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Abstract

By employing chip-based capillary zone electrophoresis coupled to high resolution mass 

spectrometry, we profiled the plasma metabolome of 134 patients diagnosed with sporadic 

amyotrophic lateral sclerosis (81 males and 53 females) and 118 individuals deemed healthy (49 

males and 69 females). The most significant markers (p<0.01) were creatine, which was 49% 

elevated, and creatinine and methylhistidine which were decreased by 20% and 24%, respectively, 

in ALS patients. The ratio of creatine versus creatinine increased 370% and 200% for male and 

female ALS patients, respectively. In addition, male ALS patients on average had 5–13% lower 

amounts of 7 essential amino acids while females did not significantly differ from healthy 

controls. We developed two models using the metabolite abundances: 1) A classification model for 

the separation of ALS and healthy samples; and 2) A classification model for the prediction of 

disease progression based on the ALS functional rating score. Utilizing a Monte Carlo cross-

validation approach, a linear discriminant analysis model achieved a mean area under the receiver 

operating characteristic curve (AUC) of 0.85 (0.06) with a mean sensitivity of 80% (9%) and 

specificity of 78% (10%), for the separation of ALS and controls, respectively. A support vector 

machine classifier predicted progression categories with an AUC of 0.90 (0.06) with a mean 

sensitivity 73% (10%) and specificity 86% (5%). Lastly, using a previously reported assay with a 
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stable isotope labeled (13C3
15N2) spike-in standard, we were unable to detect the exogenous 

neurotoxic metabolite, β-methylamino-L-alanine (BMAA), in the free or protein bound fraction of 

any of the 252 plasma samples.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS)1 is a devastatingly progressive neurodegenerative 

disease that often strikes seemingly healthy middle-age individuals at random. It is 

characterized by the deterioration of both upper and lower motor neurons in the brain, brain 

stem, and spinal cord leading to loss of voluntary muscle action and eventual total body 

paralysis. Patients typically succumb to respiratory failure, a direct result of the deterioration 

of the muscles that control breathing, 3–5 years following the onset of symptoms.2 While 

10% of patients survive five or more years, these individuals endure significant medical 

interventions, associated costs, and decreased quality of life. Currently only two drugs have 

been approved for treatment of ALS; however, neither Riluzole nor Radicava have proven to 

be that effective and offer meager improvements in survival (i.e., 2–3 months)3 and function 

in a subset of patients.4,5 Consequently, the ALS community is in dire need of effective 

therapies to reverse, halt, or even slow disease progression.

The journey to treat ALS has been hampered for several reasons over the years.6 A 

significant reason is the lack of an objective biomarker that can be used to aid diagnosis, 

assess progression, confirm target engagement, and serve as endpoints for trial evaluation. 

ALS is diagnosed by exclusion of other confounding diseases and the presentation of 

clinical symptoms indicative of both upper and lower motor neuron loss.7 This highly 

subjective approach is lengthy with a median of 11.5 months from symptom onset to 
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diagnosis.8 This delay often results in unnecessary surgeries, expenses, and notably prevents 

early intervention where future therapies will be most likely be effective.

To date, no biomarker exists to assess disease progression or the efficacy of therapeutic 

intervention. Progression is monitored in the clinic by using a 12-question survey where 

each question addresses a specific area of physical disability and is scored on a five-point 

scale (0–4). The sum is referred to as the patient’s ALS functional rating score (ALS-FRS).9 

Although the advantages of the survey are clear (e.g., cheap and fast), the limitations include 

but are not limited to: 1) several questions are subjective; 2) the scale is not linear with the 

degree of physical impairment; 3) (un)conscious bias; and 4) it is an indirect measure of the 

presentation of the underlying disease processes and thus a poor indicator of disease 

progression and response to therapy. Disturbingly, it is quite possible that previous clinical 

trials have identified a successful therapy; however, due to the length of any given trial and 

other parameters6,10 the effect was not yet observed at the phenotypic level (i.e., ALS-FRS) 

and these trials were deemed a failure. Thus, a sorely needed game changer in ALS research 

that would impact everything from basic disease biology to drug discovery and clinical care, 

is the identification of a quantitative marker(s) indicative of disease and progression.

