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Abstract

Substance-use is a leading cause of disability and death worldwide. Despite the existence of 

evidence-based treatments, clinical outcomes are highly variable across individuals and relapse 

rates following treatment remain high. Within this context, methods to identify individuals at 

particular risk for unsuccessful treatment (i.e., limited within-treatment abstinence), or for relapse 

following treatment, are needed to improve outcomes. Cumulatively, the literature generally 

supports the hypothesis that individual differences in brain function and structure are linked to 

differences in treatment outcomes, although anatomical loci and directions of associations have 

differed across studies. However, this work has almost entirely used methods that may overfit the 

data leading to inflated effect size estimates and reduced likelihood of reproducibility in novel 

clinical sample. In contrast, cross-validated predictive modeling (i.e., machine learning) 

approaches are designed to overcome limitations of traditional approaches by focusing on 

individual differences and generalization to novel subjects (i.e., cross-validation), thereby 

increasing the likelihood of replication and potential translation to novel clinical settings. Here, we 

review recent studies using these approaches to generate brain-behavior models of treatment 

outcomes in addictions and provide recommendations for further work using these methods.
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Introduction

Substance-use is a leading cause of disability and death (1). Within the United States, annual 

opioid-associated fatalities recently exceed those caused by firearms and motor vehicles, and 

those caused by HIV at the height of the AIDS Epidemic (2). Although less publicized, there 

has been a concurrent rise in cocaine- and stimulant-associated fatalities (3). Thus, improved 

strategies to combat the current substance-use epidemic are urgently needed (3, 4). While 
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evidence-based treatments exist (5, 6), outcomes are variable across individuals and the 

majority of individuals experience multiple, unsuccessful treatment attempts. Relapse rates 

following treatment also remain high and, for some substances, this is a critical vulnerability 

period for overdose-associated death (7). Thus, methods to identify individuals at particular 

risk for unsuccessful treatment are needed to improve outcomes.

Despite a large degree of between-patient heterogeneity, individual differences in 

‘traditional’ variables (e.g., severity) are typically not sufficient to account for differences in 

addiction outcomes (8, 9). Thus, more recent translational work has sought to identify 

neurobiological features that may be used to predict treatment responses (10). Cumulatively, 

this literature generally supports the hypothesis that individual differences in brain function 

and structure are linked to differences in clinical outcomes, although anatomical loci and 

directions of associations have differed somewhat across studies (8, 11, 12). However, this 

work has not typically used recommended strategies to minimize the risk of overfitting (e.g., 

cross-validation), leading to inflated effect size estimates and reduced likelihood of 

reproducibility in novel clinical samples (13–16). Here, we discuss how alternative, machine 

learning based approaches may generate more robust predictions, review prior findings using 

these approaches in addictions, and discuss addiction-specific considerations for adoption of 

these methods. As an exhaustive methodological tutorial is not possible here, popular 

approaches and key terms are defined in Table 1. For a practical guide on generating brain-

behavior models, see (17) (also see (18) for sample size considerations).

Prediction versus explanation

Machine learning—or cross-validated, predictive modeling—approaches are ideally suited 

for dealing with heterogeneous data and are designed to protect against overfitting via 

generation of a model in a training dataset and application of the model to a novel, unseen 

dataset (17, 19). By focusing on both out-of-sample generalizability and individual 

difference factors, machine learning approaches therefore offer a promising, pragmatic 

alternative to traditional statistical approaches—which generally aim to explain the variance 

between two or more variables, rather than to generate predictions in novel data (14).

Many different algorithms can be used to build predictive models, and these include 

approaches for modeling categorical data—i.e., classification—and for modeling continuous 

(dimensional) data—i.e., regression. While all approaches involve roughly the same steps, 

the ‘best’ algorithm depends on the clinical question and performance of different 

algorithms may vary significantly across and within datasets (18). In the context of addiction 

treatment, the goal of predictive modeling is typically to estimate (i.e., predict) an 

individual’s clinical outcome (e.g., abstinence during treatment) using data acquired at the 

start of treatment. To achieve this, a predictive model is generated using a training dataset 

and applied to an independent testing dataset (Figure 1) (17). While total independence of 

training and testing data (e.g., data from two separate clinical trials) is optimal, the practical 

limitations of clinical research often preclude the acquisition of multiple independent 

datasets. In the absence of multiple datasets, K-fold cross-validation is used to separate a 

single dataset into training and testing data: The dataset is randomly divided into K equally 

sized, non-overlapping subsets. K–1 subsets are iteratively assigned as training data, with the 
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remaining subset reserved as testing data, such that each of the K subsets is used once as the 

testing data. Choice of K affects performance and depends on the amount of available data 

