” (MED-Net), which 

outperformed other state-of-the-art network architectures for RCM mosaic 

segmentation. In addition to improving accuracy, MED-Net produced more 

globally consistent, less fragmented pixel-level classifications. The architecture 

is composed of multiple, nested encoder-decoder networks and was inspired by 

how pathologists often examine images at multiple scales to holistically inform 

their image interpretation.

5. Image quality assessment. A remaining limitation of many studies was some 

level of manual or semi-automated pre-processing of pCLE and RCM images/

videos to exclude low-quality and/or non-diagnostic image data. Building on the 

aforementioned reports for diagnostic classification, additional work utilized 

similar techniques for automated image quality assessment using transfer 

learning [124, 125] as well as MED-Net [126].

Super-resolution.—Several IVM techniques, including pCLE, utilize flexible fiber-

bundles as contact probes to illuminate and collect light from localized tissue areas [127]. 

Such probes are needed for minimally invasive endoscopic procedures and can be guided 

manually or via robotics. The FOV of fiber-optic probes is typically <1 mm2 and lateral 

resolution is limited by the inter-core spacing of individual optical fibers, which introduce a 

periodic image artifact (“honeycomb patterns”) from the individual fibers.

Shao et al. [128] developed a novel super-resolution approach which outperformed 

maximum a posteriori (MAP) estimation using a two-stage CNN model which first estimates 

the motion of the probe and then reconstructs a super-resolved image using the aligned video 

sequence. The training data was acquired using a dual camera system, one with and one 

without a fiber-bundle in the optical setup, to obtain paired data.
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Others have taken a more computational approach to pCLE super-resolution by using 

synthetic datasets. For example, Ravì et al. [129] demonstrated super-resolution of pCLE 

images using unpaired image data via a CycleGAN, and Szczotka et al. [111] introduced a 

novel Nadaraya-Watson layer to account for the irregular sparse artifacts introduced by the 

fiber-bundle (Fig. 6d).

Future directions.—Beyond automatic diagnosis and super-resolution approaches in 

IVM, recent advances also highlight ways in which DL can enable novel instrumentation 

development and image reconstructions to enable new functionalities for compact 

microscopy systems. Such examples include multispectral endomicroscopy [130], more 

robust mosaicking for FOV expansion [131], and end-to-end image reconstruction using 

disordered fiber-optic probes [132, 133]. We anticipate that similarly to ex vivo microscopy, 

in the coming years DL will be increasingly utilized to overcome physical constraints, 

augment contrast mechanisms, and enable new capabilities for IVM systems.

Widefield endoscopy

Overview.—The largest application of optics in medical imaging, by U.S. market size, is 

widefield endoscopy [134]. In this modality, tissue is typically imaged on the >1 cm scale, 

over a large working distance range, with epi-illumination and video imaging via a camera. 

Endoscopic and laparoscopic examinations are commonly used for screening, diagnostic, 

preventative, and emergency medicine. There has been extensive research in applying 

various DL tools for analyzing conventional endoscopy images for improving and 

automating image interpretation [135–138]. This section instead reviews recent DL research 

in image formation tasks in endoscopy, including denoising, resolution enhancement, 3D 

scene reconstruction, mapping of chromophore concentrations, and hyperspectral imaging.

Denoising.—A hallmark of endoscopic applications is challenging geometrical constraints. 

Imaging through small lumens such as the gastrointestinal tract or “keyholes” for minimally-

invasive surgical applications requires optical systems with compact footprints–often on the 

order of 1-cm diameter. These miniaturized optical systems typically utilize small-aperture 

cameras with high pixel counts, wide FOVs and even smaller illumination channels. 

Consequently, managing the photon budget is a significant challenge in endoscopy, and there 

have been several recent efforts to apply DL to aid in high-quality imaging in these low-light 

conditions. A low-light net (LLNET) with contrast-enhancement and denoising 

autoencoders has been introduced to adaptively brighten images [139]. This study simulated 

low-light images by darkening and adding noise and found that training on this data resulted 

in a learned model that could enhance natural low-light images. Other work has applied a U-

Net for denoising on high-speed endoscopic images of the vocal folds, also by training on 

high-quality images that were darkened with added noise [140]. Brightness can also be 

increased via laser-illumination, which allows greater coupling efficiency than incoherent 

sources, but results in laser speckle noise in the image from coherent interference. 

Conditional GANs have been applied to predict speckle-free images from laser-illumination 

endoscopy images by training on image pairs acquired of the same tissue with both coherent 

and incoherent illumination sources [141].
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Improving image quality.—In widefield endoscopy, wet tissue is often imaged in a 

perpendicular orientation to the optical axis, and the close positioning of the camera and 

light sources leads to strong specular reflections that mask underlying tissue features. GANs 

have been applied to reduce these specular reflections [142]. In this case, unpaired training 

data with and without specular reflections were used in a CycleGAN architecture with self-

regularization to enforce similarity between the input specular and predicted specular-free 

images. Other work has found that specular reflection removal can be achieved in a 

simultaneous localization and mapping elastic fusion architecture enhanced by DL depth 

estimation [143]. Lastly, Ali et al. [144] introduced a DL framework that identifies a range 

of endoscopy artifacts (multi-class artifact detection), including specular reflection, blurring, 

bubbles, saturation, poor contrast, and miscellaneous artifacts using YOLOv3-spp with 

classes that were hand-labeled on endoscopy images. These artifacts were then removed and 

the image restored using GANs.

Resolution enhancement.—For capsule endoscopy applications, where small detectors 

with low pixel counts are required, DL tools have been applied for super-resolution with the 

goal of obtaining conventional endoscopy-like images from a capsule endoscope [145]. In 

this study, a conditional GAN was implemented with spatial attention blocks, using a loss 

function that included contributions of pixel loss, content loss, and texture loss. The intuition 

behind the incorporation of spatial attention blocks is that this module guides the network to 

prioritize the estimation of the suspicious and diagnostically relevant regions. This study 

also performed ablation studies and found that the content and texture loss components are 

especially important for estimating high-spatial frequency patterns, which becomes more 

important for larger upsampling ratios. With this framework, the resolution of small bowel 

images was increased by up to 12× with favorable quantitative metrics as well as qualitative 

assessment by gastroenterologists. Though this study demonstrated that the resolution of 

gastrointestinal images could be enhanced, it remains to be seen if preprocessing or 

enhancing these images provides any benefit to automated image analysis.