Numerous studies have been undertaken over the past couple of decades to identify a fluid 

based quantitative biomarker for ALS.11,12 These efforts have focused on proteins, small 

molecules, and microRNA.11–13 The most studied and promising biomarker identified thus 

far are neurofilaments14. Neurofilaments provide structure to the motor neurons and are 

released into the CSF upon cellular injury. Research has shown elevated levels of 

phosphorylated neurofilament heavy protein (pNFL) in ALS patients compared to other 

neurodegenerative diseases and healthy controls.15–17 In addition, higher levels of pNFH in 

the CSF were associated with decreased survival but notably did not correlate with ALS-

FRS.17 Although promising, limitations for the use of neurofilaments as biomarkers for ALS 

include susceptibility to protease degradation (i.e., instability)18,19 and conflicting studies on 

their use for prognosis.20,21 Other notable protein biomarkers for ALS include various ones 

related to immune response and neuroinflammation.12,22–24

While small molecules have received considerably less attention than proteins as biomarkers 

for ALS, disruptions in metabolism are hallmark features of disease pathogenesis.25 Thus, 

the assessment of metabolite markers is a promising avenue for biomarker discovery. Due to 

its direct role in a major pathway of neuronal death associated with ALS (i.e., 

excitotoxicity), several studies have measured glutamate in CSF or plasma; however, with 

conflicted results on its difference in ALS patients.26–28 With the emergence of mass 

spectrometry based metabolomics, investigations have focused on the discovery of 

metabolite signatures for both clinical purposes and insight into disease mechanisms.29,30 

For example, Berry and coworkers identified a plasma derived 32-metabolite panel with high 

specificity (90%) yet moderate sensitivity (58%) in the separation of ALS patients from 

disease mimics and healthy controls.31

In this contribution, capillary zone electrophoresis (CZE) provided a rapid and highly 

efficient separation followed by detection by high resolution mass spectrometry of 

metabolites derived from plasma taken from 134 and 118 sporadic ALS (sALS) and control 
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patients, respectively. A combination of univariate and multivariate methods was used to 

assess significance and develop signatures of disease status separation and progression. 

Muscle metabolism markers were most significantly different between healthy and diseased 

patients, but several essential amino acids were found lower in males with ALS. Results 

presented herein demonstrate the potential for a panel of plasma metabolites to aid in the 

diagnosis of sALS and serve as an objective marker to monitor disease progression. A 

secondary goal of this work was to quantify β-methylamino-L-alanine (BMAA), a 

nonconical neurotoxic amino acid produced by cyanobacteria which has been previously 

associated with ALS etiology32, in plasma from ALS and control patients. Importantly, we 

were unable to detect BMAA at a low limit of detection (LOD) in the free (LOD=2.3 

ng/mL) or protein bound (LOD=1 ng/mL) fractions in any of the 252 plasma samples.

MATERIALS AND METHODS

Materials

Ammonium acetate, hydrochloric acid (HCl), methylamine hydrochloride, barium 

hydroxide, α-casein and 0.22 μm nylon centrifuge tube filters were obtained from Sigma 

Aldrich (St. Louis, MO). LC-MS grade water, methanol and formic acid were purchased 

from Fisher Scientific (Hampton, NH). BMAA (catalog No. ULM-10493–1.2) and 
13C3,15N2-BMAA (SIL-BMAA, catalog No. CNLM-10424–1.2) were obtained from 

Cambridge Isotope Laboratories (Tewksbury, MA).

Sample Collection and Preparation

Samples in the study were provided by The Neurodegenerative Disease biobank at 

Macquarie University. The biobank recruited, obtained informed consent and collected 

biological samples from all participants in accordance with relevant guidelines and 

regulations. The majority of participants were of European descent. Whole blood was 

collected from participants in 10 ml EDTA tubes according to standard protocols. Blood was 

centrifuged at 2,100g for 10 minutes, following which plasma was removed and stored at 

−80°C, on the day of collection. Ethics approval for the study was obtained from Macquarie 

University’s human research ethics committee (Approval no. 5201600387).