(schematic example in Figure 1; choices of K in Table 1).Model performance involves 

measuring the differences between observed (actual) and predicted (model generated) values 

and may be measured in several ways. Common metrics are defined in Table 1 and 

considerations for using these in studies of addictions are discussed in ‘Model assessment’. 

Below, we first review recent findings.

Prior work

Eight prior studies have combined cross-validated predictive modeling and neuroimaging 

methods to predict treatment outcomes in addictions (Table 2; see Supplementary Materials 

for manuscript identification).

Completion

Three studies have used a combined approach involving an initial principal or independent 

component analysis (P/ICA) of neuroimaging data followed by SVM classification to 

predict treatment completion (20–22). PCA and ICA are common data reduction methods 

for high dimensionality data that may be useful as an initial feature selection stage in 

predictive modeling. However, as inclusion of testing data in the data reduction stage may 

introduce bias (i.e., non-independence of testing and training data), P/ICA should be run 

only using the training data with the solution being applied to the testing data (for additional 

discussion of this, see (17)). Steele and colleagues used SVM with nested leave-one-out-

cross-validation (LOOCV, definition in Table 1) to predict completion among incarcerated 

individuals (n=89) using PCA results of pretreatment electroencephalogram (EEG) data 

acquired during go/no-go task performance (20). Using a combination of P2 (an evoked 

response potential (ERP) component associated with stimulus identification and sensory 

gating previously linked to abstinence (23)) and Pe (an error processing component 

associated with anterior cingulate activity (24)), SVM classified treatment completers versus 

non-completers with 79.6% overall accuracy (20). Models including only ERP data 

outperformed models including clinical data. In a follow-up study in a similar sample 

(n=123), and also using PCA results of EEG data, SVM with nested LOOCV of three 

separate tasks involving distractor stimuli achieved accuracies of 67-71% in predicting 

completion status (22). More recently, Steele and colleagues used SVM with nested k-fold to 

predict treatment completion (again, in an incarcerated sample of individuals with stimulant 

or opioid dependence; n=139) using a combination of ICA results of fMRI data acquired 

during go/no-go task performance (i.e., network connectivity values) and clinical data (21). 

SVMs of ICA alone and combined with clinical data had comparable accuracies (~81%) and 

outperformed an SVM of clinical data alone. Between-group comparisons (non-machine 

learning analysis) indicated primarily increased connectivity between corticolimbic 

networks among completers versus non-completers.

Response

Luo and colleagues tested the ability of amphetamine-induced change in D2/3 receptor 

binding potential (ΔBPND) within the striatum, as assessed via positron emission 
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tomography (PET) imaging with [11C]raclopride, to predict contingency management 

treatment response for cocaine use (n=24) (25). Multiple SVMs were conducted to test the 

predictive ability of baseline (pre-amphetamine) BPND and ΔBPND across striatal regions-

of-interest (ROIs) alone and in combination with clinical variables. The SVM including only 

ventral striatal ΔBPND had the highest predictive accuracy (82%) and this was not improved 

by incorporation of baseline clinical variables. Incorporation of within-treatment behavioral 

data (clinic attendance) was also a significant predictor of treatment response, both alone 

and in conjunction with ventral striatal ΔBPND (25).

Yip and colleagues used connectome-based predictive modeling (CPM)—a data-driven, 

whole-brain regression approach (26, 27)—to identify neural networks associated with 

treatment response (9). CPM with LOOCV (n=53) identified a distributed network that 

predicted within-treatment abstinence (percent of cocaine-free urines during treatment), as 

indicated be a significant correspondence between actual and predicted values (9). Clinical 

variables alone were not sufficient to predict treatment response in this sample. Connectivity 

within the identified network also significantly predicted within-treatment cocaine 

abstinence in an independent test sample (i.e., external validation) in both a continuous and 

categorical (yes/no treatment responder) manner (n=45). Predictive accuracy of cocaine 

network connectivity alone was 64% in the independent sample and this increased to 71% 

when combined with past-month cocaine use. Network connectivity assessed at post-

treatment in the original sample also significantly predicted cocaine use following treatment. 

