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Abstract

An understanding of the genetic variation underlying transcript splicing is essential to dissect the 

molecular mechanisms of common disease. The available evidence from splicing quantitative trait 

locus (sQTL) studies has been limited to small samples. We performed genome-wide screening to 

identify SNPs that might control mRNA splicing in whole blood collected from 5,257 

Framingham Heart Study participants. We identified 572,333 cis sQTLs involving 2,650 unique 

genes. Many sQTL-associated genes (40%) undergo alternative splicing. Using the National 

Human Genome Research Institute (NHGRI) genome-wide association study (GWAS) catalog, we 

determined that 528 unique sQTLs were significantly enriched for 8,845 SNPs associated with 

traits in previous GWAS. In particular, we found 395 (4.5%) GWAS SNPs with evidence of cis 
sQTLs but not gene-level cis expression quantitative trait loci (eQTLs), suggesting that sQTL 

analysis could provide additional insights into the functional mechanism underlying GWAS 
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results. Our findings provide an informative sQTL resource for further characterizing the potential 

functional roles of SNPs that control transcript isoforms relevant to common diseases.

GWAS have found many SNPs associated with various traits and diseases1. eQTL studies 

have been employed to identify SNPs that may influence the expression levels of a particular 

gene, thereby lending credibility to the SNP-disease association2. However, only a moderate 

proportion of GWAS-identified loci have been shown to be strong eQTLs3, which might in 

part be owing to the tissues studied, small sample sizes and a focus on whole-gene level 

expression measurements without consideration of transcript isoforms.

Alternative splicing is a process by which identical pre-mRNA molecules can give rise to 

multiple distinct mRNA or transcript isoforms. It affects ~80% of human genes and often 

occurs during tissue or cell development4–7. Alternative splicing contributes to phenotypic 

differences within and between individuals by increasing the multiplicity and diversity of the 

translated proteins arising from the same gene8,9. Available evidence suggests that at least 

20–30% of disease-causing mutations may affect pre-mRNA splicing10,11. Thus, 

identification of genetic variants that affect the generation of transcript isoforms of the same 

genes (sQTLs) might represent an important step toward fully understanding the 

contribution of genetic variants in disease development.

Thus far, sQTL studies have been conducted largely by use of Epstein-Barr virus (EBV)-

transformed lymphoblastoid cell lines (LCLs)8,12,13. LCLs may not represent the in vivo 
state owing to their transformation by EBV, and they also may not exhibit the spectrum of 

alternative splicing incidents that define tissue specificity. Recently, an sQTL study 

performed in 922 whole-blood samples by combining RNA sequencing expression and 

genetic data increased the number of known sQTLs by nearly an order of magnitude14. 

However, because these samples were derived from a major depressive disorder case-control 

study, it is possible that their expression profile might not be representative of the general 

community of men and women. Additional sQTL studies using large numbers of human 

primary tissue samples from community-based cohorts are needed to comprehensively 

catalog sQTLs and their correlations with GWAS signals in unbiased samples. Here we 

hypothesize that strong sQTL signals, colocalized with GWAS signals for disease, can 

provide insights into how genetic regulatory effects on the pre-mRNA splicing of genes 

close to GWAS SNPs might be the causal molecular mechanisms underlying respective traits 

or diseases.

Our current study aimed to create and characterize an sQTL catalog for whole blood 

collected from a single large cohort and to further examine the relationships between 

specific sQTLs and disease-associated loci from previous GWAS. To accomplish this, we 

first performed a genome-wide screen to identify common SNPs controlling transcript 

isoform variations (cis sQTLs) using 5,257 samples with both expression data and SNP data 

imputed using the 1000 Genomes Project15. To the best of our knowledge, this is the largest 

sQTL study thus far. We then categorized the identified cis sQTLs on the basis of their 

position relative to the differentially spliced transcript (exonic, intronic, etc.) and annotated 

the alternative splicing category for each individual cis sQTL. Lastly, we assessed the 

overlap between known GWAS signals and cis sQTLs. Of note, we were able to identify 
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many GWAS hits for disease traits with cis-sQTL associations, which were not significantly 

associated with gene expression at the whole-gene level (eQTLs). Our findings may provide 

insights into the mechanisms through which genetic variation influences transcript isoforms 

and, ultimately, disease development.

RESULTS

Cis-QTL association with gene- and exon-level expression

A total of 5,257 Framingham Heart Study (FHS) participants with whole-blood expression 

data and 1000 Genomes Project15 imputed genotype data were included in this analysis. The 

clinical characteristics of these study participants are presented in Supplementary Table 1. A 

schematic showing coverage of Affymetrix Exon array probe sets across the entire length of 

the transcript is shown in Supplementary Figure 1. A total of 17,873 genes were included in 

this analysis; on average, there were ~553 SNPs located within 50 kb of each gene and 16 

‘core’ exon-level probe sets for each gene (Supplementary Fig. 2).

