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To date, more than 20 different vertebrate master sex-determining genes have
been identified on different sex chromosomes of mammals, birds, frogs and
fish. Interestingly, six of these genes are transcription factors (Dmrt1- or Sox3-
related) and 13 others belong to the TGF-β signalling pathway (Amh, Amhr2,
Bmpr1b, Gsdf and Gdf6). This pattern suggests that only a limited group of fac-
tors/signalling pathways are prone to become top regulators again and again.
Although being clearly a subordinate member of the sex-regulatory network in
mammals, the TGF-β signalling pathway made it to the top recurrently and
independently. Facing this rolling wave of TGF-β signalling pathways, this
reviewwill decipher how the TGF-β signalling pathways copewith the canoni-
cal sex gene regulatory network and challenge the current evolutionary
concepts accounting for the diversity of sex-determining mechanisms.

This article is part of the theme issue ‘Challenging the paradigm in sex
chromosome evolution: empirical and theoretical insights with a focus on
vertebrates (Part I)’.
1. Introduction
The existence of two complementary sexes, male and female, is probably one of
the most ancient and pervasive features in biology. Intriguingly, this apparently
conserved ontogenetic process, triggering the differentiation of two highly
specialized male and female reproductive organs, relies on astonishingly
plastic, rarely considerably conserved and stochastic regulatory networks
[1,2]. Furthermore, the initial triggers ahead of the molecular machinery that
rules sex determination (SD) from a fundamentally bipotential genome, are
extremely variable, and have evolved recurrently and independently [3].

Our understanding of the so-called proximate causes, the underlying mech-
anism, regulation and drivers for this observed variability, has been advanced
through the characterization of a substantial number of master sex-determining
(MSD) genes over a broad spectrum of species. This knowledge in turn improves
our understanding of what organismic biologists designated as the ultimate
causes, scenarios leading to transitions of SD mechanisms within and between
diverse lineages. The diversity and extreme lability of these initial triggers can
either come from the genome itself (genetic sex determination, GSD), or from
‘external’ signals (environmental sex determination, ESD). Importantly, the phy-
logenetic distribution of these triggers does not exhibit any evolutionary pattern.
Therefore, numerous (and sometimes conflicting) scenarios and hypotheses have
been proposed to explain the evolutionary forces underlying the diversity of SD
triggers [4].

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2020.0091&domain=pdf&date_stamp=2021-07-12
http://dx.doi.org/10.1098/rstb/376/1832
http://dx.doi.org/10.1098/rstb/376/1832
http://dx.doi.org/10.1098/rstb/376/1832
mailto:amaury.herpin@inrae.fr
http://orcid.org/
http://orcid.org/0000-0002-8501-0405
http://orcid.org/0000-0003-2453-2514
http://orcid.org/0000-0002-7028-987X
http://orcid.org/0000-0001-5464-6219
http://orcid.org/0000-0002-0630-4027


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

376:20200091

2
Adaptive hypotheses prevail for explaining the evolution of
the vast diversity of sex-determining triggers (GSD or ESD),
whose ultimate effect is to favour an equal sex ratio in a
given population. Under this natural selection scenario,
mutations which establish new SDmechanisms and confer fit-
ness advantages to their carrierswill increase in frequency until
fixation in a given population, while the previous SD mechan-
ism will be lost [5]. Fitness advantage and sexually antagonistic
models predict that GSD is stabilized through the evolution of
sex chromosomes, with sexual selection linking the genetic
sex-determiner to a locus which is beneficial to the same sex
or antagonistic in the opposite sex [6–10]. Recently, Perrin
proposed sex as a bistable equilibrium (male versus female
phenotypes) which can be triggered by any random process
capable of tipping the balance in either direction from the
undetermined state (random sex determination, RSD [11]).

The progressive elucidation of the molecular components
constituting the SD pathways and their biological functions
has resulted in the neutral process of genetic drift also being
considered instrumental in generating the observed diversity
of SD mechanisms. If only the final gene product of a regulat-
ory network produces a phenotype, then changes in the
upstream system can occur without necessarily impacting
the final phenotype, and thus can evolve neutrally [12,13].
Furthermore, since downstream genes of sex-determining
pathways seem to be more conserved than upstream ones,
it was hypothesized that the SD cascade is built from a
‘bottom-up’ scenario, with novel top regulators being
issued from downstream components of the cascade itself
([14] and this issue [15] for a revisit of that theory).