The cohort consists of 134 patients and 118 controls. The majority of patients (n=129) were 

diagnosed with classic ALS i.e. both upper and lower motor neurons affected. The 

remainder (n=6) were just affected in either the upper or lower motor neurons. At the time of 

cohort design, all patients were classified as sporadic i.e. no family history of ALS. Controls 

(n=118) were deemed to be healthy and unrelated to an ALS patient. Neither patients nor 

controls were directed to fast prior to sample collection.

Samples were randomly assigned to one of six batches for detection of protein bound 

BMAA and one of three batches for detection of free BMAA and metabolite profiling. Three 

quality control samples of pooled plasma spiked with BMAA and SIL-BMAA were 

prepared with each batch.
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Detection of Protein Bound BMAA

250 μg of protein (BCA assay) was spiked with SIL-BMAA to give a final concentration of 

6.25 ng/mL. The mixture was acid hydrolyzed in 6N HCl overnight at 95°C. Samples were 

lyophilized and reconstituted in the 908 Devices metabolites diluent, resulting in a 1:100 

overall dilution. Three quality control samples (i.e., positive controls) were prepared and 

analyzed with each batch to evaluate intra- and inter-batch precision. QC samples were 

created by performing a combination of β-elimination followed by Michael Addition of 

methylamine to chemically convert phosphoserines in α-casein to BMAA33. This protein 

was then added to pooled plasma and underwent sample preparation as described. A 10-

point calibration curve was created by spiking in increasing amounts of unlabeled BMAA 

along with a constant amount of SIL-BMAA into pooled plasma. Final concentrations of the 

calibrators following dilution ranged from 5,000, 1,000, 500, 100, 50, 10, 5, 2.5, 1 and 0 

ng/mL. The ratio of the response (unlabeled/labeled) was plotted as a function of BMAA 

concentration. The linear fit was excellent (R2>0.999) and limits of detection and 

quantitation, calculated as described34, were 1.0 and 3.3 ng/mL, respectively. The intra- and 

inter-batch precision of BMAA quantitation was 9.0% and 14.4% CV, respectively. These 

data were only used for detection of protein bound BMAA and not metabolomic analysis.

Detection of Free BMAA and Relative Quantitation of Metabolites

For metabolite profiling and detection of free BMAA, analytes were extracted using the 

following method. 90 μL of a cold extraction solution consisting of an 80:20 mixture of 

methanol and water with 100 mM ammonium acetate and 123 ng/mL (1 μM) SIL-BMAA 

internal standard was added to 10 μL of each plasma sample. Each sample was subsequently 

vortexed and kept on ice for 10 minutes, then filtered using a 0.22 μm nylon centrifugal 

filter. A 9-point calibration curve was created by spiking increasing amounts of unlabeled 

BMAA along with a constant amount of SIL-BMAA into pooled plasma. Final 

concentrations of the calibrators ranged from 1,000, 500, 100, 50, 10, 1, 0.5, 0.01 and 0 

ng/mL. Three quality control samples (i.e., positive controls) were prepared and analyzed 

with each batch to evaluate intra- and inter-batch precision. QC samples were created by 

spiking 10 ng/mL unlabeled BMAA into 10 μL of pooled plasma and were prepared using 

the extraction method described. The ratio of the response (unlabeled/labeled) was plotted as 

a function of BMAA concentration. The linear fit was excellent (R2>0.999) and limits of 

detection and quantitation, calculated as described34, were 2.3 and 7.6 ng/mL, respectively. 

Representative calibration curves for both sample preparations (e.g., protein bound and free 

BMAA) are shown in Figure S1. The intra- and inter-batch precision of BMAA quantitation 

was 14.9% and 15.6% CV, respectively. These data were used for both detection of free 

BMAA and relative quantitation of metabolites.