3D imaging and mapping.—The three dimensional shape of the tissue being imaged via 

endoscopy is useful for improving navigation, lesion detection and diagnosis, as well as 

obtaining meaningful quality metrics for the effectiveness of the procedure [146]. However, 

stereo and time-of-flight solutions are challenging and expensive to implement in an 

endoscopic form factor. Accordingly, there has been significant work in estimating the 3D 

shape of an endoscopic scene from monocular images using conditional GANs trained with 

photo realistic synthetic data [147, 148]. Domain adaptation can be used to improve the 

generalizability of these models, either by making the synthetic data more realistic, or by 

making the real images look more like the synthetic data that the depth-estimator is trained 

on [149]. Researchers have also explored joint conditional random fields and CNNs in a 

hybrid graphical model to achieve state-of-the-art monocular depth estimation [150]. A U-

Net style architecture has been implemented for simultaneously estimating depth, color, and 

oxygen saturation maps from a fiber-optic probe that sequentially acquired structured light 

and hyperspectral images [151]. Lastly, DL tools have been applied to improve simultaneous 

localization and mapping (SLAM) tasks in endoscopic applications, both by incorporating a 

monocular depth estimation prior into a SLAM algorithm for dense mapping of the 
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gastrointestinal tract [143], and by developing a recurrent neural network to predict depth 

and pose in a SLAM pipeline [152].

Widefield spectroscopy.—In addition to efforts to reconstruct high-quality color and 3D 

maps through an endoscope, DL is also being applied to estimate bulk tissue optical 

properties from wide FOV images. Optical property mapping can be useful for meeting 

clinical needs in wound monitoring, surgical guidance, minimally-invasive procedures, and 

endoscopy. A major challenge to estimating optical properties in turbid media is decoupling 

the effects of absorption, scattering, and the scattering phase function, which all influence 

the widefield image measured with flood illumination. Spatial frequency domain imaging 

can provide additional inputs to facilitate solving this inverse problem by measuring the 

attenuation of different spatial frequencies [153]. Researchers have demonstrated that this 

inverse model can be solved orders of magnitude faster than conventional methods with a 6-

layer Perceptron [154]. Others have shown that tissue optical properties can be directly 

estimated from structured light images or widefield illumination images using content-aware 

conditional GANs [155]. In this application, the adversarial learning framework reduced 

errors in the optical property predictions by more than half when compared to the same 

network trained with an analytical loss function. Intuitively, the discriminator learns a more 

sophisticated and appropriate loss function in adversarial learning, allowing for the 

generation of more-realistic optical property maps. Moreover, this study found that the 

conditional GANs approach resulted in an increased performance benefit when data is tested 

from tissue types that were not spanned in the training set. The authors hypothesize that this 

observation comes from the discriminator preventing the generator from learning from and 

overfitting to the context of the input image. Optical properties can also be estimated more 

quickly using a lighter-weight twin U-Net architecture with a GPU-optimized look-up table 

[104]. Further, chromophores can be computed in real-time with reduced error compared to 

an intermediate optical property inference by directly computing concentrations from 

structured illumination at multiple wavelengths using conditional GANs [156].

Going beyond conventional color imaging, researchers are also processing 1D hyperspectral 

measurement through an endoscope using shallow CNNs to classify pixels into the correct 

color profiles, illustrating the potential to classify tissue with complex absorbance spectra 

[157]. The spectral resolution can be increased in dual-modality color/hyperspectral systems 

from sparse spectral signals with CNNs [151]. To enable quantitative spectroscopy 

measurements in endoscopic imaging, it may be necessary to combine hyperspectral 

techniques with structured illumination and 3D mapping [104, 151, 155, 158].

Future directions.—Future research in endoscopy and DL will undoubtedly explore 

clinical applications. Imaging system for guiding surgery are already demonstrating clinical 

potential for ex-vivo tissue classification: a modified Inception-v4 CNNs was demonstrated 

to effectively classify squamous cell carcinoma versus normal tissue at the cancer margin 

from ex-vivo hyperspectral images with 91 spectral bands [159]. For in-vivo applications, 

where generalizability may be essential and training data may be limited, future research in 

domain transfer [149] and semi-supervised learning [160] may become increasingly 

important. Moreover, for clinical validation, these solutions must be real-time, easy-to-use, 
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and robust, highlighting the need for efficient architectures [104] and thoughtful user 

interface design [161].

Optical coherence tomography

Overview.—Optical coherence tomography (OCT) is a successful example of biophotonic 

technological translation into medicine [162, 163]. Since its introduction in 1993, OCT has 

revolutionized the standard-of-care in ophthalmology around the world, and continued 

thriving in technical advances and other clinical applications, such as dermatology, 

neurology, cardiology, oncology, gastroenterology, gynecology, and urology [164–171].