To date, more than 20 different vertebrate MSD genes have
been identified on different sex chromosomes of mammals,
birds, frogs and fish (table 1). Interestingly, six of these genes
are transcription factors (Dmrt1- or Sox3- related) and 13 others
belong to the TGF-β signalling pathway (Amh, Amhr2, Bmpr1b,
Gsdf and Gdf6). This pattern suggests that only a limited
group of factors/signalling pathways are prone to become top
regulators, while other well-characterized and indispensable
components of sex-determining pathways—e.g. Sox9 or
Foxl2—have apparently not been recruited as master regulators
in any species studied so far. Moreover, while TGF-β members
are clearly subordinate in the mammalian sex-regulatory net-
work, they have independently and recurrently made it to the
top in fish (table 1). The biological importance of TGF-βmembers
is unfortunately contrasted by the lack of information on how
such signalling(s) is/are elicited and physiologically integrated
during gonadal induction and development. Additionally, such
a profusion of master regulators from TGF-β pathway-related
members (figure1a)drawsattention to theevolutionarymeaning
of this convergent evolution.

Here, we will take advantage of this ‘evolution in motion’
scenario to decipher ‘how the TGF-β signalling pathways
cope with the canonical sex gene regulatory network (GRN)
and challenge the current evolutionary concepts accounting
for the diversity of sex-determining mechanisms’.
2. Conserved critical roles for gonadal TGF-β
signalling molecules

From sponges to mammals, the TGF-β superfamily of active
polypeptides has attracted much attention for its pleiotropy.
Members of this superfamily control a plethora of cellular
processes from embryonic development to tissue homeostasis
[80]. Based on sequence homology, TGF-β molecules are
divided into: (i) TGF-β sensu stricto; (ii) bone morphogenetic
proteins (BMPs); (iii) activins, inhibins and growth and
differentiation factors (GDFs); and (iv) distant members.
Astonishingly, despite the tremendous diversity of physio-
logical responses which these family members elicit, the
core of this signalling pathway is highly stereotyped. Canoni-
cal TGF-β members signal through heteromeric complexes
composed of type I and II serine/threonine kinase receptors.
Ligand binding induces the formation of a ternary complex,
which then initiates intracellular signal transduction and
transcriptional regulation of target genes via Smads proteins
[80,81] (see lower part of figure 1a).

From an evolutionary perspective, the appearance of
the TGF-β pathway is intrinsically linked to the emergence
of metazoans [82], and the expansion of this pathway
accompanied the generation of key vertebrate evolutionary
novelties (see [83] for review). Nevertheless, due to an
additional round of whole genome duplication (WGD) in tele-
osts on top of the ancientWGDs at the vertebrate root, the TGF-
β pathway gene radiation is most extensive in this clade.
Indeed, the repertoires of ligands and Type I and II receptors
increased from 7, 3 and 2 in Drosophila, to 30, 7 and 5 in mam-
mals and up to 43–50, 9–11 and 7–10 in teleosts, respectively
[83]. This evolutionary expansion increases the number of
players, relaxes the physiological constraints on them, and
thereby provides an ideal playground for neutral processes of
genetic drift to act on ‘dispensable’ copies. Obviously, teleosts
seized this opportunity, as is apparent from their mechanisms
of primary sex determination involving TGF-β signalling
molecules (table 1 and figure 1a).

(a) The anti-Müllerian hormone dual (Amh and
AmhRII)

The anti-Müllerian hormone (Amh) is a distant member of the
TGF-β family and belongs to the fourth subgroup; a subgroup
which shows limited homology to members of the activin/
inhibin and sensu stricto TGF-βs subgroups (figure 1a).

In mammals, Amh plays a major role in the regression of
the Müllerian duct-forming part of the female reproductive
tract during male embryo development ([84,85] for review).
Amh has additionally been shown to regulate germ cell devel-
opment and primordial follicle recruitment [86]. Furthermore,
while Amh is not required for primary sex determination
and testis development in mouse [87,88], mutations in the
Amh pathway lead to disorders in male sexual development
(the persistent Müllerian duct syndrome, see [88] for review).
Contrastingly, Amh-related molecules play a central role in
testis formation in non-mammalian vertebrates. For instance,
in chicken embryonic gonads, Amh and AmhRII are more
highly expressed in males than females, and their signalling
is hypothesized to be responsible for organizing early testis
structures in chickens and other birds [89]. The knock down
of Amh in chicken embryos revealed that this molecule is
required for embryonic urogenital system growth but not for
sexual differentiation [90], and overexpression experiments
suggest that, although it does not operate as a deterministic
early testis activator, it affects downstream events, such as
steroid production [91]. In amphibians, Amh is predominantly
expressed in differentiating testes, but is not sexually dimorphic
during the sex-determining stages [92,93]. Although Amh has