CZE-MS Analysis

Hydrolyzed samples were analyzed using ZipChip™ HS chips and extracted metabolite 

samples were analyzed using ZipChip™ HSX chips from 908 Devices (Boston, MA) 

coupled to a Q Exactive HF-X mass spectrometer (Thermo Fisher Scientific, Bremen, 

Germany). 20 μL of analyte solution was placed into the sample well and 5.0 nL was 

subsequently injected into the chip. A field strength of 1000 V/cm and an ESI voltage of 3 
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kV were applied for separation over 3 minutes using a background electrolyte solution 

consisting of 2% formic acid in 50% methanol in water. The capillary temperature was set to 

200°C. For MS1 analysis, mass resolving power was 15,000 (FWHM at m/z = 200) with an 

AGC target of 1 × 106, maximum injection time of 20 ms, and scan range of m/z 70–210. 

Separate methods were applied for MS1 and MS2 analyses due to limited peak width 

(FWHM was ~0.5 s). For MS2 analysis, resolving power was 15,000 (FWHM at m/z = 200) 

with an AGC target of 2 × 105, maximum injection time of 200 ms, isolation window of 2.0 

m/z, and NCE of 35. Three QC standards were analyzed at the beginning, middle and end of 

each day followed by a blank injection. Further details on the method used for CZE-MS 

detection of BMAA can be found here.34

Data Analysis and Availability

BMAA analysis, PRM raw data files were imported into Skyline where peak areas were 

extracted for unlabeled BMAA (precursor 119.0815, products 102.0550, 88.0393, 76.0393, 

73.0760, and 56.0495 m/z) and SIL-BMAA (precursor 124.0856, products 106.0621, 

92.0464, 79.0430, 77.0768, and 59.0532 m/z) and exported to a .csv file.

Metabolites were identified based on MS1 MMA ± 10 ppm. The migration times were 

compared to data provided by the manufacturer from a pooled plasma sample to confirm 

identification and to distinguish isomers (e. g., Leu vs Ile). RAW files were imported into 

Skyline35 where MS1 extracted ion based quantitation was performed.36 Peak areas were 

then exported to a .csv file and imported into R Studio. The precision of relative quantitation 

was estimated for individual chips, sample preparation for each day, and total experimental 

variability using the median coefficient of variation (CV) of the pooled replicates. The 

within chip precision was 14%, 6%, and 19% (CV) for chips 1–3, respectively. The 

precision in sample preparation for batches 1–3 was 6%, 10%, and 11% CV, respectively. 

Total experimental precision was 35% CV (Figure S2).

All RAW files from this study are available on the Chorus Project mass spectrometry data 

repository (Project ID=1664). All Skyline files are located on the PanoramaWeb37 repository 

in the ‘ALS Metabolite Biomarker” project folder under Bereman Lab. Data for the BMAA 

calibration, quality control samples, metabolite abundances used in this study are available 

in Supplemental File 1.

Univariates Statistics

Data were log2 transformed and the significance of the difference in the mean analyte 

abundance between ALS and control were compared using the Welch two tailed t-test. The 

Benjamini Hochberg method38 was used to correct for multiple hypothesis testing. Percent 

change was calculated in non-log space as the difference in the average analyte abundance 

(ALS-control) divided by control times 100. For assessing the relationship between ALS-

FRS and abundance, a simple linear regression was performed and the probability that the 

slope was different from zero was used for significance.
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Multivariate Statistics

RStudio v2.1, along with several packages including caret, applied predictive modeling, 

ggplot2, and pROC, were used for quality control and multivariate modeling. K-means 

clustering was performed following principal component transformation. We were 

particularly interested in two quality checks: 1) An outlier data point(s) that clearly was 

separated from the majority of the data; and 2) A group of data that clustered and associated 

with sex or disease status. Neither were qualitatively observed (Figure S3).

For the disease classification model, data were log2 transformed, centered, and scaled. Then 

a test sample set was randomly chosen (n=42) and withheld from the model building 

process. A technique called recursive feature elimination39 was then used to choose features 

to maximize model performance. Three models were evaluated including linear discriminant 

analysis (LDA), random forest (RF), and support vector machine (SVM). Feature selection 

was performed within the model building process such as to encompass the variability of 

feature selection in the final results. Using a repeated (n=5) 5-fold cross-validation approach, 

the model was first constructed using all 40 metabolites with 80% of the data. Features were 

then ranked based on performance and subset sizes ranging from 1:10, 15, 20, 25, 30, 35, 

and 40 metabolites were evaluated on the hold out sample set (20%).22 This inner-loop was 

repeated 4 additional times (i.e. 5-fold) and then the whole process was repeated 5 times. 