Image segmentation.—The most common use of OCT is to quantify structural metrics 

via image segmentation, such as retinal anatomical layer thickness, anatomical structures, 

and pathological features. Conventional image processing is challenging in the case of 

complex pathology where tissue structural alteration can be complex and may not be fully 

accounted for when designing a rigid algorithm. Image segmentation is the earliest 

application of DL explored in OCT applications. Several DNNs have been reported for OCT 

segmentation in conjunction with manual annotations (Fig. 7(a)), including U-Net [172–

174], ResNet [175], and fully-convolutional network (FCN) [176, 177]. Successful 

implementation of DNNs have been broadly reported in different tissues beyond the eye 

[178–180]. In all areas of applications, the DNN showed superior segmentation accuracy 

over conventional techniques. For example, Devalla et al. [175] quantified the accuracy of 

the proposed DRUNET(Dilated-Residual U-Net) for segmenting the retinal nerve fiber layer 

(RNFL), retinal Layers, the retinal pigment epithelium (RPE), and choroid on both healthy 

and glaucoma subjects, and showed that the DRUNET consistently outperformed alternative 

approaches on all the tissues measured by dice coefficient, sensitivity, and specificity. The 

errors of all the metrics between DRUNET and the observers were within 10% and the 

patch-based neural network always provided greater than 10% error irrespective of the 

observer chosen for validation. In addition, the DRUNET segmentation further allowed 

automatic extraction of six clinically relevant neural and connective tissue structural 

parameters, including the disc diameter, peripapillary RNFL thickness (p-RNFLT), 

peripapillary choroidal thickness (p-CT), minimum rim width (MRW), prelaminar thickness 

(PLT), and the prelaminar depth (PLD).

Denoising and speckle removal.—OCT images suffer from speckle noise due to 

coherent light scattering, which leads to image quality degradation. There exist other sources 

of noise to further degrade the image quality when the signal level is low. Denoising and 

despeckling are important applications of DNNs, which are often trained with the averaged 

reduced-noise image as the ‘ground truth’ in a U-Net and ResNet [183, 184]. GAN has also 

been applied and provided improved visual perception than the DNNs trained with only the 

least-squares loss function [181] (Fig. 7(b)). For example, Dong et al. [181] showed that the 

GAN-based denoising network outperformed state-of-the-art image processing based (e.g. 
BM3D and MSBTD) and a few other DNNs (e.g. SRResNet and SRGAN) in terms of 

contrast-to-noise ratio (CNR) and peak signal-to-noise ratio (PSNR).
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Clinical diagnosis and classification.—In clinical applications using DL, a large body 

of literature over the past 3 years emerges particularly in ophthalmology. Most of the studies 

use a CNN to extract image features for diagnosis and classification [185]. A clear shift of 

attention recently is to interpret the DNN, for example using the attention map [182, 186] 

(Fig. 7(c)). The purpose is to reveal the most important structural features that the DNN used 

for making the predictions. This addresses the major concern from the clinicians on the 

“black-box” nature of DL. Another emerging effort is to improve the generalization of a 

trained DNN to allow process images from different devices, with different image qualities 

and other possible variations. Transfer learning has been reported to refine pre-trained DNNs 

to other dataset, with much reduced training and data burdens [187, 188]. Domain adaptation 

is another method to generalize the DNN trained on images taken by one device to another 

[189, 190]. We expect more innovations for addressing the generalization in clinical 

diagnosis and prediction.

Emerging applications.—Beyond segmentation, denoising, and diagnosis/classification, 

there are several emerging DL applications for correlating the OCT measurements with 

vascular functions. OCT angiography (OCTA) and Doppler OCT (DOCT) are two advanced 

methods to measure label-free microangiography and blood flows. While normally requiring 

specific imaging protocols, the raw OCT measurements contain structural features that may 

be recognized by a CNN. Reports have shown that angiographic image and blood flows can 

be predicted by mere structural image input without specific OCTA or DOCT protocols 

[191, 193, 194]. For example, Braaf et al. [191] showed that DL enabled accurate 

quantification of blood flow from OCT intensity time-series measurements, and was robust 

to vessel angle, hematocrit levels, and measurement SNR. This is appealing for generating 

not only anatomical features, but also functional readouts using the simplest OCT imaging 

protocols by any regular OCT device (Fig. 8(a)). Recent work also reports the use of a fully 

connected network and a CNN to extract the spectroscopic information in OCT to quantify 

the blood oxygen saturation (sO2) within microvasculature, as an important measure of the 

perfusion function [192] (Fig. 8(b-c)). The DL models in [192] demonstrated more than 60% 

error reduction for predicting sO2 as compared to the standard nonlinear least-squares fitting 

method. These advances present emerging directions of DL applied to OCT to extract 

functional metrics beyond structures.

Photoacoustic imaging and sensing

Overview.—Photoacoustic imaging relies on optical transmission, followed by sensing of 

the resulting acoustic response [195, 196]. This response may then be used to guide 

surgeries and interventions [197, 198] (among other possible uses [199]). In order to guide 

these surgeries and interventions, image maps corresponding to structures of high optical 

absorption must be formed, which is a rapidly increasing area of interest for the application 

of DL to photoacoustic imaging and sensing. This section focuses on many of the first 

reports of DL for photoacoustic source localization, image formation, and artifact removal. 

Techniques applied after an image has been formed (e.g., segmentation, spectral unmixing, 

and quantitative imaging) are also discussed, followed by a summary of emerging 

applications based on these DL implementations.
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Source localization.—Localizing sources correctly and removing confusing artifacts 

from raw sensor data (also known as channel data) are two important precursors to accurate 

image formation. Three key papers discuss the possibility of using DL to improve source 

localization. Reiter and Bell [200] introduced the concept of source localization from 

photoacoustic channel data, relying on training data derived from simulations based on the 

physics of wave propagation. Allman et al. [201] built on this initial success to differentiate 

true photoacoustic sources from reflection artifacts based on wavefront shape appearances in 

raw channel data. Waves propagating spherically outward from a photoacoustic source are 

expected to have a unique shape based on distance from the detector, while artifacts are not 

expected to preserve this shape-to-depth relationship [201]. A CNN (VGG-16) was trained 

to demonstrate this concept, with initial results shown in Fig. 9. Johnstonbaugh et al. [202] 

expanded this concept by developing an encoder-decoder CNN with custom modules to 

accurately identify the origin of photoacoustic wavefronts inside an optically scattering 

deep-tissue medium. In the latter two papers [201, 202], images were created from the 

accurate localization of photoacoustic sources.

