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Abstract——Both type 1 and type 2 diabetes mellitus
are advancing at exponential rates, placing significant
burdens on health care networks worldwide. Although
traditional pharmacologic therapies such as insulin and
oral antidiabetic stalwarts likemetformin and the sulfo-
nylureas continue to be used, newer drugs are now on
the market targeting novel blood glucose–lowering
pathways. Furthermore, exciting new developments in
the understanding of beta cell and islet biology are driv-
ing the potential for treatments targeting incretin
action, islet transplantation with new methods for im-
munologic protection, and the generation of functional

beta cells from stem cells. Herewe discuss themechanis-
tic details underlying past, present, and future diabetes
therapies and evaluate their potential to treat and possi-
bly reverse type 1 and 2diabetes in humans.

Significance Statement——Diabetes mellitus has
reached epidemic proportions in the developed and de-
veloping world alike. As the last several years have seen
manynewdevelopments in thefield, a newandup todate
review of these advances and their careful evaluation
will help both clinical and research diabetologists to bet-
ter understandwhere thefield is currently heading.
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I. Introduction

Diabetes mellitus, a metabolic disease defined by el-
evated fasting blood glucose levels due to insufficient
insulin production, has reached epidemic proportions
worldwide (World Health Organization, 2020). Type 1
and type 2 diabetes (T1D and T2D, respectively)
make up the majority of diabetes cases with T1D
characterized by autoimmune destruction of the insu-
lin-producing pancreatic beta cells. The much more
prevalent T2D arises in conjunction with peripheral
tissue insulin resistance and beta cell failure and is
estimated to increase to 21%–33% of the US popula-
tion by the year 2050 (Boyle et al., 2010). To combat
this growing health threat and its cardiac, renal, and
neurologic comorbidities, new and more effective dia-
betes drugs and treatments are essential. As the last
several years have seen many new developments in
the field of diabetes pharmacology and therapy, we
determined that a new and up to date review of these
advances was in order. Our aim is to provide a careful
evaluation of both old and new therapies (Fig. 1) in a
manner that we hope will be of interest to both clini-
cal and bench diabetologists. Instead of the usual en-
cyclopedic approach to this topic, we provide here a
targeted and selective consideration of the underlying
issues, promising new treatments, and a re-examina-
tion of more traditional approaches. Thus, we do not
discuss less frequently used diabetes agents, such as
alpha-glucosidase inhibitors; these were discussed in
other recent reviews (Hedrington and Davis, 2019;
Lebovitz, 2019).

II. Diabetes Therapies

A. Metformin

Metformin is a biguanide originally based on the
natural product galegine, which was extracted from
the French lilac (Bailey, 1992; Rojas and Gomes,
2013; Witters, 2001). A closely related biguanide,
phenformin, was also used initially for its hypoglyce-
mic actions. Based on its successful track record as a
safe, effective, and inexpensive oral medication, met-
formin has become the most widely prescribed oral
agent in the world in treating T2D (Rojas and Gomes,
2013; He and Wondisford, 2015; Witters, 2001),
whereas phenformin has been largely bypassed due to

its unacceptably high association with lactic acidosis
(Misbin, 2004). Unlike sulfonylureas, metformin low-
ers blood glucose without provoking hypoglycemia
and improves insulin sensitivity (Bailey, 1992). De-
spite these well known beneficial metabolic actions,
metformin’s mechanism of action and even its main
target organ remain controversial. In fact, metformin
has multiple mechanisms of action at the organ as
well as the cellular level, which has hindered our un-
derstanding of its most important molecular effects
on glucose metabolism (Witters, 2001). Adding to this,
a specific receptor for metformin has never been iden-
tified. Metformin has actions on several tissues, al-
though the primary foci of most studies have been the
liver, skeletal muscle, and the intestine (Foretz et al.,
2014; Rena et al., 2017). Metformin and phenformin
clearly suppress hepatic glucose production and gluco-
neogenesis, and they improve insulin sensitivity in
the liver and elsewhere (Bailey, 1992). The hepatic

ABBREVIATIONS: AMPK 50, AMP-activated protein kinase; CNS, central nervous system; DKA, diabetic ketoacidosis; DPP4, dipeptidyl
peptidase 4; DYRK1A, dual specificity tyrosine phosphorylation-regulated kinase 1A; ER, endoplasmic reticulum; FDA, Food and Drug Ad-
ministration; GIP, gastric inhibitory polypeptide; GLP-1, glucagon-like peptide-1; GLP-1R, glucagon-like peptide-1 receptor; HLA-A,B,C,
major histocompatibility complex class I, A, B, C; iPS, induced pluripotent stem; MEN1, multiple endocrine neoplasia type 1; NOD, nonob-
ese diabetic; NSAID, nonsteroidal anti-inflammatory drug; PBA, phenylboronic acid; PD-L1, programmed cell death protein-1 ligand;
PPAR, peroxisome proliferator-activated receptor; SGLT2, sodium glucose cotransporter 2; T1D, type 1 diabetes; T2D, type 2 diabetes;
TUDCA, tauroursodeoxycholic acid; TXNIP, thioredoxin-interacting protein; TZD, thiazolidinedione.

Fig. 1. Pharmacologic targeting of numerous organ systems for the treat-
ment of diabetes. Treatment of diabetes involves targeting of various or-
gan systems, including the kidney by SGLT2 inhibitors; the liver, gut,
and adipose tissue by metformin; and direct actions upon the pancreatic
beta cell. Beta cell compounds aim to increase secretion or mass and/or to
protect from autoimmunity destruction. Ultimately, insulin therapy re-
mains the final line of diabetes treatment with new technologies under
development to more tightly regulate blood glucose levels similar to
healthy beta cells. hESC, human embryonic stem cell.
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actions of metformin have been the most exhaustively
studied to date, and there is little doubt that these ac-
tions are of some importance. However, several of the
studies remain highly controversial, and there are
still open questions.
One of the first reported specific molecular targets of

metformin was mitochondrial complex I of the electron
transport chain. Inhibition of this complex results in
reduced oxidative phosphorylation and consequently
decreased hepatic ATP production (El-Mir et al., 2008;
Evans et al., 2005; Owen et al., 2000). As is the case in
many other studies of metformin, however, high con-
centrations of the drug were found to be necessary to
depress metabolism at this site (El-Mir et al., 2000; He
and Wondisford, 2015; Owen et al., 2000). Also contro-
versial is whether metformin works by activating 50

