Skip to main content
Annals of Rehabilitation Medicine logoLink to Annals of Rehabilitation Medicine
editorial
. 2021 Jun 30;45(3):167–169. doi: 10.5535/arm.21106

Handgrip Strength: An Irreplaceable Indicator of Muscle Function

Sang Yoon Lee 1,
PMCID: PMC8273729  PMID: 34233405

Handgrip strength (HGS) is a simple and reliable measurement of maximum voluntary muscle strength. It is an important tool for diagnosing sarcopenia and is widely used as a single indicator to represent overall muscle strength [1-4]. HGS can predict not only muscle mass and physical activity [5], but also the incidence of chronic diseases, nutritional status, quality of life, independence of daily life, length of hospital stay, and even mortality [6-9].

The European Working Group on Sarcopenia in Older People (EWGSOP) and the Asian Working Group for Sarcopenia (AWGS) recommended HGS as one of the axes for diagnosing sarcopenia [1,2]. HGS measurement is also the first step in the diagnosis of sarcopenia; according to the algorithm for sarcopenia detection from the EWGSOP-2, if a subject’s HGS is normal, no further screening test is necessary [2].

HGS varies according to age, sex, and race [10]. In Asians, the AWGS first proposed a low HGS to be <26 kg in men and <18 kg women or the lower 20th percentile of the HGS of the study population before outcome-based data are available [11]. An update from the AWGS in 2016 suggested that previous consensus cutoff points might require further modifications [1], and the AWGS recently suggested a low HGS of <28.0 kg for men and <17.7 kg for women with pooled datasets from various countries in Asia [12].

HGS is correlated with several medical diseases, including chronic anemia [13], dyslipidemia [14], hypertension [15], metabolic syndrome [16], and chronic kidney disease [17]. It is also associated with dietary intake [18] and dietary patterns [19]. Among micronutrients, vitamin D and HGS have been widely investigated, and low HGS is associated with vitamin D deficiency [20]. The serum 25(OH)D concentration is also significantly related to HGS [21]. These results are sufficiently predictable given the effect of vitamin D on muscle physiology. Vitamin D plays a major role in protein synthesis through vitamin D receptors in muscles, improving muscle strength and physical function [22]. Interestingly, one study reported that serum vitamin D levels were associated with HGS but not with muscle mass [23]. Thus, we conclude that HGS has a greater influence on muscle function than muscle mass.

Recent studies have shown that vitamin E is associated with muscle aging and regeneration. Vitamin E has been studied as an anti-aging agent mainly because of its anti-inflammatory and antioxidant effects [24]. However, in addition to these effects, vitamin E has been shown to induce myoblast proliferation and increase muscle mass [25]. Furthermore, vitamin E can reduce muscle damage, enhance recovery from exercise, and prevent muscle atrophy [26]. Since most of these studies were conducted as preclinical studies or basic experiments, clinical studies are indispensable.

A study on the correlation between serum vitamin E levels and HGS published in this issue of the Annals of Rehabilitation Medicine is considered the first attempt on this topic and is a very remarkable study [27]. The authors analyzed the correlation between vitamin E levels and HGS in 1,814 adults by multiple logistic regression using data from the 2018 Korea National Health and Nutrition Examination Survey (KNHANES VII). The analysis revealed that young men with higher serum vitamin E levels had higher HGS. Although the results of the study have various limitations, they are expected to be a good reference for further studies as they were obtained from a large number of human subjects.

As in a large-scale study, HGS is the simplest and most accurate indicator that can reflect an individual’s muscle strength status. Therefore, HGS has been continuously used as a biomarker of current status [28]. In addition, HGS has been identified as an indicator that can predict an individual’s future health status, even mortality; a few meta-analyses have supported the association of weak HGS with all-cause mortality in the general population [29,30] and calculated a pooled hazard ratio of 1.16 per 5 kg reduction in HGS. In addition, it is a potential predictor of cardiovascular [31] and cancer [32] mortality.

Based on this evidence, HGS is now irreplaceable as an indicator of muscle function. Thus, HGS measurement should be strongly recommended as a routine test in hospital practice and community healthcare and not only in the research field.

Acknowledgments

This work was supported by a National Research Foundation of Korea grant funded by the Korean government (MSIT) (No. 2019R1C1C100632).

Footnotes

No potential conflict of interest relevant to this article was reported.