Table 1. Master sex-determining genes and systems in vertebrates. Table of the currently known and documented master sex-determining (MSD) genes in
vertebrates. Of special interest, MSD genes belonging to the TGF-β are highlighted in red. MSD genes that arose after allelic diversification or gene duplication
are highlighted in green and blue, respectively. Specific references are given; PC, personal communication. (Online version in colour.)
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so far never been located to amphibian sex chromosomes [93],
Amh andAmhRII nevertheless showvariable degrees of associ-
ation with sex in different populations of common frog (Rana
temporaria) [94]. Interestingly, in the platypus (Ornithorhynchus
anatinus), the Amh-Y (located within an ancient bloc of genes
on Y-chromosome #5) is the prime candidate for being the prin-
cipal SD gene. While its candidacy awaits further functional
characterization [89], this suggests that an ‘ancestral’ AMH
mayhave functioned as a primary inducer of sex differentiation,
and that this function may have been lost in therian mammals.

Fish do not have Müllerian ducts, but have an Amh
homolog, which was first identified in the Japanese medaka
(Oryzias latipes) [95]. Although being clearly a subordinate
member of the sex regulatory network in therian mammals,
the Amh/Amh-receptor system has made its way to the top
in several teleost species (table 1 and figure 1a). In this
regard, AMH ligand is the most successful, having risen to
master sex determiner in several fish species, including the
Patagonian pejerrey (Odontesthes hatcheri) [96], the Nile tilapia
(Oreochromis niloticus) [76], the northern pike (Esox lucius)
[59], and likely the lingcod (Ophiodon elongatus) [60] and the
threespine stickleback (Gasterosteus aculeatus) [61]. Besides
the ligand, a hypo-active version of the AMHRII on the
X-chromosome of the tiger pufferfish (Takifugu rubripes) [62]
also made it to the top (setting up a recessive allele as a sex
determiner), while truncated AMHRII receptors determine
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Figure 1. Signalling pathways and gene regulatory networks of gonadal sex induction and maintenance in vertebrates. (a) Several genetic triggers regulate and
temper modular sex-determining gene regulatory networks. Central to the male and female regulatory networks, respectively, are the evolutionarily conserved Dmrt1
and Foxl2 transcription factors, which cross-inhibit each other. Unstable equilibria between these conflicting (male (blue) and female (pink)) genetic pathways and
the gene regulatory networks which underlie the phenotypic differentiation of the somatic gonad towards ovary or testis. The recurrent recruitment of secreted and
diffusible cytokines of the TGF-β family to top positions in sex determination (green asterisk) forces us to reconsider our mechanistic view of sex determination. The
pleiotropic nature of these factors, which act as hubs for integrating diverse signals, should make us consider SD from a developmental perspective, and sex as a
threshold phenotype trait. (b) Sex differentiation is a threshold phenotypic trait resulting from fine regulation within and between intricate gene regulatory net-
works. The extreme genetic and phenotypic plasticity underlying sex determination, development and maintenance suggest that sex might also be considered as
nothing more than a multilayer reaction norm. This multilayer reaction norm emerges from the integration of environmental stimuli (temperature, pH, etc.) and the
genome (genomic and epigenomic variation) through (ambivalent) master triggers (crown symbols). (Online version in colour.)
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sex in the yellow perch (Perca flavescens) [63] and a catfish
(Y Guiguen and A Herpin 2021, personal communication). It
is also worth noting that all of the above mentioned AMH
pathway molecules (in pike, Nile tilapia, pejerrey, stickleback
and lingcod, with the exception of AMHR2 in the pufferfish
and likely AMH in monotremes) arose via the same mechan-
ism of ‘sporadic’ gene duplication (see table 1). So far, no
other components of this pathway (e.g. Smads, figure 1a)
have been identified as MSD genes in any species.

(b) Bone morphogenetic proteins/growth and
differentiation factors, the new comer