AMP-activated protein kinase (AMPK), a molecular en-
ergy sensor that is known to be a major metabolic sen-
sor in cells, or if not AMPK directly, then one of its
upstream regulators such as liver kinase B2 (Zhou et
al., 2001). Although metformin was shown to activate
AMPK in several excellent studies, other studies di-
rectly contradicted the AMPK hypothesis. Most dra-
matic were studies showing that metformin’s actions to
suppress hepatic gluconeogenesis persisted despite ge-
netic deletion of the AMPK’s catalytic domain (Foretz
et al., 2010). More recent studies identified additional
or alternative targets, such as cAMP signaling in the
liver (Miller et al., 2013) or glycogen synthase kinase-3
(Link, 2003). Other work showed that the phosphoryla-
tion of acetyl-CoA carboxylase and acetyl-CoA carbox-
ylase 2 are involved in regulating lipid homeostasis
and improving insulin sensitivity after exposure to
metformin (Fullerton et al., 2013).
Although there are strong data to support each of

these pathways, it is not entirely clear which signaling
pathway(s) is most essential to the actions of metfor-
min in hepatocytes. Metformin clearly inhibits complex
I and concomitantly decreases ATP and increases
AMP. The latter results in AMPK activation, reduced
fatty acid synthesis, and improved insulin receptor ac-
tivation, and increased AMP has been shown to inhibit
adenylate cyclase to reduce cAMP and thus protein ki-
nase A activation. Downstream, this reduces the ex-
pression of phosphoenolpyruvate carboxykinase and
glucose 6-phosphatase via decreased cAMP response
element-binding protein, the cAMP-sensitive transcrip-
tion factor. Decreased PKA also promotes ATP-depen-
dent 6-phosphofructokinase, liver type activity via
fructose 2,6-bisphosphate and reduces gluconeogenesis,
as fructose-bisphosphatase 1 is inhibited by fructose
2,6-bisphosphate, along with other mechanisms (Rena
et al., 2017; Pernicova and Korbonits, 2014).
More recent work has shown that metformin at

pharmacological rather than suprapharmacological
doses increases mitochondrial respiration and complex

1 activity and also increases mitochondrial fission, now
thought to be critical for maintaining proper mitochon-
drial density in hepatocytes and other cells. This im-
provement in respiratory activity occurs via AMPK
activation (Wang et al., 2019).
Although the liver has historically been the major

suspected site of metformin action, recent studies
have suggested that the gut instead of the liver is a
major target, a concept supported by the increased ef-
ficacy of extended-release formulations of metformin
that reside for a longer duration in the gut after their
administration (Buse et al., 2016). An older, but in
our view an important observation, is that the intrave-
nous administration of metformin has little or no effect
on blood glucose, whereas, in contrast, orally adminis-
tered metformin is much more effective (Bonora et al.,
1984). Recent imaging studies using labeled glucose
have shown directly that metformin stimulates glucose
uptake by the gut in patients with T2D to reduce plas-
ma glucose concentrations (Koffert et al., 2017; Massollo
et al., 2013). Additionally, it is possible that metformin
may exert its effect in the gut by inducing intestinal
glucagon-like peptide-1 (GLP-1) release (Mulherin et
al., 2011; Preiss et al., 2017) to potentiate beta cell insu-
lin secretion and by stimulating the central nervous
system (CNS) to exert control over both blood glucose
and liver function. Indeed, CNS effects produced by
metformin have been proposed to occur via the local re-
lease of GLP-1 to activate intestinal nerve endings of
ascending nerve pathways that are involved in CNS
glucose regulation (Duca et al., 2015). Lastly, several
papers have now implicated that metformin may act by
altering the gut microbiome, suggesting that changes in
gut flora may be critical for metformin’s actions
(McCreight et al., 2016; Wu et al., 2017; Devaraj et al.,
2016). A new study proposed that activation of the in-
testinal farnesoid X receptor may be the means by
which microbiota alter hyperglycemia (Sun et al., 2018).
However, these studies will require more mechanistic
detail and confirmation before they can be fully accept-
ed by the field. In addition to the action of metformin
on gut flora, the production of imidazole propionate by
gut microbes in turn has been shown to interfere with
metformin action through a p38-dependent mechanism
and AMPK inhibition. Levels of imidazole propionate
are especially higher in patients with T2D who are
treated with metformin (Koh et al., 2020).
In summary, the combined contribution of these

various effects of metformin on multiple cellular tar-
gets residing in many tissues may be key to the bene-
fits of metformin treatment on lowering blood glucose
in patients with type 2 diabetes (Foretz et al., 2019).
In contrast, exciting new work showing metformin
leads to weight loss by increasing circulating levels of
the peptide hormone growth differentiation factor 15
and activation of brainstem glial cell-derived
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neurotropic factor family receptor alpha like receptors
to reduce food intake and energy expenditure works
independently of metformin’s glucose-lowering effect
(Coll et al., 2020).

B. Sulfonylureas and Beta Cell Burnout

The class of compounds known as sulfonylureas in-
cludes one of the oldest oral antidiabetic drugs in the
pharmacopoeia: tolbutamide. Tolbutamide is a “first
generation” oral sulfonylurea secretagogue whose
clinical usefulness is due to its prompt stimulation of
insulin release from pancreatic beta cells. “Second
generation” sulfonylureas include drugs such as gly-
buride, gliclazide, and glipizide. Sulfonylureas act by
binding to a high affinity sulfonylurea binding site,
the sulfonylurea receptor 1 subunit of the K(ATP)
channel, which closes the channel. These drugs mimic
the physiologic effects of glucose, which closes the
K(ATP) channel by raising cytosolic ATP/ADP. This in
turn provokes beta cell depolarization, resulting in in-
creased Ca21 influx into the beta cell (Ozanne et al.,
1995; Ashcroft and Rorsman, 1989; Nichols, 2006). Impor-
tantly, sulfonylureas, and all drugs that directly increase
insulin secretion, are associated with hypoglycemia, which
can be severe, and which limits their widespread use in
the clinic (Yu et al., 2018). Meglitinides are another
class of oral insulin secretagogues that, like the sulfo-
nylureas, bind to sulfonylurea receptor 1 and inhibit
K(ATP) channel activity (although at a different site of
action). The rapid kinetics of the meglitinides enable
them to effectively blunt the postprandial glycemic ex-
cursions that are a hallmark (along with elevated fast-
ing glucose) of T2D (Rosenstock et al., 2004). However,
the need for their frequent dosing (e.g., administration
before each meal) has limited their appeal to patients.
The efficacy of sulfonylureas is known to decrease

over time, leading to failure of the class for effective
long-term treatment of T2D (Harrower, 1991). More
broadly, it is now widely accepted that the number of
functional beta cells in humans declines during the
progression of T2D. Thus, one would expect that due
to this decline, all manner of oral agents intended to
target the beta cell and increase its cell function (and
especially insulin secretion) will fail over time (RISE
Consortium, 2019), a process referred to as “beta cell
failure” (Prentki and Nolan, 2006). Currently, treat-
ments that can expand beta cell mass or improve beta
cell function or survival over time are not yet avail-
able for use in the clinic. As a result, treatments that
may be able to help patients cope with beta cell burn-
out such as islet cell transplantation, insulin pumps,
or stem cell therapy are alternatives that will be dis-
cussed below.