REFERENCES

  • 1.Chen LK, Lee WJ, Peng LN, Liu LK, Arai H, Akishita M, et al. Recent advances in sarcopenia research in Asia: 2016 update from the Asian Working Group for Sarcopenia. J Am Med Dir Assoc. 2016;17:767.e1–7. doi: 10.1016/j.jamda.2016.05.016. [DOI] [PubMed] [Google Scholar]
  • 2.Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31. doi: 10.1093/ageing/afy169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Wisniowska-Szurlej A, Cwirlej-Sozanska A, Woloszyn N, Sozanski B, Wilmowska-Pietruszynska A. Association between handgrip strength, mobility, leg strength, flexibility, and postural balance in older adults under long-term care facilities. Biomed Res Int. 2019;2019:1042834. doi: 10.1155/2019/1042834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Miljkovic N, Lim JY, Miljkovic I, Frontera WR. Aging of skeletal muscle fibers. Ann Rehabil Med. 2015;39:155–62. doi: 10.5535/arm.2015.39.2.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A, et al. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol (1985) 2003;95:1851–60. doi: 10.1152/japplphysiol.00246.2003. [DOI] [PubMed] [Google Scholar]
  • 6.Taekema DG, Gussekloo J, Maier AB, Westendorp RG, de Craen AJ. Handgrip strength as a predictor of functional, psychological and social health: a prospective population-based study among the oldest old. Age Ageing. 2010;39:331–7. doi: 10.1093/ageing/afq022. [DOI] [PubMed] [Google Scholar]
  • 7.Kerr A, Syddall HE, Cooper C, Turner GF, Briggs RS, Sayer AA. Does admission grip strength predict length of stay in hospitalised older patients? Age Ageing. 2006;35:82–4. doi: 10.1093/ageing/afj010. [DOI] [PubMed] [Google Scholar]
  • 8.Bohannon RW. Hand-grip dynamometry predicts future outcomes in aging adults. J Geriatr Phys Ther. 2008;31:3–10. doi: 10.1519/00139143-200831010-00002. [DOI] [PubMed] [Google Scholar]
  • 9.Jang A, Bae CH, Han SJ, Bae H. Association between length of stay in the intensive care unit and sarcopenia among hemiplegic stroke patients. Ann Rehabil Med. 2021;45:49–56. doi: 10.5535/arm.20111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Lee YL, Lee BH, Lee SY. Handgrip strength in the Korean population: normative data and cutoff values. Ann Geriatr Med Res. 2019;23:183–9. doi: 10.4235/agmr.19.0042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc. 2014;15:95–101. doi: 10.1016/j.jamda.2013.11.025. [DOI] [PubMed] [Google Scholar]
  • 12.AuYeung TW, Leung J, Yu R, Lee JS, Kwok T, Woo J. Decline and peripheral redistribution of fat mass in old age: a four-year prospective study in 3018 older community-living adults. J Nutr Health Aging. 2018;22:847–53. doi: 10.1007/s12603-018-1026-4. [DOI] [PubMed] [Google Scholar]
  • 13.Gi YM, Jung B, Kim KW, Cho JH, Ha IH. Low handgrip strength is closely associated with anemia among adults: a cross-sectional study using Korea National Health and Nutrition Examination Survey (KNHANES) PLoS One. 2020;15:e0218058. doi: 10.1371/journal.pone.0218058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Kim BM, Yi YH, Kim YJ, Lee SY, Lee JG, Cho YH, et al. Association between relative handgrip strength and dyslipidemia in Korean adults: findings of the 2014-2015 Korea National Health and Nutrition Examination Survey. Korean J Fam Med. 2020;41:404–11. doi: 10.4082/kjfm.19.0073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Ji C, Zheng L, Zhang R, Wu Q, Zhao Y. Handgrip strength is positively related to blood pressure and hypertension risk: results from the National Health and nutrition examination survey. Lipids Health Dis. 2018;17:86. doi: 10.1186/s12944-018-0734-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Hong S. Association of relative handgrip strength and metabolic syndrome in Korean older adults: Korea National Health and Nutrition Examination Survey VII-1. J Obes Metab Syndr. 2019;28:53–60. doi: 10.7570/jomes.2019.28.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Lee YL, Jin H, Lim JY, Lee SY. Relationship between low handgrip strength and chronic kidney disease: KNHANES 2014-2017. J Ren Nutr. 2021;31:57–63. doi: 10.1053/j.jrn.2020.03.002. [DOI] [PubMed] [Google Scholar]