Applying a conservative Bonferroni-corrected P < 5.2 × 10−9 (0.05/9,623,954) to the whole-

gene level eQTL analysis, we observed 6,137 genes that were significantly associated with 

at least one SNP. Of the genes without statistically significant associations of any SNPs with 

whole-gene expression, 2,864 (24.4%) unique genes were found to contain at least one exon 

(corresponding to 7,410 unique exons) that was significantly associated with a neighboring 

SNP at P < 2.8 × 10−10 (0.05/178,799,891). A total of 672,845 exon-SNP pairs (cis sQTLs) 

were identified at this significance threshold. After excluding 214 (7.5%) genes with 

possible sQTL signals due to SNPs residing in probes (corresponding to 760 unique exons), 

a final set of 572,333 cis sQTLs in 2,650 genes was identified. A flowchart of the analysis to 

identify cis sQTLs is shown in Figure 1, including the total number of tests performed and 

the Bonferroni-corrected P-value thresholds for both gene-level and exon-level analysis. The 

most significant cis-sQTL results for each of the 2,650 genes are shown in Supplementary 

Table 2. For the 2,650 genes, the distribution of fold differences in gene and exon expression 

levels between the two homozygous genotypes for each SNP is shown in Supplementary 

Figure 3. The mean of the gene-level fold difference in expression was near 0. The 

distribution for fold differences in exon-level expression was bimodal, representing positive 

and negative fold changes.

Functional categories of cis sQTLs

Among the 572,333 cis sQTLs associated with 2,650 genes only at the exon level of 

expression, 258,113 SNPs were unique. Functional annotation for these unique SNPs is 

reported in Table 1. As noted there, a large percentage (~90%) of the cis sQTLs were located 

within intergenic or intronic regions (32% and 58%, respectively).

Four percent of cis sQTLs were located 5′ to a gene (‘5′ near gene’) or close to a 5′ 
promoter region of a gene, whereas only 1% were located 3′ to a gene (‘3′ near gene’). This 

fourfold difference is not surprising, as the UCSC database asymmetrically defines ‘5′ near 

gene’ as 2 kb upstream of a gene, whereas ‘3′ near gene’ is defined as 0.5 kb downstream of 

a gene. Contrasting results were observed for UTRs. In comparison to cis sQTLs found in 
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the 5′ UTR of a gene (0.5% overall), four times more SNPs (2% overall) were found in the 

3′ UTR, Although the 3′ UTR is known to serve as the functional regulatory locus of small 

RNA post-transcriptional regulatory pathways and is involved in nonsense-mediated mRNA 

decay surveillance pathways16, after normalizing sQTLs by region size, we found that there 

was no relative enrichment of sQTLs in the 3′ UTRs of genes.

Interestingly, 0.4% of our cis sQTLs were in noncoding RNA gene regions. The majority of 

noncoding RNA genes have not been well characterized. Recent studies have shown that 

many noncoding RNA genes exhibit a structure with multiple exons similar to that of 

protein-coding genes and that their noncoding transcripts bear many similarities to mRNAs, 

including 5′ capping, splicing and polyadenylation17. A small percentage of our cis sQTLs 

(~1%) were missense variants. Approximately 3% of our cis sQTLs were coding 

synonymous mutations that could affect mRNA splicing or stability and could have 

substantial effects on protein function18,19.

Using the canonical definition of splice-site regions from the NCBI dbSNP database, we 

identified a small number (n = 32) of unique cis sQTLs located in a 5′ splice donor site (2-

base region at the 5′ end of an intron) or 3′ splice acceptor site (2-base region at the 3′ end 

of an intron) (Table 2). As an example, the rs3842788 splice-3 variant of the PTGS1 gene 

(encoding prostaglandin-endoperoxide synthase 1) was significantly associated with exon 3 

of PTGS1 (probe set 3188118) at P < 2.2 × 10−25 with a coefficient of 0.55 (fold change = 

1.1). The box plot of exon-level expression versus the most significant cis sQTL is shown in 

Figure 2b, and a visualization of the probe set expression level for this gene against the most 

significant sQTL is shown in Figure 2a. The gene structure of PTGS1 and seven of its 

RefSeq transcript isoforms are shown in Figure 2c. This sQTL is located in a 3′ splice 

acceptor site, and its associated exon-level probe set is absent in one of the seven transcript 

isoforms (NM_001271367.1; Fig. 2c).

The regulation of alternative splicing might involve additional features, such as splice-site 

disruptions, exonic and intronic splicing enhancers and silencers, or RNA secondary 

structures9. To address these potential complexities, we extended our splice-site definition to 

sequence variants that were either within 1–3 bases of an exon or 3–8 bases of an intron and 

within a branch point—a branch-point sequence of 20–50 nt upstream of acceptor sites that 

affects splice-site selection20,21. As expected, using this expanded definition, many more cis 
sQTLs identified in this study overlapped with the extended functional splicing-relevant 

components (Supplementary Table 3), suggesting that expanding consensus splice sites to 

other regulatory splicing sites could provide additional insights into the functional regulation 

of alternative splicing by common genetic variants and their associations with disease.