C. Ca21 Channel Blockers and Type 1 Diabetes

Strategies to treat and prevent T1D have historical-
ly focused on ameliorating the toxic consequences of

immune dysregulation resulting in autoimmune de-
struction of pancreatic beta cells. More recently, a
concerted focus on alleviating the intrinsic beta cell
defects (Sims et al., 2020; Soleimanpour and Stoffers,
2013) that also contribute to T1D pathogenesis have
been gaining traction at both the bench and the bed-
side. Several recent preclinical studies suggest that
Ca21-induced metabolic overload induces beta cell fail-
ure (Osipovich et al., 2020; Stancill et al., 2017; Xu et
al., 2012), with the potential that excitotoxicity contrib-
utes to beta cell demise in both T1D and T2D, similar
to the well known connection between excitotoxicity
and, concomitantly, increased Ca21 loading of the cells
and neuronal dysfunction. Indeed, the use of the phe-
nylalkylamine Ca21 channel blocker verapamil has
been successful in ameliorating beta cell dysfunction in
preclinical models of both T1D and T2D (Stancill et al.,
2017; Xu et al., 2012). Verapamil is a well known block-
er of L-type Ca21 channels, and, in normally activated
beta cells, it limits Ca21 entry into the beta cell (Oh-
nishi and Endo, 1981; Vasseur et al., 1987). This would
be expected to, in turn, alter the expression of many
Ca21 influx–dependent beta cell genes (Stancill et al.,
2017), and the evidence to date suggests it is likely
that verapamil preserves beta cell function in diabetes
models by repressing thioredoxin-interacting protein
(TXNIP) expression and thus protecting the beta cell.
This is somewhat surprising given the physiologic role
of Ca21 is to acutely trigger insulin secretion; this pro-
cess would be expected to be inhibited by L-type Ca21

channel blockers (Ashcroft and Rorsman, 1989; Satin
et al., 1995).
Hyperglycemia is a well known inducer of TXNIP

expression, and a lack of TXNIP has been shown to
protect against beta cell apoptosis after inflammatory
stress (Chen et al., 2008a; Shalev et al., 2002; Chen et
al., 2008b). Excitingly, the use of verapamil in pa-
tients with recent-onset T1D improved beta cell func-
tion and improved glycemic control for up to 12
months after the initiation of therapy, suggesting
there is indeed promise for targeting calcium and
TXNIP activation in T1D. Use of verapamil for a re-
purposed indication in the preservation of beta cell
function in T1D is attractive due its well known safe-
ty profile as well as its cardiac benefits (Chen et al.,
2009). Although the long-term efficacy of verapamil to
maintain beta cell function in vivo is unclear, a re-
cently described TXNIP inhibitor may also show
promise in suppressing the hyperglucagonemia that
also contributes to glucose intolerance in T2D (Thie-
len et al., 2020). As there is a clear need for increased
Ca21 influx into the beta cell to trigger and maintain
glucose-dependent insulin secretion (Ashcroft and
Rorsman, 1990; Satin et al., 1995), it remains to be
seen how well regulated insulin secretion is preserved
in the presence of L-type Ca21 channel blockers like
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verapamil in the system. One might speculate that re-
ducing but not fully eliminating beta cell Ca21 influx
might reduce TXNIP levels while preserving enough
influx to maintain glucose-stimulated insulin release.
Alternatively, these two phenomena may operate on
entirely different time scales. At present, these issues
clearly will require further investigation.

D. GLP-1 and the Incretins

Studies dating back to the 1960s revealed that ad-
ministering glucose in equal amounts via the periph-
eral circulation versus the gastrointestinal tract led
to dramatically different amounts of glucose-induced
insulin secretion (Elrick et al., 1964; McIntyre et al.,
1964; Perley and Kipnis, 1967). Gastrointestinal glu-
cose administration greatly increased insulin secre-
tion versus intravenous glucose, and this came to be
known as the “incretin effect” (Nauck et al., 1986a;
Nauck et al., 1986b). Subsequent work showed that
release of the gut hormone GLP-1 mediated this effect
such that food ingestion induced intestinal cell hor-
mone secretion. GLP-1 so released would then circu-
late to the pancreas via the blood to prime beta cells
to secrete more insulin when glucose became elevated
because these hormones stimulated beta cell cAMP
formation (Drucker et al., 1987). The discovery that a
natural peptide corresponding to GLP-1 could be
found in the saliva of the Gila monster, a desert liz-
ard, hastened progress in the field, and ample in vitro
studies subsequently confirmed that GLP-1 potentiat-
ed insulin secretion in a glucose-dependent manner.
GLP-1 has little or no significant action on insulin se-
cretion in the absence of elevated glucose (such as
might typically correspond to the postprandial case or
during fasting), thus minimizing the likelihood of hy-
poglycemia provoked by GLP-1 in treated patients
(Kreymann et al., 1987). Although not completely un-
derstood, the glucose dependence of GLP-1 likely re-
flects the requirement for adenine nucleotides to close
glucose-inhibited K(ATP) channels and thus subse-
quently activate Ca21 influx–dependent insulin exocy-
tosis. Besides potentiating GSIS at the level of the
beta cell, glucagon-like peptide-1 receptor (GLP-1R)
agonists also decrease glucagon secretion from pan-
creatic islet alpha cells, reduce gastric emptying, and
may also increase beta cell proliferation, among other
cellular actions (reviewed in Drucker, 2018; Muller et
al., 2019).
Intense interest in the incretins by basic scientists,

clinicians, and the pharma community led to the rap-
id development of new drugs for treating primarily
T2D. These drugs include a range of GLP-1R agonists
and inhibitors of the incretin hormone degrading en-
zyme dipeptidyl peptidase 4 (DPP4), whose targeting
increases the half-lives of GLP-1 and gastric inhibito-
ry polypeptide (GIP) and thereby increases protein
hormone levels in plasma. GLP-1R agonists have

been associated with not only a lowering of plasma
glucose but also weight loss, decreased appetite, re-
duced risk of cardiovascular events, and other favor-
able outcomes (Gerstein et al., 2019; Hernandez et
al., 2018; Husain et al., 2019; Marso et al., 2016a;
Marso et al., 2016b; Buse et al., 2004). Regarding
their untoward actions, although hypoglycemia is not
a major concern, there have been reports of pancreati-
tis and pancreatic cancer from use of GLP-1R ago-
nists. However, a recent meta-analysis covering four
large-scale clinical trials and over 33,000 participants
noted no significantly increased risk for pancreatitis/
pancreatic cancer in patients using GLP-1R agonists
(Bethel et al., 2018).
Ongoing and future developments in the use of pro-