Image formation.—Beyond source localization, DL may also be used to form 

photoacoustic images directly from raw channel data with real-time speed [203, 204]. This 

section summarizes the application of DL to four technical challenges surrounding image 

formation: (1) challenges surrounding the limited view of transducer arrays [205–207] (in 

direct comparison to what is considered the “full view” provided by ring arrays), (2) sparse 

sampling of photoacoustic channel data [206, 208–210], (3) accurately estimating and 

compensating for the fluence differences surrounding a photoacoustic target of interest 

[211], and (4) addressing the traditional limited bandwidth issues associated with array 

detectors [212].

1. Limited view. Surgical applications often preclude the ability to completely 

surround a structure of interest. Historically, ring arrays were introduced for 

small animal imaging [213]. While these ring array geometries can also be used 

for in vivo breast cancer detection [214] or osteoarthritis detection in human 

finger joints [215], a full ring geometry is often not practical for many surgical 

applications [198]. The absence of full ring arrays often leads to what is known 

as “limited view” artifacts, which can appear as distortions of the true shape of 

circular targets or loss in the appearance of the lines in vessel targets.

DL has been implemented to address these artifacts and restore our ability to 

interpret the true structure of photoacoustic targets. For example, Hauptmann et 
al. [205] considered backprojection followed by a learned denoiser and a learned 

iterative reconstruction, concluding that the learned iterative reconstruction 

approach sufficiently balanced speed and image quality, as demonstrated in Fig. 

10. To achieve this balance, a physical model of wave propagation was 

incorporated during the gradient of the data fit and an iterative algorithm 

consisting of several CNNs was learned. The network was demonstrated for a 

planar array geometry. Tong et al. [206] learned a feature projection, inspired by 

the AUTOMAP network [216], with the novelty of incorporating the 

Tian et al. Page 19

Lasers Surg Med. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



photoacoustic forward model and universal backprojection model in the network 

design. The network was demonstrated for a partial ring array.

2. Sparse sampling. In tandem with limited view constraints, it is not always 

possible to sufficiently sample an entire region of interest when designing 

photoacoustic detectors, resulting in sparse sampling of photoacoustic responses. 

This challenge may also be seen as an extension of limited view challenges, 

considering that some of the desired viewing angles or spatial locations are 

missing (i.e., limited) due to sparse sampling, which often results in streak 

artifacts in photoacoustic images [217]. Therefore, networks that address limited 

view challenges can simultaneously address sparse sampling challenges [206, 

218].

Antholzer et al. [208] performed image reconstruction to address sparse 

sampling with a CNN, modeling a filtered backprojection algorithm [219] as a 

linear preprocessing step (i.e., the first layer), followed by the U-Net architecture 

to remove undersampling artifacts (i.e., the remaining layers). Guan et al. [209] 

proposed pixel-wise DL (Pixel-DL) for limited-view and sparse PAT image 

reconstruction. The raw sensor data was first interpolated to window information 

of interest, then provided as an input to a CNN for image reconstruction. In 

contrast to previously discussed model-based approaches [205, 208], this 

approach does not learn prior constraints from training data and instead the CNN 

uses more information directly from the CNN and sensor data to reconstruct an 

image. This utilization of sensor data directly shares similarity with source 

localization methods [197, 201, 202].

The majority of methods discussed up until this point have used simulations in 

the training process for photoacoustic image formation. Davoudi et al. [210] take 

a different approach to address sparse sampling challenges by using whole-body 

in vivo mouse data acquired with a high-end, high-channel count system. This 

approach also differs from previously discussed approaches by operating solely 

in the image domain (i.e., rather than converting sensor or channel data to image 

data).

3. Fluence correction. The previous sections address challenges related to sensor 

spacing and sensor geometries. However, challenges introduced by the laser and 

light delivery system limitations may also be addressed with DL. For example, 

Hariri et al. [211] used a multi-level wavelet-CNN to denoise photoacoustic 

images acquired with low input energies, by mapping these low fluence 

illumination source images to a corresponding high fluence excitation map.

4. Limited transducer bandwidth. The bandwidth of a photoacoustic detector 

determines the spatial frequencies that can be resolved. Awasthi et al. [212] 

developed a network with the goal of resolving higher spatial frequencies than 

those present in the ultrasound transducer. Improvements were observable as 

better boundary distinctions in the presented photoacoustic data. Similarly, Gutta 

et al. [220] used a DNN to predict missing spatial frequencies.
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Segmentation.—After photoacoustic image formation is completed, an additional area of 

interest has been segmentation of various structures of interest, which can be performed with 

assistance from DL. Moustakidis et al. [221] investigated the feasibiliity of DL to segment 

and identify skin layers by using pretrained models (i.e., ResNet50 [222] and AlexNet 

[223]) to extract features from images and by training CNN models to classify skin layers 

directly using images, skipping the processing, transformation, feature extraction, and 

feature selection steps. These DL methods were compared to other ML techniques. Boink et 
al. [224] explored simultaneous photoacoustic image reconstruction and segmentation for 

blood vessel networks. Training was based on the learned primal-dual algorithm [225] for 

CNNs, including spatially varying fluence rates with a weighting between imaging 

reconstruction quality and segmentation quality.

Spectral unmixing and quantitative imaging.—Photoacoustic data and images may 

also be used to determine or characterize the content of identified regions of interest based 

on data obtained from a series of optical wavelength excitations. These tasks can be 

completed with assistance from DL. Cai et al. [226] proposed a DL framework for 

quantitative photoacoustic imaging, starting with the raw sensor data received after multiple 

wavelength transmisions, using a residual learning mechanism adopted to the U-Net to 

quantify chromophore concentration and oxygen saturation.

Emerging applications.—Demonstrated applications for image formation with DL has 

spanned multiple spatial scales, with applications that include cellular-level imaging (e.g., 

microscopy [227], label-free histology), molecular imaging (e.g., low concentrations of 

contrast agents in vivo [211]), small animal imaging [210], clinical and diagnostic imaging, 

and surgical guidance [197]. In addition to applications for image formation, other practical 

applications in photoacoustic imaging and sensing include neuroimaging [209, 228], 

dermatology (e.g., clinical evaluation, monitoring, and diagnosis of diseases linked to skin 

inflammation, diabetes, and skin cancer [221]), real-time monitoring of contrast agent 

concentrations, microvasculature, and oxygen saturation during surgery [203, 226], and 

localization of biopsy needle tips [229], cardiac catheter tips [229–231], or prostate 

brachytherapy seeds [201].