In addition to identifying functional categories, we analyzed a total of 258,113 unique cis 
sQTLs for functional enrichment. It is known that mRNA-binding proteins (RBPs) have an 

important role in post-transcriptional processes in which RBPs recognize and bind to 

multiple mRNA targets to facilitate gene expression patterns22. Because genetic variants 

might change the binding affinity of RBPs, we examined whether sQTLs were significantly 

enriched for mapping to RBP-binding sites using Encyclopedia of DNA Elements 

(ENCODE) RIP-seq data23. sQTLs mapped to regions for two RBPs (ELAVL1 and 
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PABPC1) in the GM12878 (lymphoid) and K562 (myeloid) cell lines in comparison to the 

signals observed in the permuted data (Fig. 3). Enrichment of RBP-binding sites in myeloid 

and lymphoid cells provides support for the validity of our blood-derived sQTLs.

Alternative splicing categories of cis-sQTL associations

We aimed to understand the biological functions of the genes for which transcript isoform-

level expression was associated with nearby SNPs. Thus, we conducted a gene ontology 

(GO) enrichment analysis for the 2,650 sQTL-associated genes. We found that 121 GO 

categories surpassed the Bonferroni-corrected P-value threshold of <0.05 (Supplementary 

Table 4). The GO categories ‘phosphoprotein’, ‘acetylation’ and ‘nucleus’ were the top three 

most significant terms. Other highly enriched GO categories included ‘alternative splicing’, 

‘splice variant’, ‘transcription’, ‘transcription regulation’, ‘RNA binding’ and ‘mRNA 

processing’. Of note, the GO category ‘alternative splicing’ identified genes whose protein 

products themselves had multiple isoforms. Of the 2,650 sQTL-associated genes, 47.8% (n 
1,267) had more than one transcript isoform, resulting in a highly significant enrichment of 

GO genes involved in alternative splicing in comparison to all human genes (P < 7.6 × 

10−23, Bonferroni-corrected P < 5.8 × 10−20).

Furthermore, for each of the 2,650 unique sQTL-associated genes (6,650 unique probe sets 

or exons), we checked for known alternative splicing events in the UCSC database. We 

found 43.7% of the genes with specific cis-sQTL associations (n = 1,159) in the alternative 

splicing database by mapping the probe set positions of the sQTL-associated exons to 8 

types of alternative splicing events. Of these 1,159 genes, about half (52.2%) were classified 

as an ‘exon-skipping/cassette exon’ event (n = 605) (Fig. 4a). The large number of cassette 

exon events is expected, as they are the most common, well-characterized and most easily 

validated alternative splicing type4. An additional 30% (n = 349) of sQTL-associated exons 

were classified as ‘bleeding exon’ events. Examples of the different types of transcript 

isoform events are shown in Figure 4b and Supplementary Figure 4a–c.

Co-occurrence of cis sQTLs with GWAS trait SNPs

Recent studies have shown that eQTLs are highly enriched for SNPs that are strongly 

associated with a trait or disease phenotype24. sQTLs may represent additional functional 

alleles implicated in disease risk. To test this hypothesis, we investigated whether our cis 
sQTLs were previously reported to be associated with clinical diseases or with traits in 

previous GWAS in the NHGRI GWAS catalog25.

By cross-referencing the rs IDs of our cis sQTLs to the 8,845 unique trait-associated GWAS 

SNPs, we found 528 unique cis sQTLs (corresponding to 367 unique genes) that were 

associated with 238 phenotypes and disease traits in the GWAS catalog. After restricting to 

SNPs that were genome-wide significant (P < 5.0 × 10−8), we obtained 202 genes 

(corresponding to 304 unique sQTLs) with both cis-sQTL and strong GWAS-identified trait 

associations (Supplementary Table 5). The majority of the intergenic GWAS SNPs were 

mapped to genes that differed from those we identified as being associated with our cis 
sQTLs. This difference may be due in part to the fact that genes reported in GWAS are 

identified largely on the basis of their proximity to an associated SNP, whereas sQTLs 
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benefit from associations with mRNA expression levels. Thus, sQTLs use additional sources 

of information to identify genes through which GWAS SNPs might confer their effects.

Because alternate splicing is known to be tissue-type specific, we further examined whether 

the cis sQTLs detected in our whole-blood samples were enriched for GWAS signals for 

blood-relevant diseases or traits, including hemostatic factors, hematology traits, lipid traits 

and coronary heart disease (CHD). Several cis-sQTL genes were associated with lipid traits, 

for example, LDLR and CELSR2. Other traits with cis-sQTL evidence included metabolic 

traits (for example, bloodpressure, diabetes and body mass index), CHD, C-reactive protein 

levels and hematology traits such as red blood cell traits, mean platelet volume and platelet 

counts (Supplementary Table 5).

In exploring biological functions and pathways in which the genes with both cis-sQTL and 

strong GWAS-identified trait associations might act, we found that annotations of these 202 

genes (304 unique sQTLs) were highly enriched for several GO categories, including 

‘alternative splicing’, ‘splice variants’, ‘ATPase activity’ and ‘cellular response to stress’, 

and with one Online Mendelian Inheritance in Man (OMIM) disease category called ‘loci 

influencing lipid levels and coronary heart disease risk in 16 European population cohorts’ 

(Table 3). Of the 202 genes, 7 (DNAH11, LDLR, HMGCR, TOMM40, CELSR2, ABCA1 
and TRIB1) contributed to the enrichment of this GO disease category with Benjamini-

corrected P < 5.2 × 10−4.