glucagon-derived peptides such as GLP-1 and gluca-
gon include the use of combined GLP-1/GIP, glucagon/
GLP-1, and agents targeting all three peptides in
combination (reviewed in Alexiadou and Tan, 2020).
Although short-term infusions of GLP-1 with GIP
failed to yield metabolic benefits beyond those seen
with GLP-1 alone (Bergmann et al., 2019), several
GLP-1/GIP dual agonists are currently in develop-
ment and have shown promising metabolic results in
clinical trials (Frias et al., 2017; Frias et al., 2020;
Frias et al., 2018). At the level of the pancreatic islet,
beneficial effects of dual GLP-1/GIP agonists may be
related to imbalanced and biased preferences of these
agonists for the gastric inhibitory polypeptide recep-
tor over the GLP-1R (Willard et al., 2020) and possi-
bly were not simply to dual hormone agonism in
parallel. Dual glucagon/GLP-1 agonist therapy has
also been shown to have promising metabolic effects
in humans (Ambery et al., 2018; Tillner et al., 2019).
Oxyntomodulin is a natural dual glucagon/GLP-1 re-
ceptor agonist and proglucagon cleavage product that
is also secreted from intestinal enteroendocrine cells,
which has beneficial effects on insulin secretion, appe-
tite regulation, and body weight in both humans and
rodents (Cohen et al., 2003; Dakin et al., 2001; Dakin
et al., 2002; Shankar et al., 2018; Wynne et al., 2005).
Interestingly, alpha cell crosstalk to beta cells
through the combined effects of glucagon and GLP-1
is necessary to obtain optimal glycemic control, sug-
gesting a potential pathway for therapeutic dual glu-
cagon/GLP-1 agonism within the islets of patients
with T2D (Capozzi et al., 2019a; Capozzi et al.,
2019b). Although the early results appear promising,
more studies will be necessary to better understand
the mechanistic and clinical impacts of these multia-
gonist agents.

E. DPP4 Inhibitors

Inhibition of DPP4, the incretin hormone degrading
enzyme, is one of the most common T2D treatments
to increase GLP-1 and GIP plasma hormone levels.
These DPP4 inhibitors or “gliptins” are generally
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used in conjunction with other T2D drugs such as
metformin or sulfonylureas to obtain the positive ben-
efits discussed above (Lambeir et al., 2008). DPP4 is a
primarily membrane-bound peptidase belonging to
the serine peptidase/prolyl oligopeptidase gene family,
which cleaves a large number of substrates in addi-
tion to the incretin hormones (Makrilakis, 2019).
DPP4 inhibitors provide glucose-lowering benefits
while being generally well tolerated, and the variety
of available drugs (including sitagliptin, saxagliptin,
vildagliptin, alogliptin, and linagliptin) with slightly
different dosing frequency, half-life, and mode of ex-
cretion/metabolism allows for use in multiple patient
populations (Makrilakis, 2019). This includes the el-
derly and individuals with renal or hepatic insuffi-
ciency (Makrilakis, 2019).
Although hypoglycemia is not a concern for DPP4

inhibitor use, other considerations should be made.
DPP4 inhibitors tend to be more expensive than met-
formin or other second-line oral drugs in addition to
having more modest glycemic effects than GLP-1R ag-
onists (Munir and Lamos, 2017). Finally, meta-analy-
sis of randomized and observational studies concluded
that heart failure in patients with T2D was not asso-
ciated with use of DPP4 inhibitors; however, this
study was limited by the short follow-up and lack of
high-quality data (Li et al., 2016). Thus, the US Food
and Drug Administration (FDA) did recommend as-
sessing risk of heart failure hospitalization in pa-
tients with pre-existing cardiovascular disease, prior
heart failure, and chronic kidney disease when using
saxagliptin and alogliptin (Munir and Lamos, 2017).

F. Sodium Glucose Cotransporter 2 Inhibitors

A recent development in the field of T2D drugs are
sodium glucose cotransporter 2 (SGLT2) inhibitors,
which have an interesting and very different mecha-
nism of action. Within the proximal tubule of the
nephron, SGLT2 transports ingested glucose into the
lumen of the proximal tubule between the epithelial
layers, thereby reclaiming glucose by this reabsorp-
tion process (reviewed in Vallon, 2015). SGLT2 inhibi-
tors target this transporter and increase glucose in
the tubular fluid and ultimately increase it in the
urine. In patients with diabetes, SGLT2 inhibition re-
sults in a lowering of plasma glucose with urine glu-
cose content rising substantially (Adachi et al., 2000;
Vallon, 2015). These drugs, although they are rela-
tively new, have become an area of great interest for
not only patients with T2D (Grempler et al., 2012;
Imamura et al., 2012; Meng et al., 2008; Nomura et
al., 2010) but also for patients with T1D (Luippold et
al., 2012; Mudaliar et al., 2012). Part of their appeal
also rests on reports that their use can lead to a sta-
tistically significant decline in cardiac events that are
known to occur secondarily to diabetes, possibly inde-
pendently of plasma glucose regulation (reviewed in

Kurosaki and Ogasawara, 2013). Although the long-
term consequences of their clinical use cannot yet be
determined, raising the glucose content of the urogen-
ital tract leads to an increased risk of urinary tract
infections and other related infections in some pa-
tients (Kurosaki and Ogasawara, 2013).
Another recent concern about the use of SGLT2 in-

hibitors has been the development of normoglycemic
diabetic ketoacidosis (DKA). Despite the efficacy of
SGLT2 inhibitors, observations of hyperglucagonemia
in patients with euglycemic DKA has led to a number
of recent studies focused on SGLT2 actions on pancre-
atic islets. Initial studies of isolated human islets
treated with small interfering RNA directed against
SGLT2 and/or SGLT2 inhibitors demonstrated in-
creased glucagon release. These studies were comple-
mented by the finding of elevations in glucagon
release in mice that were administered SGLT2 inhibi-
tors in vivo (Bonner et al., 2015). Insights into the
possible mechanistic links between SGLT2 inhibition,
DKA frequency, and glucagon secretion in humans
may relate to the observation of heterogeneity in
SGLT2 expression, as SGLT2 expression appears to
have a high frequency of interdonor and intradonor
variability (Saponaro et al., 2020). More recently, both
insulin and GLP-1 have been demonstrated to modu-
late SGLT2-dependent glucagon release through ef-
fects on somatostatin release from delta cells (Vergari
et al., 2019; Saponaro et al., 2019), suggesting poten-
tially complex paracrine effects that may affect the ef-
ficacy of these compounds.
On the other hand, several recent studies question