In mouse embryos, several independent BMP signals are
required for proper primordial germ cell (PGC) specification:
primary induction of PGCs at the posterior proximal epiblast
is driven by BMP4 [64], whereas PGC number is controlled
synergistically by BMP2, BMP4 and BMP8b, as well as
BMP7 signals [65,66]. In mice, GDF9 and BMP15 influence
and coordinate the development of granulosa cells together
with that of the oocytes they surround. As a result, GDF9
or BMP15 mutant mice are either sterile or sub-fertile,
respectively [67], and decreased levels of the oocyte-secreted
GDF9 and BMP15 factors result in polycystic ovarian syn-
drome [68]. Hence, while the BMP signalling pathway
seems not to be involved in early SD events, it is implicated
in mammalian germ cell specification and gametogenesis
[69]. In zebrafish, whose MSD gene remains unknown, func-
tional female-to-male sex reversal is observed in BMP15-
deficient females [70], suggesting that BMP15 is required to
maintain female sex fate in juveniles, although not required
for primary female sex determination [70]. In contrast to
mice, GDF9 does not seem to have any evident role in the
maintenance of female sex differentiation or oogenesis in zeb-
rafish [70]. Interestingly, zebrafish BMP15 mutant phenotype
resembles that of mouse GDF9 mutants: early stage arrest in
oocyte development and then degradation. Nevertheless,
GDF9 mutant mice do not sex-reverse [68].

Intriguingly, although Gdf6 has no known involvement in
any gonadal development processes, this gene has been
recruited independently as a male determiner in the killifish
(Nothobranchius furzeri) [71] and a Characiformes species
(Y Guiguen 2021, unpublished data) following allelic diversi-
fication and gene duplication, respectively (table 1).
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Interestingly, in both cases, non-conservative amino acid
changes and deletions at key residues likely altered protein
interactions, particularly dimerization and receptor inter-
action [70]. Nevertheless, the downstream targets (activins,
BMP or other GDFs and Smads) of the Gdf6 signalling
route during fish SD remain unknown (figure 1a).

More recently, a truncated form of a BMP type I receptor,
BMPR1BB, that originated by gene duplication has been
identified as the MSD gene in Atlantic herring [22]. It was
shown that BMPR1B could induce testis development by
transducing AMH signalling in the absence ligands. This
case brought another member in the BMP signalling path-
ways to the spotlight and also highlighted the crosstalk
between AMH and BMP pathways.

(c) Gonadal soma-derived factor, the teleost speciality
The gonadal soma-derived factor (Gsdf) is another example
illustrating the importance of the TGF-β family in SD. Its
biochemical function is not well understood; however, it is
assumed to play a role in male gonad development because
it is expressed exclusively in the early differentiating testes
(of all fish analysed so far) [23,24]. Interestingly, the signalling
modalities of Gsdf are challenging to decipher (figure 1a);
while Gsdf is most homologous to inhibins, it nevertheless
harbours a C-terminal LEFTY/DAN-like extension, and
lacks any α-helix type I receptors epitopes (A Herpin 2021,
unpublished data). Besides its proposed role in the down-
stream gonadal regulatory network [24], Gsdf has made it
to the top of the SD pathway in Oryzias luzonensis [25] and
in the sablefish ([26] and A Herpin 2021, unpublished
data). Interestingly in O. latipes and O. dancena, two sister
species of O. luzonensis, Gsdf is under direct transcriptional
regulation of the MSD genes (Dmrt1bY and Sox3Y, respect-
ively), indicating a conserved role for Gsdf as an important
initiator of male sexual development ([24,27]; figure 1a).
3. Signalling specificity and crosstalk between
different gonadal TGF-β signal transducing
factors (Amh/AmhR2/BmpR1b/Gsdf/Gdf6)

The Amh/AmhR2/BmpR1b backbone, which has so far given
rise to 5/2/1MSD genes, respectively, (table 1), seems to be the
main axis for eliciting gonadal TGF-β signalling (figure 1a).
Therefore, it is of prime interest to understand how such a
diversity of redundant and cross-talking pathways physiologi-
cally interact with the canonical gonadal GRN (see §5a and
figure 1a).

Because Amh can directly interact with Sox9 [28], Foxl2
[29], Wt1 [30], Sox8 [31], Wnt4/Dax1 [32] and GDF9/BMP15
[33] (figure 1a), and because zebrafish amh/gsdf double
mutant gonads are phenotypically no more compromised
than either single mutant [34], it is likely that the gonadal
Amh core signalling (Amh, AmhR2, BmpR1 and Smads 1 and
5) serves as the main regulatory hub for physiologically inte-
grating multiple signals from a plethora of cross-talking
pathways (figure 1a). However, the loss of AmhR2 in two
fish clades, the Chimaeriformes and Cyprinidae [83], the function
of a truncatedAmhR2 asMSD in perch [63] and catfish, and the
profound structural reorganization (implying impacted
ligand/receptor interactions) of the Gdf6 ligands in killifish
and a Characiformes species leave room for alternative routes,
possibly relying onBmpR2 [34]. Indeed, in theAtlantic herring,
the functional but truncated BmpR1bbY can phosphorylate
downstream Smads 1 and 5 independently of the Amh-
induced regulation [22]. These findings, together with the
absence of any identified Smad effectors at the top of the SD
pathway, suggest that gonadal TGF-β can also use non-Smad
signalling (figure 1a).