Among the 528 unique cis sQTLs with a co-occurring GWAS signal, 133 (25.2%) also had 

cis-eQTL associations detected in our samples. About one-third (n = 39) of the 133 SNPs 

were the top SNP or were in close linkage disequilibrium (LD; r2 > 0.8) with the top cis 
sQTL associated with a target gene and the top cis eQTL associated with a separate, 

neighboring gene, suggesting that these SNPs and their proxy SNPs might truly serve as 

both a cis sQTL for the target gene and a cis eQTL for the neighboring gene. Examples of 

these 39 SNPs are shown in Supplementary Figure 6a,b. For the remaining 395 GWAS hits, 

there was evidence of splicing regulatory variants (cis sQTLs) but no evidence of cis eQTLs. 

After sorting the sQTLs by the frequency of association with different disease traits in the 

GWAS catalog, we found that nine sQTLs were associated with at least four GWAS disease 

traits. About 42 sQTLs were associated with at least 2 disease traits (Supplementary Table 

6a), and the remaining 353 sQTLs were associated with only 1 GWAS trait (Supplementary 

Table 6b). Notably, several sQTLs were associated with CHD, lipids, blood pressure, red 

blood cell traits and platelet counts (Supplementary Table 6a). For example, a cis sQTL, 

rs4420638, which is 16 kb 3′ to TOMM40 and 350 bp 3′ to APOC1, was associated with 12 

GWAS traits, including lipoprotein-associated phospholipase A2 activity and mass, C-

reactive protein levels, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) 

cholesterol levels, triglyceride levels and Alzheimer’s disease (Supplementary Table 6a). 

TOMM40 is located in the APOC cluster region on chromosome 19 that harbors well-known 

lipid risk loci, including APOE, APOC1, APOC1P1, APOC2 and APOC4. TOMM40 has 

three well-annotated, well-supported transcript isoforms in the RefSeq database, is 1 of 116 

genes contributing to enrichment of the GO category ‘alternative splicing’ and is also 1 of 7 

genes enriched in disease-associated loci influencing lipids and CHD risk that we identified 

by GO enrichment analysis (Table 3). The observed unique sQTL evidence for GWAS 
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signals provides insights into how genetic effects on the regulation of alternative splicing 

may affect genes close to GWAS signals. New knowledge regarding these regulatory 

changes may improve the ability to functionally characterize susceptibility variants 

associated with diseases and related risk factors.

Replication of cis sQTLs

For replication, we downloaded a recent sQTL database with the largest available sample 

size14 in which RNA sequencing was applied to measure expression levels in whole-blood 

samples. This paper reported a total of 1,763 unique cis sQTLs. Of these, 1,464 were in line 

with our findings at P < 2.8 × 10−5 (0.05/1,763), providing replication evidence for 83% of 

the cis sQTLs reported in the RNA sequencing study (Supplementary Table 7).

DISCUSSION

Although GWAS have identified many candidate eQTLs, emerging research suggests that 

eQTL signals may not explain most GWAS associations26. Among the factors that might 

account for this discrepancy, transcript isoform variation is poorly understood but may 

underlie a substantial proportion of the phenotypic variation explained by GWAS variants in 

humans27. However, thus far, available data from large-scale sQTL studies using primary 

human tissues have been sparse, thus limiting understanding of the role of transcript 

isoforms associated with GWAS variants.

We generated sQTL results from exon array expression data and 1000 Genomes Project 

imputed genotype data in a single large, well-described population (n = 5,257). Through 

sQTL analysis of 17,873 genes and 283,805 exons, we found a large number of cis sQTLs (n 
= 572,333) associated with alternative splicing, exceeding the numbers reported previously. 

We found that 2,650 genes not detected in eQTL analysis had alternatively spliced transcript 

isoforms that were genetically controlled. We identified 14.8% (n = 2,650) of the examined 

genes with specific exon expression levels highly associated with nearby cis-acting SNPs, 

indicating that these genes experience alternative splicing due to genetic variation. This 

finding is consistent with a recent estimate that ~21% of annotated alternatively spliced 

genes may be associated with SNPs regulating the relative abundance of alternative 

transcript isoforms28.