that the development of euglycemic DKA after SGLT2
inhibitor therapy may be through alpha cell–dependent
mechanisms. Three recent studies found no effect of
SGLT2 inhibitors to promote glucagon secretion in
mouse and/or rat models and could not detect SGLT2 ex-
pression in human alpha cells (Chae et al., 2020; Kuhre
et al., 2019; Suga et al., 2019). A fourth study demon-
strated only a brief transient effect of SGLT2 inhibition
to raise circulating glucagon concentrations in immuno-
deficient mice transplanted with human islets, which re-
turned to baseline levels after longer exposures to
SGLT2 inhibitors (Dai et al., 2020). Furthermore,
SGLT2 protein levels were again undetectable in human
islets (Dai et al., 2020). These results could suggest al-
ternative islet-independent mechanisms by which pa-
tients develop DKA, including alterations in ketone
generation and/or clearance, which underscore the addi-
tional need for further studies both in molecular models
and at the bedside. Nevertheless, SGLT2 inhibitors con-
tinue to hold promise as a valuable therapy for T2D, es-
pecially in the large segment of patients who also have
superimposed cardiovascular risk (McMurray et al.,
2019; Wiviott et al., 2019; Zinman et al., 2015).
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G. Thiazolidinediones

Once among the most commonly used oral agents in
the armamentarium to treat T2D, thiazolidinediones
(TZDs) were clinically popular in their utilization to
act specifically as insulin sensitizers. TZDs improve pe-
ripheral insulin sensitivity through their action as per-
oxisome proliferator-activated receptor (PPAR) c ago
nists, but their clinical use fell sharply after studies
suggested a connection between cardiovascular toxicity
with rosiglitazone and bladder cancer risk with piogli-
tazone (Lebovitz, 2019). Importantly, an FDA panel
eventually removed restrictions related to cardiovascu-
lar risk with rosiglitazone in 2013 (Hiatt et al., 2013).
Similarly, concerns regarding use of bladder cancer
risk with pioglitazone were later abated after a series
of large clinical studies found that pioglitazone did not
increase bladder cancer (Lewis et al., 2015; Schwartz
et al., 2015). However, usage of TZDs had already sub-
stantially decreased and has not since recovered.
Although concerns regarding edema, congestive

heart failure, and fractures persist with TZD use,
there have been several studies suggesting that TZDs
protect beta cell function. In the ADOPT study, use of
rosiglitazone monotherapy in patients newly diag-
nosed with T2D led to improved glycemic control com-
pared with metformin or sulfonylureas (Kahn et al.,
2006). Later analyses revealed that TZD-treated sub-
jects had a slower deterioration of beta cell function
than metformin- or sulfonylurea-treated subjects
(Kahn et al., 2011). Furthermore, pioglitazone use im-
proved beta cell function in the prevention of T2D in
the ACT NOW study (Defronzo et al., 2013; Kahn et
al., 2011). Mechanistically, it is unclear if TZDs lead
to beneficial beta cell function through direct effects
or through indirect effects of reduced beta cell de-
mand due to enhanced peripheral insulin sensitivity.
Indeed, a beta cell–specific knockout of PPARc did not
impair glucose homeostasis, nor did it impair the
antidiabetic effects of TZD use in mice (Rosen et al.,
2003). However, other reports demonstrated PPAR-re-
sponsive elements within the promoters of both glu-
cose transporter 2 and glucokinase that enhance beta
cell glucose sensing and function, which could explain
beta cell–specific benefits for TZDs (Kim et al., 2002;
Kim et al., 2000). Furthermore, TZDs have been
shown to improve beta cell function by upregulating
cholesterol transport (Brunham et al., 2007; Sturek et
al., 2010). Additionally, use of TZDs in the nonobese
diabetic (NOD) mouse model of T1D augmented the
beta cell unfolded protein response and prevented
beta cell death, suggesting potential benefits for TZDs
in both T1D and T2D (Evans-Molina et al., 2009;
Maganti et al., 2016). With a now refined knowledge
of demographics in which to avoid TZD treatment due
to adverse effects, together with genetic approaches
to identify candidates more likely to respond

effectively to TZD therapy (Hu et al., 2019; Soccio et
al., 2015), it remains to be seen if TZD therapy will
return to more prominent use in the treatment of
diabetes.

H. Insulin and Beyond: The Use of “Smart” Insulin
and Closed Loop Systems in Diabetes Treatment

Due to recombinant DNA technology, numerous in-
sulin analogs are now available in various forms
ranging from fast acting crystalline insulin to insulin
glargine; all of these analogs exhibit equally effective
insulin receptor binding. Most are generated by alter-
ing amino acids in the B26–B30 region of the mole-
cule (Kurtzhals et al., 2000). The American Diabetes
Association delineates these insulins by their 1) onset
or time before insulin reaches the blood stream, 2)
peak time or duration of maximum blood glucose–low-
ering efficacy, and 3) the duration of blood glucose–
lowering time. Insulin administration is independent
of the residuum of surviving and/or functioning beta
cells in the patient and remains the principal phar-
macological treatment of both T1D and T2D. The
availability of multiple types of delivery methods, i.e.,
insulin pens, syringes, pumps, and inhalants, pro-
vides clinicians with a solid and varied tool kit with
which to treat diabetes. The downsides, however, are
that 1) hypoglycemia is a constant threat, 2) proper
insulin doses are not trivial to calculate, 3) compli-
ance can vary especially in children and young adults,
and 4) there can be side effects of a variety of types.
Nonetheless, insulin therapy remains a mainstay
treatment of diabetes.
To eliminate the downsides of insulin therapy, re-

search in the past several decades has worked toward
generating glucose-sensitive or “smart” insulin mole-
cules. These molecules change insulin bioavailability
and become active only upon high blood glucose using
glucose-binding proteins such as concanavalin A, glu-
cose oxidase to alter pH sensitivity, and phenylboronic
acid (PBA), which forms reversible ester linkages
with diol-containing molecules including glucose itself
(reviewed in Rege et al., 2017). Indeed, promising re-
cent studies included various PBA moieties covalently
bonded to an acylated insulin analog (insulin detemir,
which contains myristic acid coupled to LysB29). The
detemir allows for binding to serum albumin to pro-
long insulin’s half-life in the circulation, and PBA pro-
vided reversible glucose binding (Chou et al., 2015).
The most promising of the PBA-modified conjugates
showed higher potency and responsiveness in lower-
ing blood glucose levels compared with native insulin
in diabetic mouse models and decreased hypoglycemia
in healthy mice, although the molecular mechanisms
have not yet been determined (Chou et al., 2015).
An additional active area of research includes

