Skip to main content
. 2021 Jul 12;13:140. doi: 10.1186/s13148-021-01128-z

Table 3.

Accuracies for predicting PCSI/PedsQL using Models 1–5 and AUC values

Prediction Models Correlation MSE AUC for classifying PPCS versus recovered
Train Test Train Test Train Test
PCSI prediction Model 1 r=0.47, p = 1.20 × 10–4 r= 0.57, p = 2.07 × 10–3 293.96 304.22 0.8 0.71
Model 2 N. S N. S N/A N/A N/A N/A
Model 4 r= 0.41, p = 8.00 × 10–4 N. S 340.28 458.34 N/A N/A
Model 5 N. S N. S N/A N/A N/A N/A
PedsQL prediction Model 1 r= 0.71, p = 1.76 × 10–10 r= 0.59, p = 1.20 × 10–3 120.78 132.67 0.70 0.56
Model 2 r= 0.42, p = 6.53 × 10–4 r= 0.50, p = 6.80 × 10–3 137.15 161.60 0.59 0.68
Model 3 r= 0.74, p = 1.72 × 10–11 r= 0.71, p = 3.89 × 10–5 106.24 106.75 0.70 0.63
Model 4

r= 0.36,

p = 3.90 × 10–3

N. S 167.96 194.41 N/A N/A
Model 5 N. S N. S N/A N/A N/A N/A

N. S. denotes not significant. Accuracies were reflected by the correlation and MSE value between predicted PCSI/PedsQL and true PCSI/PedsQL values. AUC values were for classifying PPCS versus recovered using the predicted PCSI/PedsQL values