Molecular specificity in the TGF-β family is not singularly
achieved by ligand-receptor interactions, but by a network of
interactions between multiple partners [35] (figure 1a,b). In
this regard, the pleiotropic nature of the TGF-βs makes
them the best candidates to influence the regulation of
these pathways (figure 1b), and may thereby explain their
prominence in fish SD.
4. How sex determination involving TGF-β
molecules challenges the current evolutionary
concepts accounting for the diversity of sex-
determining mechanisms

(a) Random sex determination: herring, pejerrey and
the resonance from the noise

RSD conceptualises male versus female phenotypes as a bis-
table equilibrium which can be triggered by any random
processes favouring a balanced sex ratio. Such a stochastic
mechanism is predicted to evolve in species with large and
genetically unstructured populations [11].

Surprisingly, in the Atlantic herring (a species with enor-
mous population sizes (swarms of up to 4 billion individuals)
and spawns (up to 200 000 eggs spawned per female), and
without factors which indicate sexual selection and/or
provide triggers for ESD such as morphological dimorphism,
courtship behaviour, intraspecific social interactions and a
structured environment) SD is nevertheless ruled by a
strong genetic determiner: a truncated BMPR1BBY receptor
carried by a well differentiated sex chromosome [22]. Intrigu-
ingly also, in the Argentinian silverside or pejerrey, the Amhy
MSD gene is structurally well conserved and has strong
genetic association with maleness within most of the clades
of the Odontesthes genus [36], but can also function under
an ESD (temperature) regime (e.g. in O. bonariensis [37]),
with RSD at certain temperatures. These examples do not
only reflect the obvious interplay of genetic and envi-
ronmental factors (the so-called ‘developmental noise’)
to produce a sexual phenotype, but also emphasize the
importance of other factors including density, pH and
temperature on the sexual fates of many fish—and reptile—
species [38]. It also reveals that RSD processes might be
sporadically resilient, but not perfectly random. Hence,
even minimal deviations from optimal sex ratios might
initiate evolutionary drift towards GSD, particularly when
population sizes are large and/or natural selection is effec-
tive. Under almost all scenarios there will be a
predisposition towards one sex or the other depending on
the resonance emerging from these interactions—or develop-
mental noise—with one system trumping the other according
to the context. In these conditions, the pleiotropic nature of
TGF-βs, being able to integrate multiple signals from ‘devel-
opmental noise’ might explain their recurrent recruitment
to be MSD genes.
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(b) Fitness advantage and sexually antagonistic models
Classical models of sex chromosome evolution postulate that
there first occurs an expansion of regions with reduced
recombination near the MSD gene, and that the loss of recom-
bination subsequently results in the gradual decay of the
whole sex chromosome [39,40]. These models are based on
the highly degenerated sex chromosomes of model species,
and the universality of these models has recently been
called into question by new findings in non-model species.
For example, the MSD gene in northern pike (Amhby)
arose greater than 65 Ma [41,59] and the surrounding
Y-specific region remains restricted in size and without
other protein coding genes. Furthermore, no male ben-
eficial/female antagonistic genes have been found in this
tiny SD region [59]. Interestingly, this very restricted sex-
differentiated region encompassing amhby is a conserved
feature of all Y-chromosomes in several species of this
clade, illustrating that SD systems can be stable for over
50 Myr. These examples temper the ‘need’ for highly degen-
erated sex chromosomes as ‘evolutionary traps’ preventing
the turnover of SD systems [3].

While increasing numbers of undifferentiated sex
chromosomes have been recently identified, the most extreme
case remains a conserved single nucleotide polymorphism
(SNP) on Amhr2 which differentiates X and Y chromosomes
in torafugu [62]. Another intriguing aspect of this case is
that the recessive allele located on the X chromosome—
with hypoactive function—is a novel mutation which
became fixed as a sex determiner [62]. The novelty of the X
copy is evidenced by the Y copy being phylogenetically
closer to the canonical Amhr2 [62]. Several evolutionary
models have been formulated to capture the dynamics of
sex chromosome turnover (for a recent review, see [42]).
The replacement of an ancestral sex-determining locus
could happen via positive selection when the new MSD
gene confers a fitness advantage [43], or when the new
MSD gene is associated with strongly sexually antagonistic
alleles [44]. The fugu recessive Amhr2 allele fulfils neither
criteria, and likely increased in frequency to fixation via the
neutral process of genetic drift. Nevertheless, it remains
unclear how the system has stabilized and why the
Y-chromosome allele persists. This case emphasizes the
importance of considering neutral—non-adaptive—processes
in the turnover of MSD genes. Moreover, the role of amhr2 in
signal transduction implies that its position is downstream in
the sex differentiation cascade. This, in turn, implies that two
sexes can be produced from a shift in the balance of male/
female promoting factors, and that these factors do not
necessarily need to be upstream of key regulatory nodes
(figure 1a,b). Moreover, the difference in signal transduction
efficiency between the X and Y alleles of amhr2, which tips
the balance towards either male or female development, illus-
trates that sex could be considered not as binary states but as
a threshold phenotypic trait, and the process not a simple
binary switch to a binary output.
(c) Punctuated equilibrium versus gradual
transformation