Our examination of the functional categories of cis sQTLs identified 32 cis sQTLs located 

within 5′ or 3′ essential splice sites, providing new evidence for functional sQTLs that 

affect the pattern of splicing in whole-blood samples. For example, PTGS1 (prostaglandin-

endoperoxide synthase 1), a prostaglandin G/H synthase and cyclooxygenase, encodes a 

group of enzymes that regulate angiogenesis in endothelial cells and are inhibited by non-

steroidal anti-inflammatory drugs such as aspirin. There were seven alternatively spliced 

transcript isoforms of PTGS1 in the NCBI RefSeq database. The PTGS1 sQTL we identified 

was within a known splice site, which may be attributed to the polymorphism in this gene 

region associated with aspirin resistance29 and decreased incidence of myocardial infarction 

in individuals with coronary artery disease30. This finding provides a possible molecular 

mechanism for disease-associated variants in individuals with PTGS1-related diseases.
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Of the unique sQTLs we identified, 528 were associated with 238 diseases or traits listed in 

the NHGRI GWAS catalog. The majority (75%; n = 395) of these disease-associated sQTLs 

were detected only in sQTL analysis and not in gene-level eQTL analysis. This observation 

suggests that there are many disease-associated variants that might contribute to disease 

etiology by affecting pre-mRNA splicing. These findings may also explain the lack of 

overlap of many eQTL signals with GWAS associations, as the former do not take into 

consideration splicing variants. For example, rs4420638, a cis sQTL near the TOMM40 
gene, was associated with 12 diseases and traits in the GWAS catalog, including lipid traits, 

red blood cell traits and CHD (Supplementary Table 6a). The impact of these genetic 

associations on the development of cardiovascular disease has yet to be investigated. Results 

from our whole-blood sQTL study could help identify and functionally characterize 

susceptibility genes for cardiovascular diseases and related risk factors.

Additionally, our sQTL analysis can help exclude false positive eQTL signals identified in 

previous eQTL studies that used 3′-targeting expression platforms to measure expression 

traits at the whole-gene level. For example, the IRF5 gene has five transcript isoforms and 

five corresponding protein isoforms according to RefSeq. After broadly checking 53 eQTL 

data sets in ref. 31, we found over 35 data sets with cis-eQTL associations with IRF5, using 

data sets where expression traits were measured on platforms targeting 3′ UTRs, such as the 

Affymetrix U133A or U133 plus2.0 expression arrays, in which probes were designed to 

target only the short isoform12. By contrast, in two studies using the Affymetrix Exon 

expression array, in which probes were designed to target the whole transcript region of a 

gene, negative eQTL associations of IRF5 were reported32. This observation was based on a 

comprehensive comparison of eQTL data across various tissues and cell types and is in line 

with our expectation. In our study, we identified no SNPs that were significantly associated 

with the gene-level expression of IRF5 measured on the Affymetrix Exon expression array; 

however, there was an sQTL signal associated with specific exons of IRF5 that had been 

validated previously by RT-PCR in LCL cell lines12. The sQTL rs10954213 located in the 3′ 
UTR is associated with a different 3′ UTR change in IRF5 (ref. 12), and rs10488630 near 

the 3′ end of the gene is also associated with the choice of a proximal or distal 

polyadenylation site in IRF5 (ref. 33). However, despite our application of a very stringent 

significance threshold for sQTLs, it may still be difficult to distinguish between a splicing 

mechanism and a gene-level effect for some sQTLs that manifest significant statistical 

evidence for association at the gene level (Supplementary Table 2).

Potential limitations of our sQTL resource include its conduct using RNA derived from 

whole blood rather than specific blood cell types. To understand the potential confounding 

effects from the use of specific blood cell types on our sQTL results, for all 572,333 cis 
sQTLs identified, we reran our QTL analysis pipeline using gene and exon expression data 

after adjustment for seven cell types comprising whole blood (total white blood cell counts, 

total platelet counts and subfractions (percentages) of neutrophils, lymphocytes, monocytes, 

eosinophils and basophils). Then, we compared the β values and −log10 (P values) for these 

sQTLs generated using cell type–unadjusted expression data to those obtained using cell 

type–adjusted expression data. sQTL associations with and without adjustment for blood 

cell counts were highly correlated (r = 0.99; Supplementary Fig. 5), indicating the 

robustness of our cis-sQTL results to differences in blood cell counts.
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Thus far, the majority of sQTL studies have been conducted with blood-derived cells or cell 

lines. It is reasonable to assume that the amount of splicing may vary in different tissues and 

cell types. Future studies examining sQTLs in multiple tissue types beyond blood will 

provide a more complete picture of the role of genetic variants in disease mechanisms by 

pairwise comparison of splicing in many tissues between individuals. The Genotype-Tissue 

Expression (GTEx) project34 may serve as a first step to examining this issue.

In summary, we identified 572,333 sQTLs in whole blood that were missed using 

conventional eQTL analysis, providing a catalog of sQTL variants that will be a publicly 

available resource for future studies and for the scientific community. Our findings provide 

insights into the genomic locations of sQTL SNPs, and many of the sQTL-associated genes 

were previously identified to be involved in alternative splicing. As the largest sQTL study 

thus far, our study had sufficient statistical power to identify and functionally characterize 

many cis sQTLs, including SNPs that were significantly associated with complex diseases 

and traits in GWAS. In particular, we found 4.5% of published GWAS SNPs with cis-sQTL 

but not gene-level cis-eQTL evidence, suggesting that sQTL analysis provides additional 

insights into the functional mechanisms underlying GWAS results. Our findings lay the 

groundwork for studies to define the role of mRNA splicing in the prevention and treatment 

of common diseases.