  • 18.Tak YJ, Lee JG, Yi YH, Kim YJ, Lee S, Cho BM, et al. Association of handgrip strength with dietary intake in the Korean population: findings based on the Seventh Korea National Health and Nutrition Examination Survey (KNHANES VII-1), 2016. Nutrients. 2018;10:1180. doi: 10.3390/nu10091180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Kang Y, Kim J, Kim DY, Kim S, Park S, Lim H, et al. Association between dietary patterns and handgrip strength: analysis of the Korean National Health and Nutrition Examination Survey data between 2014 and 2017. Nutrients. 2020;12:3048. doi: 10.3390/nu12103048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Mendoza-Garces L, Velazquez-Alva MC, Cabrer-Rosales MF, Arrieta-Cruz I, Gutierrez-Juarez R, IrigoyenCamacho ME. Vitamin D deficiency is associated with handgrip strength, nutritional status and T2DM in community-dwelling older Mexican women: a crosssectional study. Nutrients. 2021;13:736. doi: 10.3390/nu13030736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Wang J, Wang X, Gu Y, Liu M, Chi VT, Zhang Q, et al. Vitamin D is related to handgrip strength in adult men aged 50 years and over: a population study from the TCLSIH cohort study. Clin Endocrinol (Oxf) 2019;90:753–65. doi: 10.1111/cen.13952. [DOI] [PubMed] [Google Scholar]
  • 22.Remelli F, Vitali A, Zurlo A, Volpato S. Vitamin D deficiency and sarcopenia in older persons. Nutrients. 2019;11:2861. doi: 10.3390/nu11122861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Gumieiro DN, Murino Rafacho BP, Buzati Pereira BL, Cavallari KA, Tanni SE, Azevedo PS, et al. Vitamin D serum levels are associated with handgrip strength but not with muscle mass or length of hospital stay after hip fracture. Nutrition. 2015;31:931–4. doi: 10.1016/j.nut.2014.12.022. [DOI] [PubMed] [Google Scholar]
  • 24.Niki E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic Biol Med. 2014;66:3–12. doi: 10.1016/j.freeradbiomed.2013.03.022. [DOI] [PubMed] [Google Scholar]
  • 25.Chung E, Mo H, Wang S, Zu Y, Elfakhani M, Rios SR, et al. Potential roles of vitamin E in age-related changes in skeletal muscle health. Nutr Res. 2018;49:23–36. doi: 10.1016/j.nutres.2017.09.005. [DOI] [PubMed] [Google Scholar]
  • 26.Lukaski HC. Vitamin and mineral status: effects on physical performance. Nutrition. 2004;20:632–44. doi: 10.1016/j.nut.2004.04.001. [DOI] [PubMed] [Google Scholar]
  • 27.Park N, Kim SA, Oh K, Kim Y, Park S, Kin JY, et al. Association Between Vitamin E and Handgrip Strength in the Korean General Population in KNHANES VII (2018) Ann Rehabil Med. 2021;45:170–7. doi: 10.5535/arm.21038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Bohannon RW. Grip strength: an indispensable biomarker for older adults. Clin Interv Aging. 2019;14:1681–91. doi: 10.2147/CIA.S194543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Rijk JM, Roos PR, Deckx L, van den Akker M, Buntinx F. Prognostic value of handgrip strength in people aged 60 years and older: a systematic review and metaanalysis. Geriatr Gerontol Int. 2016;16:5–20. doi: 10.1111/ggi.12508. [DOI] [PubMed] [Google Scholar]
  • 30.Garcia-Hermoso A, Cavero-Redondo I, Ramirez-Velez R, Ruiz JR, Ortega FB, Lee DC, et al. Muscular strength as a predictor of all-cause mortality in an apparently healthy population: a systematic review and metaanalysis of data from approximately 2 million men and women. Arch Phys Med Rehabil. 2018;99:2100–2113.e5. doi: 10.1016/j.apmr.2018.01.008. [DOI] [PubMed] [Google Scholar]
  • 31.Wu Y, Wang W, Liu T, Zhang D. Association of grip strength with risk of all-cause mortality, cardiovascular diseases, and cancer in community-dwelling populations: a meta-analysis of prospective cohort studies. J Am Med Dir Assoc. 2017;18:551.e17–551.e35. doi: 10.1016/j.jamda.2017.03.011. [DOI] [PubMed] [Google Scholar]
  • 32.Garcia-Hermoso A, Ramirez-Velez R, Peterson MD, Lobelo F, Cavero-Redondo I, Correa-Bautista JE, et al. Handgrip and knee extension strength as predictors of cancer mortality: a systematic review and meta-analysis. Scand J Med Sci Sports. 2018;28:1852–8. doi: 10.1111/sms.13206. [DOI] [PubMed] [Google Scholar]

Articles from Annals of Rehabilitation Medicine are provided here courtesy of Korean Academy of Rehabilitation Medicine

RESOURCES