Diffuse Tomography

Overview.—Diffuse Optical Tomography (DOT), Fluorescence Diffuse Optical 

Tomography (fDOT, also known as Fluorescence Molecular Tomography - FMT) and 

Bioluminescence Tomography (BLT) are non-invasive and nonionizing 3D diffuse optical 

imaging techniques [232]. They are all based on acquiring optical data from spatially 

resolved surface measurements and performing similar mathematical computational tasks 

that involve the modeling of light propagation according to the tissue attenuation properties. 

In DOT, the main biomarkers are related to the functional status of tissues reflected by the 

total blood content (HbT) and relative oxygen saturation (StO2) that can be derived from the 

reconstructed absorption maps [233]. DOT has found applications in numerous clinical 

scenarios including optical mammography [234, 235], muscle physiology [236], brain 

functional imaging [237] and peripheral vascular diseases monitoring. In fDOT, the inverse 

problem aims to retrieve the effective quantum yield distribution (related to concentration) 
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of an exogenous contrast agent [238, 239] or reporter gene in animal models [240] while 

illuminated by excitation light. In BLT, the goal is to retrieve the location and strength of an 

embedded bioluminescent source.

The highly scattering biological tissues lead to ill-posed nonlinear inverse problems that are 

highly sensitive to model mismatch and noise amplification. Therefore, tomographic 

reconstruction in DOT/fDOT/BLT is often performed via iterative approaches [241] coupled 

with regularization. Moreover, the model is commonly linearized using the Rytov (DOT) or 

Born (DOT/fDOT) methods [242]. Additional constraints, such as preconditioning [243] and 

a priori information are implemented [244–247]. Further experimental constraints in DOT/

fDOT are also incorporated using spectral and temporal information [248]. Despite this 

progress, the implementation and optimization of a regularized inverse problem is complex 

and requires vast computational resources. Recently, DL methods have been developed for 

DOT/fDOT/BLT to either aid or fully replace the classical inverse solver. These 

developments have focused on two main approaches, including 1) learned denoisers and 2) 

end-to-end solvers.

Learned denoisers.—Denoisers can enhance the final reconstruction by correcting for 

errors from model mismatch and noise amplification. Long [249] proposed a 3D CNN for 

enhancing the spatial accuracy of mesoscopic FMT outputs. The spatial output of a 

Tikhonov regularized inverse solver was translated into a binary segmentation problem to 

reduce the regularization-based reconstruction error. The network was trained with 600 

random ellipsoids and spheres as it only aimed to reconstruct simple geometries in silico. 

Final results displayed improved “intersection over union” values with respect to the ground 

truth. Since denoising approaches still involve inverting the forward model, it can still lead 

to large model mismatch. Hence, there has been great interest in end-to-end solutions that 

directly map the raw measurements to the 3D object without any user input.

End-to-end solvers.—Several DNNs have been proposed to provide end-to-end 

inversion. Gao et al. [250] proposed a MLP for BLT inversion for tumor cells, in which the 

boundary measurements were inputted to the first layer that has a similar number of surface 

nodes as a standardized mesh built using MRI and CT images of the mouse brain, and output 

the photon distribution of the bioluminescent target. Similarly, Guo et al. [251] proposed 

“3D-En-Decoder”, a DNN for FMT with the encoder-decoder structure that inputs photon 

densities and outputs the spatial distribution of the fluorophores. It was trained with 

simulated FMT samples. Key features of the measurements were extracted in the encoder 

section and the transition of boundary photon densities to fluorophore densities was 

accomplished in the middle section with a fully connected layer. Finally, a 3D-Decoder 

outputted the reconstruction with better accuracy than L1-regularized inversion method in 

both simulated and phantom experiments.

Huang et al. [253] proposed a similar CNN approach. After feature encoding, a “Gated 

Recurrent unit (GRU)” combines all the output features in a single vector, and the MLP 

(composed of two hidden layers with dropout and ReLu activations) outputs the 

fluorophores’ location. Simulated samples of a mouse model (with five organs and one 

fluorescent tumor target) were used. In silico results displayed comparable performance to 
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an L1 inversion method. It was also validated with single-embeddings in silico by outputting 

only the positions since the network does not support 3D rendering. Yoo et al. [252] 

proposed an encoder-decoder DNN to invert the Lippmann–Schwinger integral photon 

equation for DOT using the deep convolutional framelet model [254] and learn the nonlinear 

scattering model through training with diffusion-equation based simulated data. Voxel 

domain features were learned through a fully connected layer, 3D convolutional layers and a 

filtering convolution. The method was tested in biomimetic phantoms and live animals with 

absorption-only contrast. Figure 11 shows an example reconstruction for an in vivo tumor in 

a mouse inside water/milk mixture media.

Summary and future challenges.—DL has been demonstrated for improving (f)DOT 

image formation for solving complex ill-posed inverse problems. The DL models are often 

trained with simulated data, and in a few cases, validated in simple experimental settings. 

With efficient and accurate light propagation platforms such as MMC/MCX [255, 256], 

model-based training could become more efficient. Still, it is not obvious that such DL 

approaches will lead to universal solutions in DOT/FMT since many optical properties of 

tissues are still unknown and/or heterogeneous. Hence, further studies should aim to validate 

the universality of the architectures across different tissue conditions.

Functional optical brain imaging

Overview.—Functional optical brain imaging provides the opportunity to correlate 

neurobiological biomarkers with human behaviors, which impacts numerous fields, such as 

basic neuroscience, clinical diagnostics, brain computer interface (BCI) and social sciences. 