URLs.

The gene annotations used for each probe set were from the annotation file obtained from 

Affymetrix at http://www.affymetrix.com/. The database of known human alternative 

splicing events was downloaded from the UCSC Genome Browser for hg19 at http://

genome.ucsc.edu/cgi-bin/hgTrackUi?

hgsid=383408861_aoFr9g8KQoWF1FmaxEpYXni4qKtB&c=chr9&g=knownAlt. Results in 

the NHGRI GWAS catalog (22 March 2013) were downloaded from http://

www.genome.gov/gwastudies/. The deposition of expression-level data into the database of 

Genotypes and Phenotypes (dbGaP) for the FHS is described on the dbGaP website at http://

www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000363.v10.p8 under 

SABRe CVD Project 3, expression dataset phe000002.v2. The deposition of data for 

genotyped and imputed SNPs into dbGaP for the FHS has been described on the dbGaP 

website at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs000342.v4.p6.

ONLINE METHODS

Study population and sample collection.

The FHS started in 1948 with 5,209 randomly ascertained participants from Framingham, 

Massachusetts, who underwent biennial examinations to investigate cardiovascular disease 

and its risk factors35. In 1971, the Offspring cohort36,37 (comprising 5,124 children of the 

original cohort and the children’s spouses) and, in 2002, the Third Generation (consisting of 

4,095 children of the Offspring cohort) were recruited38. Participants of the FHS Offspring 

cohort who attended examination 8 (n = 2,446) and the Third Generation cohort who 

attended examination 2 (n = 3,180) were included, constituting a total of 5,626 individuals. 
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The clinical characteristics of the FHS Offspring and Third Generation cohorts are presented 

in Supplementary Table 1. FHS participants in this study are mainly of European ancestry. 

The study protocol was reviewed by the Boston University Medical Center Institutional 

Review Board, and all participants gave written informed consent.

Microarray data acquisition and preprocessing.

Fasting peripheral whole-blood samples (2.5 ml) were collected in PAXgene tubes 

(PreAnalytiX), incubated at room temperature for 4 h for RNA stabilization and then stored 

at −80 °C. Total RNA was isolated from frozen PAXgene blood tubes by Asuragen, 

according to the company’s standard operating procedures for the automated isolation of 

RNA from 96 samples in a single batch on a KingFisher 96 robot. RNA samples (50 ng) 

were then amplified using the WT-Ovation Pico RNA Amplification System (NuGEN) as 

recommended by the manufacturer in an automated manner using the GeneChip Array 

Station (GCAS). This treated RNA was then converted into cDNA and subsequently 

processed, labeled and hybridized onto Affymetrix Human Exon Array ST 1.0 arrays. After 

hybridization, each array was washed and stained according to the standard Affymetrix 

protocol. Stained arrays were scanned using the Affymetrix 7G GCS3000 scanner, resulting 

in a raw data CEL file for each array (details of RNA isolation, preparation of cDNA from 

RNA and microarray processing are available in the Supplementary Note).

Microarray preprocessing.—Over 1 million core probes were used to obtain gene-level 

and exon-level expression values, which were derived from CEL files by quantile sketch 

normalization using the model-based Robust Multichip Average (RMA) method39 as 

implemented in Affymetrix APT software version 1.12.0 (the full pipeline is described in the 

Supplementary Note). Gene-level analysis was conducted on 17,873 empirically supported 

transcripts (RefSeq and full-length GenBank mRNAs). Exon-level analysis was conducted 

on 283,805 ‘core’ exon-level probe sets from the Affymetrix Human Exon Array ST 1.0 that 

mapped to these core transcripts with a high degree of confidence. The gene annotations 

used for each probe set were from the annotation file obtained from Affymetrix.

Technical data adjustment.—Ten technical covariates fulfilled our selection criteria 

(Supplementary Table 8). These technical covariates and the first principal component (PC1) 

were used to adjust the data in all analyses.

Blood cell count adjustment.—Because blood cell count information was only 

available for the Third Generation cohort, values for samples in the Offspring cohort were 

imputed on the basis of the actual measurements for samples within the former. Five white 

blood cell subfractions, including neutrophils, lymphocytes, monocytes, eosinophils and 

basophils, in addition to the total white blood cell count and the total platelet count were 

adjusted for the gene-level and exon-level expression data.

Detailed methodology is provided in a companion paper submitted by joehanes et al.
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Genotyping.

Genotyping was carried out as a part of the SNP Health Association Resource (SHARe) 

project using the Affymetrix 500K mapping array (250K Nsp and 250K Sty arrays) and the 

Affymetrix 50K supplemental gene-focused array on 9,274 individuals. Genotyping resulted 

in 503,551 SNPs with successful call rate > 95% and Hardy-Weinberg equilibrium P > 1 × 

10−6. Finally, 8,481 individuals (91.4%) remained with call rate > 97%. Imputation of ~36.3 

million autosomal and X-chromosome SNPs in 1000 Genomes Project Phase 1 SNP data15 

was conducted using MACH40. There were 5,257 Offspring and Third Generation 

participants with genotype imputation and expression measurements available for the 

analysis.