Current concepts of evolutionary biology propose that the
evolution of phenotypic divergence either occurs after punc-
tual but major changes, termed ‘punctuated equilibrium’, or
through a continuum of gradual transformations, referred
to as ‘phyletic gradualism’ [45–47]. By analogy, it is meaning-
ful to ask whether the genetic changes underlying this
phenotypic evolution occurred punctually after a single,
major-effect mutation or if these phenotypic changes were
underpinned by an accumulation of small-effect nucleotide
alterations over time. In this perspective, the high turnover
rate of the MSD genes offers an opportunity to compare the
importance of these two scenarios. As far as we know,
MSD genes arose following mainly two different types of
evolutionary routes: (i) gene duplication (GD) followed by
sub-/neo-functionalization and sometimes accompanied by
translocation, or (ii) allelic diversification (AD) of a single
locus (figure 2). Interestingly, with only a handful of excep-
tions (4 out of 12, table 1), the great majority of MSD genes
belonging to the TGF-β family pathway arose via GD
(table 1). Under this scenario, following a sudden duplication
event, gradual neutral processes are thought to act on the dis-
pensable gene copy (see the documented example of
Dmrt1bY in medaka for instance, [15,48,49]).

One of the exceptional cases which arose via AD is the
MSD gene of the sablefish, GsdfY (table 1). While both
GsdfY and GsdfX copies are nearly identical and function
similarly, GsdfY gained its sex-determining function after
the sole transcriptional rewiring initiated by the exaptation
of a single transposable element (A Herpin 2021, personal
communication). Hence, this case provides a paradigmatic
functional example that different phenotypes—as extreme
as sexual development—can evolve by altering the
expression of functionally conserved proteins after mutations
in the cis-regulatory regions of pleiotropic developmental
regulatory genes and of targets genes within the vast regulat-
ory network they control. While this case reveals that
transitions between SD systems can happen rather abruptly
(evolutionary speaking), it also shows that the Gsdf locus is
an excellent candidate to evolve into an MSD gene, and con-
stitutes a textbook example of the bottom-up hypothesis [14]
(figure 1a).
(d) The bottom-up theory put to test by the ‘outsiders’
A few years ago, we designated the nickname ‘usual sus-
pects’ to genes recurrently identified as MSD genes across
species [50]. These genes (e.g. Dmrt1, Sox- and TGF-β-related
factors) have arisen following allelic variation or gene dupli-
cation (table 1) and are crucial subordinate players of the
gonadal regulatory network ([51,52] for review; and
figure 1a). Because these genes independently persist in a
given population, and could emancipate any upstream regu-
latory element and take the leadership, it was theorized that
SD pathways might preferentially evolve from the bottom to
the top [14], tightly constrained by the need to cope with the
pre-existing GRN [53]. While this theory fits perfectly well
with empirical data from numerous species (table 1), it is
unable to account for some ‘newcomer’ and ‘outsider’
genes that were previously not considered part of the SD
pathway being recently identified as MSD genes.