The two main established human functional optical brain imaging approaches are functional 

Near InfraRed Spectroscopy (fNIRS) and Diffuse Correlation Spectroscopy (DCS), both of 

which report brain activations via monitoring changes in optical signals as light reflected 

back to the detector while traveling through cortical areas. Classical neuroimaging studies 

are based on statistical analysis of biomarkers from a large group of subjects with different 

statuses (resting/active, stimuli/non-stimuli, disease/disease-free, etc.). However, the 

derivation of the biomarkers of interests are associated with data processing workflows that 

can be complex and computationally intensive. While numerous applications in 

neuroimaging inherently focus on classification of subjects based on spatiotemporal 

features, DL methods have two outstanding benefits. First, there is the potential to extract 

meaningful features from high-dimensional noisy data without expert knowledge required 

for the input/output mapping. Second, DL methods enable statistical inference at the single 

subject level which is critical for clinical practice. Hence, there has been a recent surge in 

DL solutions for functional optical brain imaging.

Classification based on cortical activations.—Most DL applications to functional 

optical brain imaging have focused on classification tasks based on fNIRS. Hiroyasu et al. 
[258] reported a DNN to perform gender classification on subjects performing a numerical 

memory task while subjecting to a white-noise sound environment to elicit gender-based 

differences in cortical activations. Using time series data of oxygenated hemoglobin of the 

inferior frontal gyrus on the left side of the head captured by 4 fNIRS channels, they 

reported a 81% accuracy in gender classification. The learned classifier identified the 
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inferior frontal gyrus and premotor areas provide the highest discrimination accuracy. 

Mirbagheri et al. [259] developed a DNN to predict stress using fNIRS data collected on the 

prefrontal cortex regions, demonstrating 88% accuracy when following the Montreal 

Imaging Stress Task (MIST) protocols [260].

DL has also been used on fNIRS data for diagnostic and therapeutic applications [261]. 

Rosas-Romero et al. [257] developed a CNN to predict epilectic seizure (Fig. 12) and 

reported accuracy ranging between 97% and 100%, sensitivity between 95% and 100% and 

specificity between 98% and 100% using both oxy- and deoxy-hemoglobin time series as 

the input. Electroencephalography (EGG) data were acquired simultaneously, but fNIRS 

predictive features outperformed EGG predictive features. Another use of fNIRS is in 

psychological studies. Bandara et al. [262] reported a CNN with Long Short Term Memory 

(LSTM) to analyze spatiotemporal oxy- and deoxy- hemodynamics data from the prefrontal 

cortex for classifying human emotions and achieved 77% accuracy using both oxy- and 

deoxy- hemoglobin data and 1-s time steps. These results demonstrate that spatiotemporal 

features are desired for fNIRS based classification tasks, and the DL methods excel in 

feature exaction in such high dimensional data sets. However, all the reported studies 

followed well defined protocols that are prevalent in neuroimaging studies but are not 

always conducive for real-word applications.

Another thrust in fNIRS study is to evaluate mental workload from Human Computer 

Interaction (HCI) in scenarios, such as driving, air traffic control, and surgery. Benerradi et 
al. [263] reported a CNN for classifying mental workload using fNRIS data from HCI tasks 

and achieved an accuracy of 72.77% for 2 classes and 49.53% for 3 classes. The CNN was 

benchmarked against logistic regression and SVM, but no particular improvements were 

noted. Gao et al. [264] reported a BRAIN-Net to predict surgical skill levels within the 

Fundamental of Laparoscopic Surgery (FLS) program environment, demonstrating a ROC-

AUC of 0.91 in predicting the FLS Score using fNIRS data collected on the prefrontal cortex 

of medical students performing the FLS pattern cutting task. BRAIN-Net outperformed 

classical ML techniques, including Kernel Partial Least Squares (KPLS), nonlinear SVM 

and Random Forest, when the data was larger than 600 samples. These results demonstrated 

the potential of DL for behavior prediction as reported by well-established metrics with 

freely mobile and unconstrained subjects performing challenging bimanual tasks. Hence, 

DL-enabled fNIRS methods have the potential for impacting real-world applications. In this 

regard, one of the most exciting applications of neuroimaging is BCI.

Brain computer interface.—DL is expected to advance BCI [265]. To date, DL methods 

for BCI have mainly focused on EGG and to a lesser extent to Magnetic resonance imaging 

(MRI) or Electromyography (EMG). About 70% of the current work use CNN as 

discriminative models, 20% use Recurrent neural network (RNN) [107], while generative 

models (e.g. GAN or VAE) are rarely employed. Impressive results have been reported for 

real time control of a robot arm using DL-based BCI [266]. Following these trends, a few 

studies have been reported on DL-enabled fNIRS BCI. Hennrich et al. [267] reported a DNN 

that offered similar accuracy as compared to conventional methods in mental task 

classification. Dargazany et al. [268] implemented a CNN to recognize activity response in 

fNIRS data for 5 different activities and reported a 77–80% accuracy in classifying these 
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tasks. Trakoolwilaiwan et al. [269] developed a CNN to classify between rest, right- and left- 

hand motor execution tasks and achieved classification accuracy within 82–99% depending 

on the specific subject, which was 6.49% more accurate than SVM and 3.33% more accurate 

than ANN. As BCI is a challenging task due to noisy data, one current research direction is 

the implementation of multimodal systems, especially EGG-fNIRS systems, for improved 

performance. Saadati et al. [270] reported a DNN for processing multimodal input from the 

variation of oxy- and deoxy-hemoglobin from fNIRS and the event-related 

desynchronization (ERD) from EGG, achieving the highest accuracy when compared to 

methods using a single biomarker and 92% accuracy for the word generation task compared 

to 86% for SVM.

Denoising and fast data processing.—Data preprocessing in optical neuroimaging is 

critical and includes dynamic range correction, transforming light attenuation to 

chromophore concentration, regressing shallow hemodynamic response to increase the 

sensitivity to cortical tissues, identifying and removing noise, especially motion artefacts. 