structurally defining the interaction between insulin
and the insulin receptor ectodomain. Importantly, a
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major conformational change was discovered that
may be exploited to impair insulin receptor binding
under hypoglycemic conditions (Menting et al., 2013;
Rege et al., 2017). Challenges in the design, testing,
and execution of glucose-responsive insulins may be
overcome by the adaptation of novel modeling ap-
proaches (Yang et al., 2020), which may allow for
more rapid screening of candidate compounds.
Technologies have also progressed in the field of ar-

tificial pancreas design and development. Currently
two “closed loop” systems are now available: Minimed
670G from Medtronic and Control-IQ from Tandem
Diabetes Care. Both systems use a continuous glucose
monitor, insulin pump, and computer algorithm to
predict correct insulin doses and administer them in
real time. Such algorithm systems also take into ac-
count insulin potency, the rate of blood glucose in-
crease, and the patient’s heart rate and temperature
to adjust insulin delivery levels during exercise and
after a meal. In addition, so-called “artificial pan-
creas” systems have also been clinically tested, which
use both insulin and glucagon and as such result in
fewer reports of hypoglycemic episodes (El-Khatib et
al., 2017). These types of systems will continue to be-
come more popular as the development of room tem-
perature–stable glucagon analogs continue, such as
GVOKE by Xeris Pharmaceuticals (currently avail-
able in an injectable syringe) and Baqsimi, a nasally
administered glucagon from Eli Lilly.

I. Present and Future Therapies: Beta Cell
Transplantation, Replication, and Immune Protection

1. Islet Transplantation. The idea to use pancreat-
ic allo/xenografts to treat diabetes remarkably dates
back to the late 1800s (Minkowski, 1892; Pybus,
1924; Williams, 1894). Before proceeding to the dis-
covery of insulin (together with Best, MacLeod, and
Collip), Frederick Banting also postulated the poten-
tial for transplantation of pancreatic tissue emulsions
to treat diabetes in dog models in a notebook entry in
1921 (Bliss, 1982). Decades later, Paul Lacy, David
Scharp, and colleagues successfully isolated intact
functional pancreatic islets and transplanted them
into rodent models (Kemp et al., 1973). These studies
led to the initial proof of concept studies for humans,
with the first successful islet transplant in a patient
with T1D occurring in 1977 (Sutherland et al., 1978).
A rapid expansion of islet transplantation, inspired
by these original studies led to key observations of
successfully prolonged islet engraftment by the
“Edmonton protocol” whereby corticosteroid-sparing
immunosuppression was applied, and islets from at
least two allogeneic donors were used to achieve insu-
lin independence (Shapiro et al., 2000). More recent
work has focused on improving upon the efficiency
and long-term engraftment of allogeneic transplants
leading to more prolonged graft function (to the 5-

year mark) and successful transplantation from a sin-
gle islet donor (Hering et al., 2016; Hering et al.,
2005; Rickels et al., 2013). Critical to these efforts to
improve the success rate was the recognition that the
earlier generation of immunosuppressive agents to
counter tissue rejection was toxic to islets (Delaunay
et al., 1997; Paty et al., 2002; Soleimanpour et al.,
2010) and that more appropriate and less toxic agents
were needed (Hirshberg et al., 2003; Soleimanpour et
al., 2012).
Certainly, islet transplantation as a therapeutic ap-

proach for patients with T1D has been scrutinized
due to several challenges, including (but not limited
to) the lack of available donor supply to contend with
demand, limited long-term functional efficacy of islet
allografts, the potential for re-emergence of autoim-
mune islet destruction and/or metabolic overload-in-
duced islet failure, and significant adverse effects of
prolonged immunosuppression (Harlan, 2016). Fur-
thermore, although islet transplantation is not cur-
rently available for individuals with T2D, simultaneous
pancreas-kidney transplantation in T2D had similar fa-
vorable outcomes to simultaneous pancreas-kidney
transplantation in T1D; therefore, islet-kidney trans-
plantation may eventually be a feasible option to treat
T2D, as patients will already be on immunosuppressors
(Sampaio et al., 2011; Westerman et al., 1983). An addi-
tional significant obstacle is the tremendous expense as-
sociated with islet transplantation therapy. Indeed, the
maintenance, operation, and utilization of an FDA-ap-
proved and Good Manufacturing Practice–compliant is-
let laboratory can lead to operating costs at nearly
$150,000 per islet transplant, which is not cost effective
for the vast majority of patients with T1D (Naftanel and
Harlan, 2004; Wallner et al., 2016). At present, the focus
has been to obtain FDA approval for islet allo-transplan-
tation as a therapy for T1D to allow for insurance com-
pensation (Hering et al., 2016; Rickels and Robertson,
2019). In the interim, the islet biology, stem cell, immu-
nology, and bioengineering communities have continued
the development of cell-based therapies for T1D by other
approaches to overcome the challenges identified during
the islet transplantation boom of the 1990s and 2000s.

2. Pharmacologic Induction of Beta Cell Replica-
tion. Besides transplantation, progress in islet cell
biology and especially in developmental biology of
beta cells over several decades raised the additional
possibility that beta cell mass reduction in diabetes
might be countered by increasing beta cell number
through mitogenic means. A key method to expand
pancreatic beta cell mass is through the enhancement
of beta cell replication. Although the study of pancreat-
ic beta cell replication has been an area of intense fo-
cus in the beta cell biology field for several decades,
only recently has this seemed truly feasible. Seminal
studies identified that human beta cells are essentially
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postmitotic, with a rapid phase of growth occurring in
the prenatal period that dramatically tapers off shortly
thereafter (Gregg et al., 2012; Meier et al., 2008). The
plasticity of rodent beta cells is considerably higher
than that of human beta cells (Dai et al., 2016), which
has led to a renewed focus on validation of pharmaco-
logic agents to enhance rodent beta cell replication us-
ing isolated and/or engrafted human islets (Bernal-
Mizrachi et al., 2014; Kulkarni et al., 2012; Stewart et
al., 2015). Indeed, a large percentage of agents that
were successful when applied to rodent systems were
largely unsuccessful at inducing replication in human
beta cells (Bernal-Mizrachi et al., 2014; Kulkarni et
al., 2012; Stewart et al., 2015). However, several recent
studies have begun to make significant progress on
successfully pushing human beta cells to replicate.
Several groups have reported successful human beta