Both the number of randomly selected variables at each split (mtry=2:5) and cost parameter 

(2−2 2−1 20… 212) were tuned for the RF and SVM, respectively. The sigma parameter for 

the radial Bessel function in SVM was held constant at its predicted value (σ=0.034).40 The 

average area under the receiver operating characteristic curve, calculated from the resampled 

data sets (n=25), were plotted as a function of subset size for each model type to identify the 

optimal size. Since models were cross validated on identical subsets of data, a paired t-test 

was used to statistically determine the highest performing model based on AUC.41 The best 

model, based on area under the ROC curve, was then used to predict the classes of the hold 

out sample set in efforts to validate performance. To ensure the performance of the classifier 

was not due to random effect, this whole feature selection and training procedure was 

repeated with the data set after randomization of the class labels (i.e., negative control). ROC 

analysis was performed on the predictions from the hold out data set using both LDA 

models.

For the second classifier, we calculated the rate of progression for each patient by taking the 

change in FRS at time of sampling divided by the length of time since diagnosis (Δ points 

per month). Patients were then designated as fast (rate ≥3 pts/mo), average (3>rate ≥1 pts/

mo), and slow (rate<1 pt/mo) categories of progression. This process led to 14, 42, and 42 

fast, average and slow progressors in the data set (36 patients were removed due to missing 

clinical assessment data). Due to the severe class imbalance, which can bias the sensitivity 

of classifiers towards the majority class, we performed an imputation method called 

Synthetic Minority Oversampling Technique (SMOTE).42 After performing this 

combination of up- and down-sampling of the minority and the majority classes, we had 28, 

33, and 30 fast, average, and slow progressors, respectively. The SVM was tuned and trained 

with a 5-fold repeated (n=50) cross-validation approach. The model was then compared to 

an analogous classifier constructed on the same data with the class labels randomized (i.e., 
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negative control). The average of the AUC, sensitivity, and specificity (1 vs. all classes) was 

used to evaluate performance of each hold out sample data set. These data were then 

compared using boxplots.

Results

Figure 1 describes the overall experimental design. Plasma was sampled from individuals 

with ALS and individuals considered healthy. Materials were prepared as described for 

capillary zone electrophoresis. The median age of the healthy individuals was 61.7 with an 

interquartile range of 17.5 years. The median age of the ALS patients was 65.3 with an 

interquartile range of 15.1 years. The median ALS-FRS was 32 points, though scores ranged 

from 12 to 47 points out of the 48 possible in the scale. Figure 2 displays volcano plots from 

pairwise comparison of ALS and controls as a function of sex. The -log10 (p-value) is 

plotted as a function of the log2 (fold-change). The two most significant markers were the 

elevation of creatine and the decrease of creatinine in ALS patients. Supplemental File 1 

(Table 1) summarizes the findings for the metabolites quantified in the study. The 

distribution of abundances in all metabolites as a function of disease and sex can be viewed 

in Supplemental File 2.

Figure 3 shows the correlation of muscle associated metabolites methylhistidine, creatine 

and creatinine as a function of disease progression as estimated by the ALS-FRS. A simple 

linear regression is fitted to male and female ALS patients separately. The gray distribution 

denotes the error in the fit. A significant slope was measured in all cases except for creatine 

in females. Methylhistidine explained 17% of the variation in FRS followed by creatinine 

(15%) and creatine (3%). The covariance between methylhistidine and creatinine was high 

(r=0.49) suggesting a relationship with underlying disease processes (i.e. skeletal muscle 

breakdown). As shown by the graphs creatine and creatinine had an inverse relationship with 

disease progression. Figure 3D displays the distribution in the ratio (creatine/creatinine) 

between ALS and healthy controls as a function of sex. A 370% and 200% increase 

(p<0.001) were observed for men and women ALS patients compared to control. Other 

notable metabolites with moderate significance in both females and males (p<0.1) were 

stachydrine and acetyl-L-carnitine which both decreased with increased disease progression. 