Indeed, initially with the unusual SdY MSD gene in rain-
bow trout ([54]; see [97] this same issue), and now within the
TGF-β family members themselves, ‘newcomer’ factors, like
Gdf6, have also made it to the top (figure 1a). Even more intri-
guing, Gdf6 rose to the top independently in the killifish [71]
and a Characiformes species (Y Guiguen 2021, personal
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Figure 2. Documented evolutionary scenarios possibly explaining the different mechanisms accounting for the emergence of master sex-determining genes. Although
not always predestined to exert a direct function during SD, common recurrent mechanisms of evolution underlay the emergence of MSD genes. (a) Gene duplication. In
the Atlantic herring, the evolutionary process must have started with the emergence of a truncated copy of BMPR1BB that was partly duplicated and then translocated
from chromosome 21 to chromosome 8. The truncation assigned a new protein function to the gene. At the same time, because of the loss of its 50 end including the
promoter, BMPR1BBY must have lost the expression regulation of the autosomal gene and most likely acquired a new spatial and temporal expression pattern required
to trigger male gonad development. After translocation, Bmpr1bbY underwent rapid protein evolution. Functionally, the BMPR1BBY protein can replace the whole AMH/
BMPR1b/AMHR2 pathway for SMAD phosphorylation [22]. (b) Allelic diversification. In the pufferfish, allelic diversification engendered two versions of the Amh receptor
II (amhr2) that differ only by one amino acid located in the kinase domain (H384D). This hypomorphic mutation that confers lower receptor activity is encoded on the
X chromosome. Quantitative variations in Amh signalling in females (homozygous for the hypomorphic amhr2 allele) versus males (heterozygous for the wild type and
hypomorphic alleles), account for male gonadal development. In the sablefish, a unique insertion of a transposable element (TE) within the promoter of one of the two
alleles of the Gsdf gene provoked regulatory reassignments and transcriptional rewirings between both GsdfX and GsdfY alleles. Otherwise both GsdfX and GsdfY alleles
are functionally similar. Acquisition of a new spatial and temporal expression pattern together with quantitative variation in Gsdf signalling in males versus females
likely account for male gonadal development (A Herpin 2021, personal communication). (Online version in colour.)
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communication), although it has no known role in gonadal
developmental processes in other species. The unexpected
entry and importance of Gdf6 in the SD network is probably
due to it being a member of the vast and tightly connected
TGF-β family, where multiple members hold crucial positions
in the SD gene network. Thus, anymutation that would initiate
novel interactions or change the direction or magnitude of
existing interactions between Gdf6 and new partners within
TGF-βs could have provided shortcuts for Gdf6 to join the SD
network (figure 1a). Indeed, substantial amino acid changes
have been observed inGdf6 in both species [71]. This versatility
of the TGF-β molecules (ligands and receptors), and flexibility
of connectivity among themwidens the options ofwhich genes
could become involved in SD since any factor that could bend
the TGF-βGRNs could, in principle, be co-opted to be theMSD
gene.

The existence of such unexpected events, where a factor
that was not known a priori to be involved in any sex-related
regulatory network was recruited independently as the MSD
gene, also reflects our fragmented knowledge of TGF-β regu-
latory networks. It would therefore be unsurprising if other
TGF-β factors/regulators of the TGF-β regulatory network
were revealed as key regulators of SD.
(e) A composite sex chromosome gathers components
of the TGF-β signalling pathway in Rana
temporaria

In a geographically restricted population of European common
frogs (Rana temporaria), a neo-sex chromosome was formed by
reciprocal translocation between LG2 (the original Y chromo-
some in a nearby population) and LG7 (an autosome) [94].
Interestingly, LG2 and LG7 show similar levels of male-
female differentiation (by Fst), indicating allelic diversification
is underway. This neo-sex chromosome likely spread through
the population under positive selection because of the advan-
tage of linking male beneficial genes (Amh from LG2 and
AmhR2 from LG7) [55]. The linkage between Amh and
AmhR2 would ease the fixation of coevolved alleles of the
ligand and its receptor and thus create a strong masculinizing
effect, reducing the chance of sex reversal. In R. temporaria, as
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with many amphibians and some teleost species, meiotic
recombination depends on phenotypic sex rather than genoty-
pic sex. Recombination is rare in males, except at extremities of
chromosomes [56]. The occasional sex reversals, for which
there exists limited empirical data, could, depending on their
natural frequency, provide the opportunity for the X and
Y chromosomes to coexist in phenotypic females, allowing
the exchange of alleles between them. This ‘fountain of
youth’ mechanism renews the Y-chromosome sequence and
prevents the chromosome’s degeneration. Over time, this
mechanism helps maintain sex chromosome homomorphy
[56]. In this population, the neo-sex chromosome therefore
greatly reduces the chance of recombination between X and
Y by hindering sex reversal, and thus indirectly promotes
the degeneration of the Y. The coevolution of amh with its
receptor may thereby direct the evolutionary fate of the sex
chromosomes in this population.

5. Conclusion
Much of the pioneering work deciphering the ‘ultimate
causes’ of transitions between SD mechanisms was con-
ducted at a time when our knowledge of the ‘proximate
causes’ was fragmented and predominantly based on a few
model species. Today, with deepened knowledge of mole-
cular and cell biological processes and the discovery of an
incredible diversity of sex-determining genes, chromosomes
and systems from a multitude of organisms (table 1), new
light has been shed on the ‘proximate causes’ of SD, and
the generality of the classic theories is now being questioned.