cell proliferation, both in vitro and in vivo, in response
to inhibitors of the dual specificity tyrosine phosphory-
lation-regulated kinase 1A (DYRK1A). These inhibitors
include harmine, INDY, GNF4877, 5-iodotubericidin,
leucettine-42, TG003, AZ191, CC-401, and more specific,
recently developed DYRK1A inhibitors (Ackeifi et al.,
2020). Although DYRK1A is conclusively established as
the important mediator of human beta cell proliferation,
comprehensively determining other cellular targets and
if additional gene inhibition amplifies the proliferative
response is still in process. New evidence from Wang
and Stewart shows dual specificity tyrosine phosphory-
lation-regulated kinase 1B to be an additional mitogenic
target and also describes variability in the range of acti-
vated kinases within cells and/or levels of inhibition for
the many DYRK1A inhibitors listed above (Ackeifi et
al., 2020). Interestingly, opposite to these human stud-
ies, earlier mouse studies from the Scharfmann group
demonstrated that Dyrk1a haploinsufficiency leads to
decreased proliferation and loss of beta cell mass (Rach-
di et al., 2014b). In addition, overexpression of Dyrk1a
in mice led to beta cell mass expansion with increased
glucose tolerance (Rachdi et al., 2014a).
Although important differences in beta cell prolifer-

ative capacity have been shown between human and
rodent species, there are also significant differences
in the mitogenic capacity of beta cells from juvenile,
adult, and pregnant individuals. This demonstrates
that proliferative stimuli appear to act within the
complex islet, pancreas, and whole-body environ-
ments unique to each time point. For example, the ad-
ministration of the hormones platelet-derived growth
factor alpha or GLP-1 result in enhanced proliferation
in juvenile human beta cells yet are ineffective in
adult human beta cells (Chen et al., 2011; Dai et al.,
2017). This has been shown to be due to a loss of
platelet-derived growth factor alpha receptor expres-
sion as beta cells age but appears to be unrelated to
GLP-1 receptor expression levels (Chen et al., 2011).

Indeed, the GLP-1 receptor is highly expressed in
adult beta cells, and GLP-1 secretion increases insu-
lin secretion, as detailed previously; however, the in-
duction of proliferative factors such as nuclear factor
of activated T cells, cytoplasmic 1; forkhead box pro-
tein 1; and cyclin A1 is only seen in juvenile islets
(Dai et al., 2017). Human studies using cadaveric
pancreata from pregnant donors also showed in-
creased beta cell mass, yet lactogenic hormones from
the pituitary or placenta (prolactin, placental lacto-
gen, or growth hormone) are unable to stimulate pro-
liferation in human beta cells despite their ability to
produce robust proliferation in mouse beta cells (re-
viewed in Baeyens et al., 2016). Experiments overex-
pressing mouse versus human signal transducer and
activator of transcription 5, the final signaling factor
inducing beta cell adaptation, in human beta cells al-
lows for prolactin-mediated proliferation revealing
fundamental differences in prolactin pathway compe-
tency in human (Chen et al., 2015). Overcoming the
barrier of recapitulating human pregnancy’s effect on
beta cells through isolating placental cells or blood se-
rum during pregnancy may result in the discovery of
a factor(s) that facilitates the increase in beta cell
mass observed during human pregnancy.
Mechanisms that stimulate beta cell proliferation

have also been discovered from studying genetic mu-
tations that result in insulinomas, spontaneous insu-
lin-producing beta cell adenomas. The most common
hereditary mutation occurs in the multiple endocrine
neoplasia type 1 (MEN1) gene. Indeed, administration
of a MEN1 inhibitor in addition to a GLP-1 agonist
(which cannot induce proliferation alone) is able to in-
crease beta cell proliferation in isolated human islets
through synergistic activation of KRAS proto-onco-
gene, GTPase downstream signals (Chamberlain et
al., 2014). Interestingly, MEN1 mutations are uncom-
mon in sporadic insulinomas, yet assaying genomic
and epigenetic changes in a large cohort of non-
MEN1 insulinomas found alterations in trithorax and
polycomb chromatin modifying genes that were func-
tionally related to MEN1 (Wang et al., 2017). Stewart
and colleagues hypothesized that changes in histone
3 lysine 27 and histone 3 lysine 4 methylation status
led to increased enhancer of zeste homolog 2 and ly-
sine demethylase 6A, decreased cyclin-dependent ki-
nase inhibitor 1C, and thereby increased beta cell
proliferation, among other phenotypes. They also pro-
posed that these findings help to explain why in-
creased proliferation always occurs despite broad
heterogeneity of mutations found between individual
insulinomas (Wang et al., 2017).
Although factors that induce proliferation are continu-

ing to be discovered, there are drawbacks that still limit
their clinical application. Harmine and other DYRK1A
inhibitors are not beta cell specific, nor have all their
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cellular targets been determined (Ackeifi et al., 2020).
Targeting other pathways to induce human beta cell
proliferation such as modulation of prostaglandin E2 re-
ceptors (i.e., inhibition of prostaglandin E receptor 3
alone or in combination with prostaglandin E receptor 4
activation) showed promising increases in proliferative
rate yet suffers from the same lack of specificity (Car-
boneau et al., 2017). Induction of proliferation may also
come at the expense of glucose sensing as in insulino-
mas, which have an increased expression of “disallowed
genes” and alterations in glucose transporter and hexo-
kinase expression (Wang et al., 2017). A further unto-
ward consequence that must be avoided is the prod
uction of cancerous cells through unchecked prolifera-
tion. Finally, increasing beta cell mass through low rates
of proliferation may increase the pool of functional insu-
lin-secreting cells in T2D, but without additional meas-
ures, these beta cells will still ultimately be targeted for
immune cell destruction in T1D.

3. Beta Cell Stress Relieving Therapies. Metabolic,
inflammatory, and endoplasmic reticulum (ER) stress
contribute to beta cell dysfunction and failure in both
T1D and T2D. Although reduction of metabolic over-
load of beta cells by early exogenous insulin therapy
or insulin sensitizers can temporarily reduce loss of
beta cell mass/function early in diabetes, a focus on
relieving ER and inflammatory stress is also of inter-
est to preserve beta cell health.
ER stress is a well known contributor to beta cell

demise both in T1D and T2D (Laybutt et al., 2007;
Marchetti et al., 2007; Marhfour et al., 2012; Tersey
et al., 2012) and a target of interest in the prevention
of beta cell loss in both diseases. Preclinical studies
suggest that the use of chemical chaperones, includ-
ing 4-phenylbutyric acid and tauroursodeoxycholic
acid (TUDCA), to alleviate ER stress improves beta
cell function and insulin sensitivity in mouse models
of T2D (Cnop et al., 2017; Ozcan et al., 2006). Fur-
thermore, TUDCA has been shown to preserve beta
cell mass and reduce ER stress in mouse models of
T1D (Engin et al., 2013). Interestingly, TUDCA has
shown promise at improving insulin action in obese
nondiabetic human subjects, yet beta cell function
and insulin secretion were not assessed (Kars et al.,
2010). A clinical trial regarding the use of TUDCA for
humans with new-onset T1D is also ongoing
(NCT02218619). However, a note of caution regarding
use of ER chaperones is that they may prevent low level
ER stress necessary to potentiate beta cell replication
during states of increased insulin demand (Sharma et
al., 2015), suggesting that the broad use of ER chaper-
one therapies should be carefully considered.
The blockade of inflammatory stress has long been

an area of interest for treatments of both T1D and
T2D (Donath et al., 2019; Eguchi and Nagai, 2017).
Indeed, use of nonsteroidal anti-inflammatory drugs