These steps typically require user inputs and are computationally intensive. Gao et al. [271] 

demonstrated a DNN for suppressing motion artifacts in raw fNIRS signals and identified 

100% of the motion artefacts almost in real time. Poon et al. [272] reported a DNN in DCS 

that was 23× faster in estimating the tissue blood flow index compared to the traditional 

nonlinear fitting method. Hence, DL methodologies may facilitate the adoption of DCS for 

neuroimaging studies by enabling real-time and accurate tissue blood flow quantification in 

deep tissues.

Future directions and associated challenges.—DL methods herald the potential for 

subject specific classification on the fly, leading to fast and direct feedback based on real-

time monitoring of brain functions. It also has potential for neuro-feedback in numerous 

therapeutic scenarios or cognitive/skill learning programs. In addition, DL has been largely 

adopted in brain connectivity studies [273], which has become prevalent for deciphering the 

brain circuitry [274] and diagnostic purposes [275]. Similar to MRI [276], DL is expected to 

play a critical role in next generation functional brain connectivity studies [277]. Still, 

numerous challenges lie ahead to implement full end-to-end solutions in data processing and 

classification.

One main challenge is the size of the population needed for generating the data sets. As we 

are still far from being able to model the complexity of brain functions and dynamics, this 

challenge is complicated by the need to train and validate neuroimaging DL approaches with 

experimental data. In numerous fNIRS and DCS studies, subject recruitment is limited and 

no public database is readily available. Such limitations have been recognized in all existing 

work. For such emerging methodologies, great care should be directed to appropriate cross-

validation of the DL methods. Hence, validation methods such as k-fold and/or leave-one-

out (one refers to one subject out, one trial out, or one day out, etc.) are essential to convey 

confidence of the usefulness of the methodology [278].

In addition, numerous applications of optical neuroimaging involve environments and tasks 

that cannot be fully controlled and/or restricted. Thus, brain cortical activations and 

connectivity can reflect response to complex stimuli in which “ground truth” can be 
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challenging to establish. For example, it would be ideal to use a standardized and accredited 

metric (i.e., the FLS score) in various neuro-based applications. However, such objective 

standards do not exist and labeling of the data can be problematic. These challenges also 

limit the potential of DL for discovery and mapping of the brain circuitry. If DL were to 

become preponderant in functional connectivity studies, it also faces the current challenge of 

being primarily employed in the brain at rest, which does not offer insight into active states 

of interest.

CHALLENGES AND OPPORTUNITIES ACROSS MULTIPLE IMAGING 

DOMAINS

Challenges

Data availability and bias.—Most DL models for biomedical optics rely on “supervised 

learning” that are trained on domain- and/or task-specific datasets, which need to be 

carefully curated to ensure high-quality predictions. As a result, there are several inherent 

challenges in the data generation process that need to be addressed, including data 

availability and data bias [279]. For many applications, it is often difficult and costly to 

acquire a large-scale dataset. Novel techniques that can better leverage small-scale dataset 

while still providing high-quality models are needed, such as unsupervised, semi-supervised, 

and self-supervised learning, transfer learning, and domain adaptation. In addition to the 

overall scale of the dataset, the data may also be skewed or biased [280] because it may be 

difficult to acquire data with a balanced distribution for each sub-group, such as gender, 

ethnicity, etc. DNNs trained on biased dataset can result in erroneous predictions in 

particular for under-represented populations and diseases. These obstacles may be mitigated 

to some extent with careful planning and data collection. However, there is a need to also 

identify and reduce data biases in the modeling step, such as data augmentation and 

balanced loss function design.

Interpretability.—A common challenge of DL models is that they are generally “black-

boxes” and their predictions typically cannot be precisely explained. This is particularly 

problematic in health applications. To address this issue, “interpretable/explainable” DL 

techniques [281, 282] are needed. To this end, there are two general approaches that are 

actively being researched in the field [283]. The first is to develop an interpretable 

computational structure instead of DNNs [284, 285], so that the predictions are made based 

on the crafted logic in the DL model. The second approach is to provide post hoc model 

prediction interpretation, such as attention mechanism [42, 286] and uncertainty 

quantification [20, 287, 288], while keeping the same DNN structure.

Prospective and real-world validation.—In general, there is a need for prospective 

evaluations of DL-based systems in real clinical settings. The performance of DL models are 

commonly evaluated post hoc using metrics often not directly translatable to improving 

patient care. To critically evaluate the performance and move to clinical impact, these gaps 

must be bridged. First and foremost, large-scale prospective testing is needed, ideally with 

multiple sites, users, and instruments. Secondly, it is also important to develop quantitative 

Tian et al. Page 26

Lasers Surg Med. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



metrics to relate those commonly used in DL model development to those most pivotal in 

improving the management of disease.

Opportunities

Exploiting multimodal data.—DNNs provide powerful frameworks for integrating 

multimodal and multidimensional data [15]. Biomedical optics systems often acquire 

measurements that augment traditional visualization or span a wide range of resolutions, 

imaging speeds, and sources of contrast. A fundamental barrier to the clinical translation of 

these technologies is that their benefit must outweigh the cost of additional training and time 

required to interpret and monitor these data. DL models can efficiently analyze these data 

together and transform them to actionable representations, reducing these training barriers 

while increasing the diagnostic power of multimodal imaging.

Lowering costs.—First, as shown in many examples herein, DL can enable new imaging 

capabilities that improve resolution, acquisition speed, FOV, and DOF often with minimal 

hardware modifications. This means that high-quality measurements can increasingly be 

made using relatively simple and lower cost systems. Second, DL technologies can enable 

more efficient workflows in healthcare and research, such as digital staining/labeling of 

tissues to reduce the cost and time associated with sample preparation.

Deskilling procedures.—Automated data processing and interpretation by DL may 

reduce the level of skill needed to obtain measurements and provide a diagnosis. A major 

benefit of DL based processing is that it is “end-to-end”. This means that once the DNN is 

trained, it enables automated reconstruction without any additional manual parameter 

tuning, potentially making it more generalizable and robust than classical approaches. This 

advantage must be balanced with great care and heightened responsibility to ensure ethical 

usage and unbiased outputs of these end-to-end DNN algorithms.

