Table 3.
Accuracies for predicting PCSI/PedsQL using Models 1–5 and AUC values
Prediction | Models | Correlation | MSE | AUC for classifying PPCS versus recovered | |||
---|---|---|---|---|---|---|---|
Train | Test | Train | Test | Train | Test | ||
PCSI prediction | Model 1 | =0.47, p = 1.20 × 10–4 | = 0.57, p = 2.07 × 10–3 | 293.96 | 304.22 | 0.8 | 0.71 |
Model 2 | N. S | N. S | N/A | N/A | N/A | N/A | |
Model 4 | = 0.41, p = 8.00 × 10–4 | N. S | 340.28 | 458.34 | N/A | N/A | |
Model 5 | N. S | N. S | N/A | N/A | N/A | N/A | |
PedsQL prediction | Model 1 | = 0.71, p = 1.76 × 10–10 | = 0.59, p = 1.20 × 10–3 | 120.78 | 132.67 | 0.70 | 0.56 |
Model 2 | = 0.42, p = 6.53 × 10–4 | = 0.50, p = 6.80 × 10–3 | 137.15 | 161.60 | 0.59 | 0.68 | |
Model 3 | = 0.74, p = 1.72 × 10–11 | = 0.71, p = 3.89 × 10–5 | 106.24 | 106.75 | 0.70 | 0.63 | |
Model 4 |
= 0.36, p = 3.90 × 10–3 |
N. S | 167.96 | 194.41 | N/A | N/A | |
Model 5 | N. S | N. S | N/A | N/A | N/A | N/A |
N. S. denotes not significant. Accuracies were reflected by the correlation and MSE value between predicted PCSI/PedsQL and true PCSI/PedsQL values. AUC values were for classifying PPCS versus recovered using the predicted PCSI/PedsQL values