(NSAIDs), which block cyclooxygenase, have been ob-
served to improve metabolic control in patients with
diabetes since the turn of the 20th century (William-
son, 1901). Salicylates have been shown to improve
insulin secretion and beta cell function in both obese
human subjects and those with T2D (Fernandez-Real
et al., 2008; Giugliano et al., 1985). However, another
NSAID, salsalate, has not been shown to improve
beta cell function while improving other metabolic
outcomes (Kim et al., 2014; Penesova et al., 2015),
possibly suggesting distinct mechanisms of action for
anti-inflammatory compounds. The regular use of
NSAIDs to enhance metabolic outcomes is also often
limited to the tolerability of long-term use of these
agents due to adverse effects. Recently, golilumab, a
monoclonal antibody against the proinflammatory cy-
tokine tumor necrosis factor alpha, was demonstrated
to improve beta cell function in new-onset T1D, sug-
gesting that targeting the underlying inflammatory
milieu may have benefits to preserve beta cell mass
and function in T1D (Quattrin et al., 2020). Taken to-
gether, both new and old approaches to target beta cell
stressors still remain of long-term interest to improve
beta cell viability and function in both T1D and T2D.

3. New Players to Induce Islet Immune Protection.
Countless researchers have expended intense in-

dustry to determine T1D disease etiology and treat-
ments focused on immunotherapy and tolerogenic
methods. Multiple, highly comprehensive reviews are
available describing these efforts (Goudy and Tisch,
2005; Rewers and Gottlieb, 2009; Stojanovic et al.,
2017). Here we will focus on the protection of beta cells
through programmed cell death protein-1 ligand (PD-
L1) overexpression, major histocompatibility complex
class I, A, B, C (HLA-A,B,C) mutated human embryonic
stem cell–derived beta cells, and islet encapsulation
methods.
Cancer immunotherapies that block immune check-

points are beneficial for treating advanced stage can-
cers, yet induction of autoimmune diseases, including
T1D, remains a potential side effect (Stamatouli et al.,
2018; Perdigoto et al., 2019). A subset of these drugs
target either the programmed cell death-1 protein on
the surface of activated T lymphocytes or its receptor
PD-L1 (Stamatouli et al., 2018; Perdigoto et al., 2019).
PD-L1 expression was found in insulin-positive beta
cells from T1D but not insulin-negative islets or nondia-
betic islets, leading to the hypothesis that PD-L1 is up-
regulated in an attempt to drive immune cell
attenuation (Osum et al., 2018; Colli et al., 2018). Ade-
noviral overexpression of PD-L1 specifically in beta cells
rescued hyperglycemia in the NOD mouse model of
T1D, but these animals eventually succumbed to diabe-
tes by the study’s termination (El Khatib et al., 2015). A
more promising report from Ben Nasr et al. (2017) dem-
onstrated that pharmacologically or genetically induced

1010 Satin et al.



overexpression of PD-L1 in hematopoietic stem and pro-
genitor cells inhibited beta cell autoimmunity in the
NOD mouse as well as in vitro using human hematopoi-
etic stem and progenitor cells from patients with T1D.
As mentioned above, islet transplantation to treat

T1D is limited by islet availability, cost, and the re-
quirement for continuous immunosuppression. Islet
cells generated by differentiating embryonic or in-
duced pluripotent stem (iPS) cells could circumvent
these limitations. Ideally, iPS-derived beta cells could
be manipulated to eliminate the expression of poly-
morphic HLA-A,B,C molecules, which were found to
be upregulated in T1D beta cells (Bottazzo et al.,
1985; Richardson et al., 2016). These molecules allow
peptide presentation to CD81 T cells or cytotoxic T
lymphocytes and may lead to beta cell removal. Inter-
estingly, remaining insulin-positive cells in T1D donor
pancreas are not HLA-A,B,C positive (Nejentsev et
al., 2007; Rodriguez-Calvo et al., 2015). However, cur-
rent differentiation protocols are still limited in their
ability to produce fully glucose-responsive beta cells
without transplantation into animal models to induce
mature characteristics. Additionally, use of iPS-de-
rived beta cells will still lead to concerns regarding
DNA mutagenesis resulting from the methods used to
obtain pluripotency or teratoma formation from cells
that have escaped differentiation.
Encapsulation devices would protect islets or stem

cells from immune cell infiltration while allowing for
the proper exchange of nutrients and hormones. Mac-
roencapsulation uses removable devices that would
help assuage fears surrounding mutation or tumor
formation; indeed, the first human trial using encap-
sulated hESC-derived beta cells will be completed in
January 2021 (NCT02239354). Macroencapsulation of
islets prior to transplantation using various alginate-
based hydrogels has historically been impeded by a
strong in vivo foreign body immune response (Desai
and Shea, 2017; Doloff et al., 2017; Pueyo et al.,
1993). More recently, chemically modified forms of al-
ginate that avoid macrophage recognition and fibrous
deposition have been successfully used in rodents and
for up to 6 months in nonhuman primates (Vegas et
al., 2016). Indeed, Bochenek et al. (2018) successfully
transplanted alginate protected islets for 4 months
without immunosuppression in the bursa omentalis of
nonhuman primates demonstrating the feasibility for
this approach to be extended to humans. It remains
to be seen if these devices will be successful for long-
term use, perhaps decades, in patients with diabetes.

III. Summary

Although existing drug therapies using classic oral
antidiabetic drugs like sulfonylureas and metformin
or injected insulin remain mainstays of diabetes
treatment, newer drugs based on incretin hormone

actions or SGLT2 inhibitors have increased the phar-
macological armamentarium available to diabetolo-
gists (Fig. 1). However, the explosion of progress in
beta cell biology has identified potential avenues that
can increase beta cell mass in sophisticated ways by
employing stem cell differentiation or enhancement of
beta cell proliferation. Taken together, there should
be optimism that the increased incidence of both T1D
and T2D is being matched by the creativity and hard
work of the diabetes research community.
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