The identified network was complex and incorporated multiple canonical networks, 

including those previously implicated in addiction response (details in Table 2).

Relapse

Clark and colleagues used several different algorithms to predict relapse status among 

recently abstinent individuals with stimulan dependence recruited from a range of treatment 

settings (n=45) (28). Between-group differences (relapsers versus non-relapsers) were first 

identified using whole-brain comparisons and the predictive ability of blood-oxygen-level-

dependent (BOLD) response within identified regions was then assessed using models with 

10-fold CV. Across a variety of modeling approaches, BOLD response accurately predicted 

relapse status with approximately 80-84% accuracy. However, as identification of features 

(brain regions showing between-group differences) in this case was not done independently 

for training and testing data, which may result in over-fitting (17), further work using an 

independent testing data set is needed for cross-validation and model evaluation.

Seo and colleagues tested the ability of several algorithms to predict relapse status among 

recently detoxified individuals with alcohol use disorder (n=46) (29). Using a combination 

of structural and functional (BOLD response during an alcohol cue task) data, Naïve Bayes, 

SVM and robust soft learning vector quantization approaches all predicted relapse at greater 

than chance levels (72-79% accuracies) and with higher accuracies than models including 

only clinical data. Follow-up analyses to determine the relative contributions of each ROI 

and modality (structural vs. functional) identified BOLD response in the ventral striatum, 

and ventral tegmental area and orbitofrontal cortex and medial PFC volumes as the most 

robust predictors.
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Gowin and colleagues generated binary logistic regression and random forest classification 

models using a combination of clinical and functional (BOLD response during a reward 

task) data in a training set of 63 individuals with methamphetamine dependence and applied 

this to an external testing set of 29 individuals with cocaine dependence (30). The logistic 

regression model had higher accuracy for predicting relapse status than the random forest 

model in the training dataset, but neither model performed above chance in the testing 

dataset.

Summary

In most cases, brain-based variables had comparable or higher predictive accuracies relative 

to traditional clinical variables, indicating that inter-individual heterogeneity in brain-based 

features meaningfully contributes to outcomes in addiction. However, all studies to date have 

had relatively modest sample sizes (18) and only two studies have included external 

validation (9, 30). Thus, significant additional work is needed prior to clinical adoption of 

these methods. In addition, most prior studies have used methods requiring a priori 
specification of regions or networks, limiting neurobiological discovery. Thus, future studies 

should consider adoption of more wholly data-driven methods of prediction, which, in 

addition to generating behavioral predictions, are also methods of identifying novel 

biological targets.. Such systems-level analyses are particularly well-suited for assessment of 

complex clinical phenomena (e.g., abstinence, relapse), which likely involve spatially 

distinct—yet functionally coherent—brain regions (9, 27, 31). Using this approach, Yip and 

colleagues identified a distributed neural network that predicted cocaine abstinence, such 

that abstinence was predicted by (i) increased connectivity between frontoparietal and 

medial frontal networks, (ii) increased connectivity between salience, motor/sensory and 

subcortical networks, and (iii) decreased connectivity between these two systems (9). These 

findings are consistent with those from ROI-based studies implicating cognitive control 

related neural circuitry (e.g., anterior cingulate) in treatment completion (20–22), and with 

ligand-based data indicating dopamine involvement in predicting treatment response (25), 

but also indicate involvement of more distributed connections than previously hypothesized 

(32, 33).

Limitations

Several limitations should be noted. Even cross-validated predictive models will likely 

involve some degree of over-fitting, resulting in erroneous selection of a least some 

predictors and correspondingly unstable results (34). In addition, even highly reliable 

predictive models are often nonetheless difficult to interpret. Practically, this means that the 

model selection process may require a trade-off between accuracy and interpretability (i.e., 

prediction versus explanation) (19). Further, predicted values are not always readily 

interpretable within—or easily transferable to—a real-world setting. In other words, in the 

absence of real-world knowledge about the target variable, a ‘good’ model may still provide 

an impossible prediction (e.g., greater than 100% abstinence). Below, we suggest methods 

for dealing with these limitations and review additional neurobiological, clinical and 

practical considerations to guide future research.
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Neurobiological considerations

Timing matters

The time course of recovery from addiction can take months to years and is most often 

highly non-linear (35, 36). Thus, the timing of neuroimaging should be considered carefully. 