The relationship of all metabolites with the FRS can be viewed in Supplemental File 3.

The results for the development of a diagnostic metabolite signature are shown in Figure 4. 

Figure 4A displays the mean area under the curve as a function of the number of metabolites 

during the feature selection process for the LDA, RF and SVM classifiers. All three models 

showed a similar increase followed by incremental improvements in performance with more 

metabolite features. The highest performance amongst the individual models was achieved 

with the 35 feature LDA model (p<0.001) with an AUC of 0.85 (0.06) and a mean sensitivity 

and specificity of 80% (0.09) and 78% (0.10), respectively. Figure S4 compares the 

performance of the models on the resampled data sets using traditional binary classification 

metrics.

Figure 4B shows the results of the same feature selection and model building process only 

with the class labels from the original data randomized (i.e., negative control). As expected 
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for a random classifier, all three models trend near an area under the curve of 0.5. These 

results further support the significance of the models described. The importance of each 

feature, based on normalized AUC, from the LDA model is shown in Figure 4C. Based on 

these data, we took the top six metabolites (highlighted in green box) and trained them on 

the same sets of data. Performance of the full (n=35) and reduced feature (n=6) LDA models 

were statistically the same on the resampled data sets (Figure S4 and Figure S5). 

Furthermore, albeit different ROC curves, Figure 4D shows the performance of both the full 

(red) and reduced feature (green) LDA model were the same (AUC=0.85) on the hold out 

data set (n=42). The blue line denotes the performance (AUC=0.58) of the LDA model 

trained with the randomized data on the hold data set.

A support vector machine classifier was built to classify patients as fast, average, or slow 

progression based on the ALS-FRS. Figure 5 displays boxplots of the performance as 

measured by AUC, sensitivity and specificity from a repeated (n=50) 5-fold cross validation. 

The model achieved a median area under the curve of 0.91 (IQR=0.86–0.94) and a median 

sensitivity and specificity of 74% (IQR=66–80%) and 87% (IQR=83–90%). To further 

assess the significance of this finding, we trained an analogous classifier on the same data 

after permutation of the class labels. These results indicate the performance of the classifier 

trained on the permuted data is random with an AUC of 0.53 (IQR=0.47–0.61). Figure S6 

shows the average variable importance of each metabolite in prediction of rate. Abundances 

of individual metabolites as a function of disease progression rate can be viewed in 

Supplemental File 4.

Lastly, representative electropherograms showing the failure to detect BMAA from the 

extracted metabolite fraction (i.e. free BMAA) and hydrolyzed fraction (i.e., protein bound 

BMAA) of plasma samples in Figure S7 and Figure S8. Extracted ion electropherograms 

clearly show the migration at approximately 1 minute of SIL-BMAA (m/z 124.0856) and the 

absence of endogenous BMAA (m/z 119.0815). In contrast Figure S9 shows a representative 

positive control from which BMAA was released from a synthetically made BMAA 

incorporated protein standard via acid hydrolysis.

DISCUSSION

In this study, chip-based capillary zone electrophoresis coupled to high resolution mass 

spectrometry enabled confident identification and quantification of polar metabolites with 

cycle times similar to clinical assays of approximately 4 minutes. This technology was then 

applied to a large plasma sample cohort for detection of small molecule biomarkers and the 

cyanotoxin BMAA.