Although many studies still focus primarily on discover-
ing new MSD genes, the elucidation of the overall genetic
architecture of a threshold phenotypic trait as complex as
sex cannot be restricted to the study of MSD genes. For
example, little is known about the proximate consequences
of when ‘masters change’. A few years back, based on the
classical view of sexual differentiation, we would have pre-
dicted little downstream change, since ‘slaves remain’ [57].
This is because a new master being derived from the con-
served downstream SD pathway supposedly meant that
only minor regulatory adjustments would be required
(bottom-up theory [14]). An important adjustment to this
view of vertebrate systems was the recognition that, contrary
to what has been found in C. elegans and Drosophila, SD cas-
cades are nonlinear, and rather constitute a complex network
of interacting factors, particularly known transcription factors
(figure 1a). Thus, new MSD genes could readily emanate
from factors regulating key nodes of the canonical gonadal
GRN (the ‘usual suspects’ [1,51]) following transcriptional
rewiring and/or sub- or neo-functionalization (figure 1b).

Today, the recurrent recruitment of secreted and diffusible
cytokines from the TGF-β family and their receptors to the
top of the SD pathway prompts us to reconsider the transcrip-
tion factor-based mechanistic view of SD. Additionally, these
new findings demonstrate that SD is more than a simple
top-down determination/differentiation process (genetically
and physiologically), and should rather be considered from
a developmental perspective, with sex as a threshold
phenotype (figure 1b).

Emerging from random but resilient processes, and inte-
grating a multitude of signals, Bmpr1bbY and AmhY made it
to the top in herring and pejerrey, respectively. Flouting the
basic expectation of sex chromosome evolution, Amhr2Y
behaves like an ‘ordinary’ recessive allele in fugu, modulating
the strength of the male versus female signals. Similarly,
Amhby in northern pike has acted as an MSD gene for more
than 65 Myr without coupling with any male beneficial/
female antagonistic partners. In a special population of
common frogs, the coevolution of Amh and its receptor,
together with Dmrt1, directed the spread of a neo-sex chromo-
some. The ‘outsider’ Gdf6, in an unexpected case of convergent
evolution, became the central regulator of SD in two teleost
species. And finally, GsdfY (the MSD gene of the sablefish and
a unique functional example of a bona fide punctuated equili-
brium process [45]) showed that the Gsdf locus is per se
inclined to spawn a MSD gene.

The pleiotropic nature of the TGF-β signalling pathway
(combining signalling molecules, ligands, integrators, the
receptor, and effectors, transcription factors) makes this path-
way particularly capable of re-structuring and fine-tuning
intricate networks of gene regulation (figure 1a,b). While TGF-
β family members clearly play a crucial role in integrating a
plethora of signals, and have been functionally and genomically
proven to be MSD genes, environmental factors can still over-
ride them and cause sex reversal both in the lab and in the
wild. This plasticity in species with clear sex chromosomes
and a GSD emphasizes that sex should no longer be viewed
as a rigid and pre-determined path from genotype to pheno-
type, but rather as a multilayer reaction norm resulting from
developmental noise, and which can be contingently modu-
lated or totally ruled by genetic factors. In this perspective,
sex is the net product of a variety of environmental, genomic,
epigenomic and stochastic determinants (figure 1b). The
master genetic trigger therefore has to cope with influences
from factors which may disturb its action directly, or disturb
the downstream action. TGF-β, with its tight-knit regulatory
network, and surplus copies in teleosts, is probably especially
suitable for the production of a phenotype as plastic as sex.
(a) Sidebar: TGF-β in need of answers
TGF-β signalling is crucial for fish sex determination. An emer-
ging concept is that the response of given cells to extrinsic
signals does not only rely on the effect of a single pathway,
but on the integration of multiple signals from a plethora of
interconnected cross-talking pathways. While this broad pic-
ture appears to be well supported, a number of specific issues
remain unaddressed, for instance: (1) How are the sex-deter-
mining function(s) of TGFβ-signalling molecules (Amh, Gsdf
and Gdf6) accomplished during fish gonadal induction? (2)
Do these molecules converge to a general ‘TGF-β hub’ which
connects and integrates them all, or do they remain indepen-
dent of each other? (3) How do(es) that gonadal TGF-β
regulatory network(s) interact with the canonical gonadal
gene regulatory network? (4) What is the evolutionary mean-
ing of the recurrent convergent evolution toward establishing
TGF-β signallingpathways to control sexdetermination in fish?
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