For studies predicting treatment response, scanning prior to treatment initiation is often 

conducted. However, scanning during this time may introduce additional confounds (e.g., 

acute intoxication or withdrawal effects) and may not be feasible unless treatment initiation 

is delayed (which may place unnecessary burden on the patient). Thus, an alternative 

approach is to conduct scanning early on in the course of treatment (e.g., following detox but 

prior to sustained intervention). While this approach necessarily precludes identification of 

true ‘pre-treatment’ factors, it may nonetheless be useful in identifying early markers of 

clinical response.

In many instances, brain regions or networks identified as predictive of treatment response 

may be distinct from those that typically distinguish patients from controls (9, 37). Although 

perhaps counter-intuitive, it is important to consider that, clinically, factors that predict 

treatment response (e.g., willingness to change) may be distinct from those that 

systematically differ between patients and controls (e.g., impulsivity). Similarly, predictors 

of treatment response may also be distinct from those that change with treatment (e.g., 

acquisition of new skills), or that predict relapse following treatment (e.g., non-clinical 

environment) (9). Therefore, longitudinal scanning over multiple time points will likely be 

needed to elucidate the full time course of addiction recovery.

Elucidation as a goal of clinical prediction

Recovery from addiction involves complex interactions across psychosocial and 

biobehavioral domains (38). Within this context, elucidation of biological mechanisms of 

successful behavior change may be used to improve current treatments and/or develop novel 

interventions (10). However, interpretability is one of the primary challenges of predictive 

modeling in general and of brain-based clinical models in particular. Many approaches that 

yield robust predictions may nonetheless do little to advance our understanding of the 

underlying neurobiology of addictions. Thus, in addition to generating predictions in novel 

data, an important aim of clinical predictive modeling studies should be to advance 

neurobiological understanding. As different modeling approaches have different 

interpretability challenges, we here provide recommendations for enhancing interpretability 

of findings from predictive models generated using ROI- and whole-brain approaches (see 

Figure 2 for schematic examples), in order to maximize neurobiological insight.

Many popular predictive modeling studies use some degree of a priori specification of ROIs 

or networks. While this approach can be a powerful tool for testing region- or network-

specific hypotheses, it should be noted that the interpretability of these models becomes very 

difficult when multiple predictors are included in the model. For most algorithms, simply 

assuming that the largest weightings are the most significant features can lead to 

misinterpretations as weights need to be standardized from comparison (like any regression 

coefficient) (39). As standardization can be difficult with cross-validation, follow-up testing 
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to determine the significance of different features is strongly recommended when using 

these approaches. One simple method for determining significance of different features (e.g., 

individual ROIs or networks) is to rerun the model excluding specific features (‘virtual 

lesion’ approach) in order to determine which features are ‘necessary’ for optimal model 

performance (e.g., does amygdala volume contribute to overall model performance?). 

Similarly, rerunning the model only including selected features will enable determination of 

the relative weight of specific features (e.g., what is the predictive ability of amygdala 

volume alone?).

In contrast, data-driven, whole-brain predictive modeling studies do not require a priori 
specification of seed regions or ROIs and may allow for one-to-one mapping of predictors 

back to brain anatomy (which significantly aids interpretability). However, networks 

identified using these approaches are typically complex (i.e., spanning multiple adjacent and 

non adjacent brain regions) and may not be readily interpretable. Thus, descriptive data 

reduction techniques (e.g., summary of networks via overlap with ‘canonical’ networks) are 

recommended when using these approaches (26, 40). As above, virtual lesion approaches 

(e.g., exclusion of connections based on overlap with specific brain regions or networks) 

may be used to characterize contributions of specific features.