The two most significant markers identified were elevation of creatine and lower amounts of 

creatinine in ALS patients which confirm previous findings in both the CSF and plasma of 

ALS patients.29,31 This result is likely due to changes in muscle mass and catabolism 

characteristic of ALS. Notably the elevation of creatine kinase43, the enzyme responsible for 

the creation of the high energy compound creatine phosphate, has been shown to be 

beneficial in both ALS patients44 and animal models of ALS.45 These results are suggestive 

of the enormous energy requirements of the disease and/or possibly the lower activity of 
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creatine kinase45 which is partly compensated by its elevated levels in disease patients.43 

This defect in energy production is further supported by the 2–3.7 fold increase in the 

(creatine/creatinine) in ALS patients. Regardless, the perturbation of the creatine kinase 

system has repeatedly been reported in ALS; yet modulation has shown only to be 

therapeutic in animal models of the disease.46,47 Methylhistidine, a marker of skeletal 

muscle breakdown, was found to be lower in ALS patients. To our knowledge this is the first 

report of changes in this marker in the plasma of ALS patients. A previous literature report 

in a small set of ALS patients (n=7) identified higher levels of methylhistidine in urine48. 

Notably aside from creatine in females, all three muscle markers correlated with disease 

progression as estimated by the FRS. Thus, these markers show potential for diagnosis, 

prognosis and monitoring therapeutic intervention.

Another finding worth noting is the small decrease (5–13%) of seven essential amino acids 

in the plasma of male ALS patients compared to their healthy counterparts. While we note 

four of the seven became insignificant or mildly significant (FDR <0.1) after multiple 

hypothesis correction, it is reasonable to believe that the finding is genuine. Basic 

probability theory shows the chances of identifying 7 of 9 essential amino acids at random 

from a total of 20 amino acids is low (9C7/20C7 = 0.0004). Also it is worth noting the other 

two essential amino acids (i.e. Trp and Val) that did not reach the significance threshold 

(p>0.05) trended lower in male ALS patients. The reason for this finding and its 

consequences are unknown; however, it could be related to the dietary changes and often 

malnutrition that are associated with disease progression. Although, the majority of essential 

amino acids were poorly correlated with FRS (Supplemental File 3). While essential amino 

acids are required for protein synthesis, an underrecognized role is their involvement in 

various ALS associated cellular signaling pathways including the mechanistic target of 

rapamycin, oxidative stress (Nrf2), and calcium sensing pathways49. We do note three male 

reversals of ALS, which are extremely rare50, using a supplement containing high levels of 

amino acids amongst many other constituents (Richard Bedlack MD PhD, Personal 

Communication, January 26, 2020).

Machine learning was used to develop two models for the separation of ALS patients and 

healthy controls and for predicting disease progression based on FRS. A linear discriminant 

model achieved a sensitivity and specificity of 80% and 78% in the classification of disease 

status. Several muscle metabolism markers were the most important features in the model 

which supports the univariate findings. Notably the majority of features from the optimized 

RFE model were uninformative in the classification process. Similar performance was 

achieved with a LDA model using six metabolites. Three of the six metabolites (creatine, 

creatinine, and proline) were previously included in the 32-metabolite model as described by 

Berry et. al.; however, histidine, methylhistidine, and dihydrothymine were neither 

significant nor used in their model. Although encouraging, several of these markers 

(creatine, methylhistidine, creatinine) are associated with muscle metabolism and not 

specific to ALS. For example, there are several diseases and conditions that result in muscle 

wasting and some are considered in the differential diagnosis of ALS (e.g., Kennedy’s 

Disease, Human Immunodeficiency Virus, Multifocal Motor Neuropathy).51 This would 

inhibit the algorithm for use as a screening test and limit it as a sole diagnostic procedure but 

could be a useful aid for diagnosis in conjunction with clinical findings.
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An often underappreciated theme in basic ALS research is the enormous heterogeneity of 

clinical ALS.52 Although the average survival is 3–5 years after the onset of symptoms, 

some forms of ALS are extremely lethal with patients succumbing within months of 

diagnosis. In contrast, with other forms of the disease, patients survive well past the five-

year mark. Thus, it would be incredibly useful to be able to predict disease progression not 

only for the benefit of the patient but importantly for disease categorization, which then 

would inform downstream clinical trials and eventual therapies. Based on the metabolite 

profile, we were able to classify patients as slow, average or fast progressors with a 

sensitivity and specificity of 74% and 87%. The most important metabolite in prediction of 

rate of disease progression was an unidentified feature (m/z=130.0869); however, its 

significance is questionable since it was also highly predictive in the randomized data set. 