Increasing access to high-quality health care.—The ability of DL to lower cost and 

training requirements for diagnostic technologies holds tremendous potential for increasing 

access to high-quality health care in low-resource settings.

SUMMARY AND OUTLOOK

DL-based techniques have shown promise in addressing various technical challenges for 

developing novel biomedical optics systems, such as overcoming physical trade-offs, as well 

as enabling novel capabilities beyond existing solutions. Successful examples are available 

across multiple imaging domains, including microscopy, fluorescence lifetime imaging, in 
vivo microscopy, widefield endoscopy, optical coherence tomography, photoacoustic 

imaging, diffuse tomography, and functional optical brain imaging. Techniques are vast and 

varied, ranging from providing microscopic subcellular information to localizing image 

sources and offering macroscopic biomarkers. With the advances of DL techniques in many 

different biomedical optics domains, there are also some outstanding challenges that must be 

addressed in order to fully realize the impact of these techniques. As we are rapidly seeing 

across multiple biomedical optics modalities, DL techniques have promising potential to 
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lower system costs, reduce required skill levels to carry out measurements, and ultimately 

increase the quality, affordability, and accessibility of health care.
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Fig 1: 
Number of reviewed research papers which utilize DL in biomedical optics stratified by year 

and imaging domain.
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Fig 2: 
(a) Classical machine learning uses engineered features and a model. (b) Deep learning uses 

learned features and predictors in an “end-to-end” deep neural network.
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Fig 3: 
Three of the most commonly-used DNN architectures in biomedical optics: (a) Encoder-

decoder, (b) U-Net, and (c) GAN.
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Fig 4: 
DL overcomes physical tradeoffs and augments microscopy contrast. (a) CARE network 

achieves higher SNR with reduced light exposure (with permission from the authors [18]). 

(b) Cross-modality super-resolution network reconstructs high-resolution images across a 

wide FOV [19] (with permission from the authors). (c) DL enables wide-FOV high-

resolution phase reconstruction with reduced measurements (adapted from [20]). (d) Deep-Z 

network enables digital 3D refocusing from a single measurement [21] (with permission 

from the authors). (e) Virtual staining GAN transforms autofluorescence images of 

unstained tissue sections to virtual H&E staining [22] (with permission from the authors) (f) 

DL enables predicting fluorescent labels from label-free images [23] (Reprinted from Cell, 

2018 Apr 19;173(3):792–803.e19, Christiansen et al., In Silico Labeling: Predicting 

Fluorescent Labels in Unlabeled Images, Copyright (2020), with permission from Elsevier).
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Fig 5: 
Example of quantitative FLI metabolic imaging as reported by NADH tm for a breast cancer 

cell line (AU565) as obtained (a) with SPCImage and (b) FLI-Net. (c) Linear regression with 

corresponding 95% confidence band (gray shading) of averaged NADH Tm values from 4 

cell line data (adapted from [90]).
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Fig 6: 
DL approaches to support real-time, automated diagnostic assessment of tissues with 

confocal laser endomicroscopy. (a) Graphical rendering of two confocal laser 

endomicroscopy probes (left: Cellvizio, right: Pentax) (adapted from [109]). (b) Example 

CLE images obtained from four different regions of the oral cavity (adapted from [110]) (c) 

Fine-tuning of CNNs pre-trained using ImageNet is utilized in the majority of CLE papers 

reported since 2017 (adapted from [110]). (d) Super-resolution networks for probe-based 

CLE images incorporate novel layers to better account for the sparse, irregular structure of 

the images (adapted from [111]). (e) Example H&E stained histology images with 

corresponding CLE images. Adversarial training of GANs to transfer between these two 

modalities has been successful (adapted from [112]). (f) Transfer recurrent feature learning 

utilizes adversarially trained discriminators in conjunction with an LSTM for state-of-the-art 

video classification performance (adapted from [112]).
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Fig 7: 
(a) Example automatic retinal layer segmentation using DL compared to manual 

segmentation (reprinted from [175]). (b) GAN for denoising OCT images (adapted from 

[181]). (c) Attention map overlaid with retinal images indicated features that CNN used for 

diagnosing normal versus age-related macular degeneration (AMD) [182] (Reproduced from 

Detection of features associated with neovascular age-related macular degeneration in 

ethnically distinct data sets by an optical coherence tomography: trained deep learning 

algorithm, Hyungtaek et al., Br. J. Ophthalmol. bjophthalmol-2020–316984, 2020 with 

permission from BMJ Publishing Group Ltd.).
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Fig 8: 
(a) Examples of using DL to predict blood flow based on structural OCT image features 

(reprinted from [191]). (b) Example of deep spectral learning for label-free oximetry in 

visible light OCT (reprinted from [192]). (c) The predicted blood oxygen saturation and the 

tandem prediction uncertainty from rat retina in vivo in hypoxia, normoxia and hyperoxia 

(reprinted from [192]).
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Fig 9: 
Example of point source detection as a precursor to photoacoustic image formation after 

identifying true sources and removing reflection artifacts, modified from [201]. (©2018 

IEEE. Adapted, with permission, from Allman et al. Photoacoustic source detection and 

reflection artifact removal enabled by deep learning, IEEE Transactions on Medical 

Imaging. 2018; 37:1464–1477.)
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Fig 10: 
Example of blood vessel and tumor phantom results with multiple DL approaches. 

(Reprinted from [205].)
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Fig 11: 
Reconstruction for a mouse with tumor (right thigh) where higher absorption values are 

resolved (slices at z=15 and 3.8 mm) for the tumor area with the DNN in (a) compared to the 

L1-based inversion in (b). (adapted with permission from the authors from [252]).
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Fig 12: 
Hemodynamic time series for prediction of epileptic seizure using a CNN (with permission 

from the authors [257]) (Computers in Biology and Medicine, 11, 2019, 103355, Rosas-

Romero et al., Prediction of epileptic seizures with convolutional neural networks and 

functional near-infrared spectroscopy signals, Copyright (2020), with permission from 

Elsevier).
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