Clinical considerations

Defining ‘treatment response’

Despite evidence-based treatments (41, 42), there remains a lack of consensus regarding the 

optimal measure to define treatment efficacy in addictions (43). Thus, an additional primary 

consideration is the selection, definition, and measurement of ‘response’. While abstinence 

is generally accepted by clinical researchers and practitioners as a meaningful, and 

preferred, outcome, significant variability in its definition and assessment exists. For 

example, differences in the timing (e.g., first versus last week of treatment) and duration of 

abstinence can yield different results (i.e., identify different individuals as ‘treatment 

responders’) (44). This not only makes cross-study comparisons of treatment efficacy 

difficult, but also presents challenges for the generalizability of predictive models, as there 

may be study-specific measurement of abstinence. As with all other aspects of predictive 

modeling, the method of defining abstinence or ‘treatment response’ should be defined 

ahead of time to prevent ‘p-hacking’. Multiple comparison correction must be used when 

more than one outcome is tested (17). Below we discuss additional considerations for 

measurement of treatment outcomes (see Table 3 for a summary of primary outcomes).

Biological versus self-report measurement

The existence of reliable, biological indicators for detecting substance-use is a considerable 

advantage compared to other psychiatric disorders; yet significant challenges and limitations 

exist (43, 45, 46). For instance, urine testing—the most common biological method for 

monitoring drug use/abstinence—has a range of detection times for the presence of different 

substances and overall relatively low temporal resolution. For most drugs of abuse, the urine 

detection window is 2-5 days (47–50), which can result in positive tests for an extended 

period of time depending on the chronicity of use (51). Thus, infrequent urine specimen 
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collection (e.g., once per week) may fail to detect substance-use leading to inflated measures 

of abstinence, whereas overly frequent collection (e.g., thrice per week) makes detection of 

abstinence challenging due to carry-over effects/residual positive tests (52, 53). Despite 

these limitations, Utox (or other biological) testing remains the sole method of empirical 

assessment of abstinence.

Despite several advantages of self-report methods for measuring abstinence (e.g., flexibility 

in collection, minimization of missing data), the accuracy of self-reported indices of use in 

clinical trials remains controversial. While some studies indicate excellent reliability, 

validity, and sensitivity of self-report methods (54–57), others indicate substantial under-

reporting of substance-use through self-report relative to urine testing (58, 59). Collection of 

both self-report and toxicology data are recommended for clinical trials to provide the most 

accurate measures of substance-use (43). Yet, strategies for combining these two sources of 

data, are complex and not always practical (60).

Beyond abstinence

Given the chronic relapsing nature of addiction (35, 36), defining the efficacy of a given 

treatment solely on the achievement of a sustained period of abstinence may be overly 

restrictive. Thus, other outcome measures beyond complete abstinence have received 

attention as potential indicators of treatment response. A recent review of candidate drug use 

outcome indicators recommended commonly reported measures, such as the percentage of 

days abstinent and the percentage of negative urine specimens, as well as dichotomous 

indicators of abstinence at the end of treatment; see (46). In the alcohol field, the absence of 

‘heavy drinking days’ is considered a clinically meaningful outcome measure and is 

accepted by regulatory agencies for demonstration of pharmacotherapy efficacy in Phase 3 

trials (61, 62). Similarly, measures of reduction in alcohol consumption, such as reductions 

in drinking risk level, based on the World Health Organization risk level (expressed as grams 

of pure ethanol per day) (63), have been accepted by regulatory agencies (64). Unfortunately 

there is no such acceptable reduction-based equivalent for other drugs of abuse (e.g., 

cocaine, opioids, cannabis), in part due to the lack of standard units for measuring size and 

purity of illicit drugs. However, measures based solely on drug consumption may not 

represent all the significant physical and psychosocial consequences that characterize the 

disorder (65). Thus, there is potential relevance in evaluating new endpoints that address the 

fuller range of the symptoms of addiction to better define treatment response (66, 67). While 

clinically meaningful, the biological substrates of non-abstinence-based outcomes may be 

partly or wholly distinct from those of abstinence, per se. Thus, different predictive models 

will likely be needed to characterize different clinical outcomes.