Acetyl-L-Carnitine (ALC) was found to be important (AUC=0.73) relative to its value in the 

randomized data set (AUC=0.54). ALC is believed to be helpful in a wide range of 

neurological diseases as it decreases oxidative stress and increases energy through the 

metabolism of long chain fatty acids in the mitochondria.53 Most notable, supplementation 

with high quantities of ALC in ALS patients was shown beneficial in a double blind placebo 

controlled clinical trial.54 Essential amino acids Phe, Leu, Val and Met were shown to be 

important relative to the model trained on the randomized data set; however, other essential 

amino acids were not. Interestingly, muscle metabolism markers were not useful in the 

prediction of rate of disease progression. Limitations of these analyses include lack of a 

separate validation set and the noted shortcomings of the FRS to provide an accurate 

measure of disease state. Further research is needed to validate the model using both 

additional cross-sectional studies and longitudinal sampling but the potential of such a 

model is enormous for the clinical care of ALS patients.

We have spent significant efforts developing new analytical technologies for confident and 

accurate quantification of BMAA.34 The impetus behind these efforts has been driven by 

past studies that have quantified BMAA in high amounts yet often with nonspecific 

analytical techniques.55 BMAA has been previously detected in the protein bound and free 

fractions of biological samples. In these studies, we applied these tools in efforts to detect 

BMAA in human plasma samples. We report the failure to detect BMAA in any of the 134 

ALS or 118 control samples. Thus, these findings lead to one of three possible conclusions: 

1) BMAA is not involved in the etiology of sporadic ALS26,55–59 in this sample cohort; 2) 
BMAA may be involved yet below the detection limits of the analytical technologies used in 

this study; or 3) transient acute or sub chronic exposures to BMAA may be the trigger for 

neurodegeneration60 in susceptible individuals61 yet difficult to detect at any single time 

point. Regardless, these findings do not support the accumulation of BMAA to significant 

levels within the body.

CONCLUSIONS

High throughput metabolite profiling identified several muscle metabolism markers that 

were differentially abundant and correlated with disease progression in plasma of ALS 

patients. Models were developed using machine learning to distinguish health status and 

categorize patients based on progression rates with high sensitivity and specificity. Ongoing 

studies are examining the markers in plasma longitudinally collected from ALS patients in 
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efforts to refine and validate these models. Longitudinal samples are essential in biomarker 

discovery as they account for the intraindividual variability, which will be critical for 

assessing the suitability of our models for clinical purposes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Summary of sample preparation and experimental design and clinical characteristics. The 

median ages of the ALS patients and the healthy individuals were 65.3 and 61.7 years (IQRs 

of 15.3 and 17.5 years), respectively.
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Figure 2: 
Volcano plots of A) ALS vs. Control and separated by sex B) Males and C) Females. Shaded 

region represents significance (p<0.05). Creatinine and creatine are annotated.
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Figure 3: 
Correlation of muscle metabolism markers with ALS-FRS for A) methylhistidine B) 

creatine and C) creatinine. Circle=female, Triangle=male. Slopes of regression lines were 

statistically significant (p<0.05) except creatine in females. D) Ratio (creatine/creatinine) 

between ALS patients and controls as a function of sex. Blue=healthy red=SALS
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Figure 4: 
A) The mean area under the curve is plotted as a function of the number of metabolites in 

the model. The performance of a support vector machine, linear discriminant analysis, and 

random forest models were compared. B) Training the same models on the data set in which 

the class labels were randomized. C) Normalized variable importance, based on area under 

the curve for individual metabolites, of the metabolites in the optimized LDA model. Green 

highlights the top 6 most important features. D) ROC analysis of the predicted classes from 

the test set using the full feature (n=35) LDA (red) and reduced feature (n=6) LDA model 

(green). The blue curve was created by using the LDA model constructed from the 

randomized data set. Dashed line represents the performance of a theoretical random 

classifier.
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Figure 5: 
The performance of the SVM in classifying disease progression as measured by AUC, 

sensitivity and specificity. A second SVM was trained after permutation of the class labels 

(svmR).
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