Statistical analysis.

For our cis-eQTL analysis, we first filtered for common SNPs (MAF ≥ 1%) with good 

imputation quality (ratio > 0.1) in the 1000 Genomes Project imputed SNP data set. 

Furthermore, for each gene, SNPs were included in analysis if they were within 50 kb of the 

gene boundary according to NCBI human reference genome Build 37/hg19 and calculated 

as the maximum union of overlapping transcript isoforms based on RefSeq genes. The 50-kb 

distance was based on previous studies12,14 that indicated that sQTLs tend to be more gene-

centric than gene-level eQTLs.

In both gene-level and exon-level eQTL analyses, we applied a linear mixed-effects model in 

which the residual from expression data adjusted for technical covariates (as described 

above) was the outcome (dependent variable), the SNP was the predictor (a fixed-effects 

term), and age and sex were included as covariates. Family structure was modeled as a 

random-effects term by including the matrix of the kinship coefficients in the genetic 

covariance matrix as previously described41. We applied the lmekin function in the R 2.15.1 

package kinship (version 1.1.3) to estimate the SNP effects using an additive genetic model.

Gene-level eQTL analysis.—A total of 9,623,954 tests were performed examining the 

associations between each of the 17,873 genes and their neighboring SNPs (±50 kb). 

Following a conservative Bonferroni correction for multiple testing, adjusted P < 5.2 × 10−9 

(0.05/9,623,954) was used to define significant associations between the expression level of 

genes and their neighboring SNPs (cis eQTLs).

Exon-level eQTL analysis.—All SNPs within 50 kb of a gene boundary were tested for 

association with all core probe sets/exons of that gene. For the 17,873 genes included in this 

analysis, on average, there were 16 core exon-level probe sets neighboring each gene. A 

total of 178,799,891 tests were performed for each probe set and its neighboring SNP pair. A 

Bonferroni-corrected P < 2.8 × 10−10 (0.05/178,799,891) was used to define significant 

associations between exon expression levels and neighboring SNPs (cis eQTLs).

Definition and classification of cis sQTLs.—Of the genes without detectable gene-

level expression associations with any nearby SNPs, 2,864 genes were found to have at least 

one exon that was significantly associated with neighboring SNPs at P < 2.8 × 10−10. 

Zhang et al. Page 11

Nat Genet. Author manuscript; available in PMC 2021 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Associations between the expression level of exons and their neighboring SNPs are referred 

to as cis sQTLs.

Removal of suspect sQTLs due to the SNP-in-probe problem.—We removed cis-

sQTL probe sets/exons that were susceptible to the effect of the SNP located within the 

probe. In the most recent study42, using the 1000 Genomes Project (March 2012) and 

NationL heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project data 

(9,025,738 common SNPs from the European panel), Ramasamy et al. identified 16,426 

(5.5%) Affymetrix core probe sets/exons with the SNP in the 25-mer probe sequence for at 

least 2 probes, which the authors suggested should be discarded. Of 7,410 cis-sQTL probe 

sets/exons, 760 (10%) were found in the above 16,426 core probe sets and were discarded.

Comparison of the effects of cell count on cis sQTLs.—For all 572,333 cis sQTLs, 

we compared the P values and the estimated β values of the sQTL results generated by using 

gene-level and exon-level expression data before and after adjustment of the whole-blood 

complete blood cell counts (CBCs).

Comparison of statistical methods for detecting alternative splicing.—There are 

several methods of detecting alternative splicing events available using Affymetrix Exon 

Array data. Before deciding on the final model used in this study, we tested four different 

methods in our pilot data sets (see the Supplementary Note for more details). After 

conducting this comparison, we opted to examine variation at the exon level and identified 

exon-level signals without concurrent whole-transcript change, following the method of 

Kwan and Majewski12.

Functional classification of cis sQTLs.

SNP annotation data were downloaded from NCBI for dbSNP 137 (37.3), which contains 

>50 million SNPs. Each sQTL was classified as intergenic, intron, splice site, near gene, 

missense, UTR, etc. directly by matching SNP rs IDs.

To determine whether our significant cis sQTLs were enriched for the binding sites for 

RBPs, we downloaded the RBP-associated mRNA sequencing track (ENCODE RIP-seq) 

from the UCSC Genome Browser (March 2012 freeze), which includes transcriptional 

fragments associated with RBPs in the K562 and GM12878 cell lines identified using 

ribonomic profiling23,43. For the total of 258,113 unique cis sQTLs identified in this study, 

we first tested whether they were enriched in each RIP-seq data set (peak calls) applying a 

binomial test. We then selected equally sized sets of SNPs within 50 kb of each gene from 

each chromosome in the 1000 Genomes Project Phase 1 imputed SNP data as permuted cis 
sQTLs. The same functional enrichment analysis was conducted for this permuted cis-sQTL 

data to obtain the enrichment score; the realistic null distribution of RBP enrichments was 

then obtained by 200 permutations.
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Annotation of alternative splicing events.