Practical considerations

Model assessment

Performance of categorical models is most commonly quantified by overall accuracy, 

however more nuanced measures, such as sensitivity and specificity, may also be needed for 

evaluation of clinical models (68). The ‘best’ metric for characterizing model performance 

depends on the question (and modeling approach) (17, 68). For example, as illustrated in 
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Figure 3, assuming that the overall goal of addiction treatment is (at a minimum) harm 

reduction, a model with high sensitivity but low specificity might be acceptable for 

prediction of medication treatment initiation but might not be optimal for predicting 

termination of treatment. Similarly, a model with low sensitivity but high specificity might 

be acceptable for prediction of treatment cessation but not for prediction of treatment 

initiation. Other measures, such as balanced accuracy (which captures both sensitivity and 

specificity and is distinct from overall accuracy), should also be considered for categorical 

models. For dimensional models, other metrics including rank-based measures and mean-

squared error should be considered. See (68) and (17) for consideration of additional 

metrics.

Assessment of model performance should also be considered within the clinical context. If 

no reliable predictor of treatment outcome exists, then a model performing only marginally 

better than chance nonetheless represents an improvement. However, note that a statistical 

improvement over chance does not automatically constitute clinical utility; in all cases the 

relative clinical utility of a model should be weighed within the context of the added expense 

and potential cost-benefit to the patient (also see ‘Financial Considerations’). Regardless of 

the specific metric, model performance should be quantified statistically and this should be 

done using permutation testing when using cross-validation (17, 69). Note that an iterative 

cross-validation approach—in which the data is repeatedly randomly split into testing and 

training data and model performance is averaged across iterations—is recommended to 

reduce over-fitting (17, 34) and may also be used to assess reliability of specific features 

(i.e., identify unstable predictors) (70).

Financial considerations

In order for brain-based predictive modeling to reach its full potential, it needs to be adopted 

in clinical practice and used to improve clinical care. However, the cost of a single fMRI 

scan is often thought of as prohibitive in routine clinical practice. Thus, it may be useful to 

weigh this against the cost of an ‘unsuccessful’ addiction treatment episode. Total spending 

on substance-use disorder treatment in the United States is predicted to grow from $24 

billion in 2009 to $42.1 billion in 2020, with the vast majority financed by public sources, 

including Medicare/Medicaid, federal, state, and local governments (71). Based on 

information from 110 substance abuse treatment programs in the US (72), estimates of “cost 

bands” (IQR, 25th–75th percentile) indicate the following average per treatment episode 

costs per patient: non-methadone outpatient=$1,132-$2,099; methadone=$4,277-$13,395; 

intensive outpatient=$1,384-$5,780. Critical determinants in the variation of costs are the 

type of modality and the mean length of stay in treatment (72), such that more intensive 

programs with longer treatment duration are more costly. This suggests that strategies to 

increase the likelihood of a positive treatment response (e.g., a priori identification of the 

optimal treatment modality to achieve the fastest response) could have a substantial cost 

saving effect. However, despite potential financial feasibility, brain-based predictive 

modeling of addiction outcomes remains a nascent area of investigation and significantly 

more work is needed prior to clinical translation of existing models, including rigorous 

comparisons of imaging versus non-imaging based predictive models.
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Conclusions

Recent work demonstrate the ability of cross-validated predictive modeling approaches to 

generate individual-level predictions of complex addiction outcomes (e.g., abstinence, 

relapse) and to provide novel neurobiological insight into the brain basis of such behaviors. 

However, significant limitations remain, including limited external validation and lack of 

consideration of treatment-specific factors. In addition, work to determine who will respond 

preferentially to a given treatment (e.g., methadone versus buprenorphine) is urgently 

needed, as are studies to compare predictive markers across addiction subtypes. As both 

neurobiological differences (73) and differences in behavioral and psychological precipitants 

of different substance-use behaviors have been noted (74, 75), underlying predictive features 

may differ across substances, thus yielding different models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 –. 
Example workflow for clinical predictive modeling in addiction

Summary of basic steps of predictive modeling (17), modified to emphasize specific aspects 

of predictive modeling in addiction: Neuroimaging data and clinical data are separated into 

independent training and testing datasets. Training data are then submitted to a predictive 

modeling algorithm to identify the most relevant features from the data (e.g., brain regions 

associated with the clinical outcome). Using the identified features, a mathematical model is 

generated to map the (typically high dimensional) neuroimaging features onto the (typically 

low dimensional) clinical outcome. The model is then applied to previously unseen data 

from the testing dataset to generate individual-level clinical predictions. Finally, the model’s 

performance is evaluated by comparing predicted and actual clinical outcomes in the testing 

dataset. Results are used to update current neurobiological models and to inform 

development of novel treatments.

Tx=treatment; ROI=region of interest; NOI-network of interest; LOOCV=leave-one-out 

cross validation; CV=cross validation
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Figure 2 –. 
Steps to maximize neurobiological interpretation of clinical neuroimaging models

To maximize interpretability, model features should be considered across multiple levels.

Left: Model features are summarized across descending levels of dimensionality. Individual 

connections (edge level) are summarized by: (i) overlap with macroscale brain regions (node 

level), (ii) overlap with canonical neural networks (network level) and (iii) a simplified 

network model of core systems contributing to cocaine abstinence (theory level).

Right: Recommended steps for maximizing interpretation of neurobiological models for 

region-of-interest (ROI, top) and whole-brain (connectome-based, bottom) approaches are 

summarized. In both cases, post-hoc analyses involving ‘virtual lesioning’ of selected 

features is strongly recommended to guide interpretation of model elements.
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Elements of this figure adapted from (9) and are reprinted with permission from the 

American Journal of Psychiatry, (Copyright ©2019). American Psychiatric Association. All 

Rights Reserved.
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Figure 3 –. 
Sensitivity vs. specificity within the context of clinical addiction prediction

The relative importance of sensitivity versus specificity may depend on the clinical outcome. 

Confusion matrices showing rates of true positives (TP), false positives (FP), false negatives 

(FN) and true negatives (TN) are shown for models (1) with high sensitivity and low 

specificity (left) and; (2) with low sensitivity and high specificity (right) are illustrated for 

two different clinical outcomes: (1) assignment to active treatment (top) and; (2) termination 

of active treatment (bottom). Cells in red bold font correspond to individuals at increased 

risk for overdose. For outcome 1, overdose risk is minimized when sensitivity is maximized. 

For outcome 2, overdose risk is minimized when specificity is maximized.
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Table 1 –

Definitions of popular algorithms, validation and accuracy terms

Classification approaches

Support Vector Classification Discriminative classifier formally defined by a separating hyperplane

Logistic Regression Classifier that transforms the output of regression using the logistic sigmoid function to return a probability 
value which can then be mapped to two or more discrete classes

Linear Discriminant Analysis Classifier that uses a linear combination of features (reduced dimensions) which best separate different groups

Neighbors-based 
Classification

Type of instance-based learning that assigns a query point to the data class which has the most representatives 
within the nearest neighbors of the point

Decision Trees Classifier in the form of a tree structure

Random Forest Classification Ensemble learning classifier that constructs a multitude of decision trees

Naive Bayes Classifier Generative learning model based on Bayes’ Theorem with an assumption of independence among predictors; 
may also be used for regression

Regression approaches

Ordinary Least Square 
Regression

Linear estimator that minimizes the sum of squares of the difference between the observed and predicted 
dependent variable

Support Vector Regression Regression method formally defined by a separating hyperplane

Ridge Regression Penalized regression method that uses l2-norm penalty to shrink coefficients towards zero

Lasso Regression Penalized regression method that uses l1-norm penalty to shrink subset of coefficients to exactly zero

Elastic Net Regression Penalized regression method that combines both l1 and l2 norm penalty

Random Forest Regression Ensemble learning approach that constructs a multitude of decision trees

Principle Component 
Regression Regression method that first uses PCA on the covariates and uses a subset of PCA components as regressors

Partial Least Squares Regression method that behaves like principle component regression but also considers projected independent 
variables correlation with the dependent variable

Regression Trees Regression method that uses decision trees to predict variables

Validation terms

External validation Model generated in one sample is tested in a completely separate sample. ‘Gold standard’ for but often not 
practical in clinical research (e.g., due to need for multiple studies).

Internal validation Approach in which a single sample is split into testing and training data e.g., K-fold CV.

Bias-variance tradeoff Tradeoff between having sufficient to minimize bias in model generation (i.e., large K) and retaining sufficient 
data for testing to minimize variance in test data (i.e., small K).

Leave-one-out CV Form of K-fold CV in which K=sample size. Useful for small samples but may overfit.

Split-half CV Form of K-fold CV in which K=2. May be overly conservative.

5-fold CV Form of K-fold CV in which K=5. Five or 10-fold CV is recommended for larger samples (e.g., n>200) to 
minimize bias-variance tradeoff.