The database of known human alternative splicing was downloaded from the UCSC Genome 

Browser for hg19. We annotated the cis-sQTL probe sets by alternative splicing types if they 

overlapped with regions of known alternative splicing events.

Comparison of expression findings to the GWAS catalog.

Results in the NHGRI GWAS catalog (22 March 2013) included data from 1,595 

publications and 11,124 SNPs, of which 8,845 SNPs were unique. Specific exon-level 

associated cis sQTLs were mapped to the GWAS catalog directly by matching SNP rs IDs.

Gene ontology enrichment analysis.

For the 2,650 genes with at least 1 exon significantly associated with at least 1 neighboring 

SNP, we submitted their unique gene symbol to the DAVID website44,45 to perform 

functional GO enrichment analysis using all human genes as the background. We accounted 

for multiple testing using Bonferroni-corrected significance levels: 0.05/1,472 = 0.00003 

(cellular component) or 0.05/8,972 = 0.000006 (biological process). The same analysis was 

conducted for the 202 genes with the strongest sQTLs and reported as genome-wide 

significant (P < 5.0 × 10−8) in the NHGRI GWAS catalog.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of sQTL analysis. Flowchart of the gene-level and exon-level cis-QTL analysis 

used to identify cis splicing QTL associations (cis sQTLs) using 5,257 whole-blood samples 

and 9,623,954 common SNPs (minor allele frequency (MAF) > 1%) within 50 kb of each 

gene. *Among the 8,799 genes identified by exon-level QTL analysis, 5,935 overlapped 

with 6,137 genes from the gene-level analysis. Therefore, 2,864 genes with only QTL 

associations at the exon level were defined as genes with sQTL associations, including 

672,845 significant probe set–SNP pairs. After excluding 214 (7.5%) genes with suspect 

sQTL signals due to the SNP-in-probe problem (corresponding to 760 (10%) unique exons), 

572,333 cis sQTLs (2,650 genes) were finally identified.
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Figure 2. 
An example of the PTGS1 gene with its associated cis sQTL located in the 3′ acceptor 

splice site, (a) Visualization of probe set 3188118 in the context of all other probe sets 

belonging to the PTGS1 gene (Affymetrix transcript ID 3188111). For each probe set, the 

fold change between the mean expression scores of the two homozygous genotypes 

(mean(AA)/mean(GG)) at rs3842788 is shown by vertical gray bars (probe set 3188118 is 

highlighted in green). The horizontal red line represents the fold change in expression at the 

whole-gene-level against SNP rs3842788. (b) Box plot of the expression signals for probe 

set 3188118 with the indicated genotypes at SNP rs3842788, giving a P value for association 
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of 2.2 × 10−25 (P value = 0.001 for the association between rs3842788 genotype and the 

whole-gene expression level of PTGS1). The sample size analyzed is shown under each 

genotype. The solid horizontal line within the box represents the median. The interquartile 

range (IQR) is defined as Q3-Q1 with whiskers that extend 1.5 times the IQR from the box 

edges, (c) Schematic of the seven transcript isoforms of PTGS1 in the NCBI RefSeq 

database. A zoomed-in view of exon 3 of PTGS1 with Affymetrix Exon array core probe 

sets is shown below the exon. The significant probe set 3188118 is highlighted in blue and 

corresponds to alternative 3′ acceptor splice site usage that results in a shorter exon for 

transcript NM_001271367.1. The SNP rs3842788 is located in the last position of the intron 

and is a G>A substitution that disrupts the consensus splice-site sequence.
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Figure 3. 
Cis sQTLs are highly enriched in binding sites for RNA-binding proteins. Examples are 

shown for the RNA-binding proteins ELAVL1 and PABPC1 that are present in the 

ENCODE GM12878 (lymphoid) and K562 (myeloid) cell lines, respectively. Error bars, s.d. 

Red data points represent minimum values, first quarter, median, third quarter and maximum 

value, which provide an overall distribution for the enrichment score obtained through 200 

permutation tests.
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Figure 4. 
Functional annotation of genes and exons with cis-sQTL associations, (a) Concordance of 

sQTL-associated exons and known alternative splicing events. (b) Example of the bleeding 

exon type of transcript isoform event: OAS2, probe set 3432520 versus rs117666908. (c) 

Example of the cassette exon type of transcript isoform event: STXBP2, probe set 3819052 

versus rs72994460.
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Table 1

Functional annotation of 258,113 unique cis sQTLs obtained from a total of 572,333 cis sQTLs

SNP functional class Count Proportion

Intronic 150,440 0.58

Intergenic 81,370 0.32

5′ near gene 10,795 0.04

3′ near gene 2,251 0.01

5′ UTR 1,233 0.005

3′ UTR 5,908 0.02

Synonymous 2,926 0.01

Missense 2,235 0.01

Noncoding RNA 909 0.004

5′ splice site 20 7.75 × 10−5

3′ splice site 12 4.65 × 10−5

Stop loss 1 3.87 × 10−6

Stop gain 12 4.70 × 10−5

Frameshift 1 3.87 × 10−6
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