Nested CV Special case of internal CV in which data are divided in training, validation and test. Useful for model tuning 
(e.g., selection of free parameters).

Performance terms

Overall accuracy Proportion of true positives and true negatives relative to actual cases and non-cases.

Sensitivity (also referred to as 
recall)

Proportion of true positives relative to cases; e.g. the number of tx completers correctly classified as 
completers divided by the number of total actual completers

Specificity Proportion of true negatives relative to non-cases; e.g. number of non-completers correctly classified as non-
completers divided by the number of total actual non-completers

Mean squared error (MSE)
Average squared difference between actual and predicted values; used for dimensional (continuous) 

prediction. Other metrics include r2 and q2 see (17) for more information
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Table 3 –

Overview of primary abstinence and non-abstinence based treatment outcomes

Approach Measurement considerations Pros Cons

Biological

Utox
Detection times vary; 

Quantitative testing needed to 
reduce carry-over effects

primary method of biological 
verification; accurate and 
reliable; low-cost; on-site 

testing

poor temporal specificity; 
potential for adulteration

Blood

typically used for verification 
rather than screening; relatively 

short detection window (~24 
hours)

highly accurate; reduced risk of 
adulteration

invasive; high cost; does not 
provide immediate results; 
requires medically trained 

collectors

Saliva (oral fluid)
short detection time; indicative 

of more recent drug use/
abstinence

non-invasive, rapid, easily-
observed collection; on-site 

collection and screening; lower 
biohazard risk; ability to collect 

multiple samples

difficult/unpleasant to obtain 
sufficient saliva; sensitivity and 

specificity mixed; drug 
concentration may be lower 

than urine

Breathalyzer
verification of alcohol 

abstinence in short-term (past 
6-12 hours)

non-invasive, rapid, easily-
observed collection; on-site 

collection and screening; lower 
biohazard risk; ability to collect 

multiple samples

limited to alcohol testing; may 
be challenging for those with 

asthma or lung disease

Carbon 
monoxide (CO)

cutoff may vary for 
distinguishing smokers from 
non-smokers depending on 

whether sensitivity or specificity 
is prioritized

immediate, non-invasive, and 
portable assessment of smoking 

status

may be affected by exposure to 
environmental tobacco smoke 

or pollutants; limited sensitivity 
to detect brief smoking lapses

Self-report

Timeline follow-
back (TFLB)

calendar-based method; more 
reliable when biological 
specimens also collected

low-cost; ability to calculate 
multiple outcome measures for 
flexible intervals (7-day, past-

month); retrospective reporting 
minimizes missing data

potential for under-reporting 
substance-use; reliability of 
retrospective self-report has 

been questioned

EMA / Daily 
diary

recording at specified time 
intervals, signal-contingent, or 

event-contingent

high ecological validity; 
reduces reliance on memory; 

may be more sensitive to 
change

participant burden; potentially 
high rates of missing data

Non-
abstinence 

based 
outcomes

Days in tx can be defined in multiple ways 
depending on the type of tx

can be verified through medical 
records; tx retention has been 

linked to better outcomes;

indicator of tx acceptability 
rather than tx response; 

challenging to determine when 
tx drop out occurred

Medication 
adherence

includes strategies for 
verification (e.g., tracer, MEMS 

caps)

increases internal validity of ‘tx 
response’ outcome

no standards for defining 
compliance cutoff

Reduction in 
frequency/

severity

measure of reduction dependent 
on baseline timeframe

practical and consistent with 
chronic nature of addiction; 
may be more sensitive than 

abstinence

clinical significance of 
reduction-based measures not 

established

Improvement in 
functioning/

quality of life

based on self-report; 
consideration of whether 

functioning/quality of life is 
direct result of drug use

well-established assessment 
measures for quality of life; 

clinically meaningful

may not be sensitive to change 
in drug use; dependent on 

baseline timeframe

Diagnostic 
Threshold

may be measured through 
interview-based assessment or 
self-report; DSM-5 provides 

severity indicators

direct measure of substance-use 
disorder criteria

may not be sensitive to change 
in short-term

Utox=urine toxicology; Tx=treatment; EMA=ecological momentary assessment; MEMS=medication event monitoring system; based on (43, 45, 
46, 49, 76–79).
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