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Abstract

Purpose—To advance fundamental biological and translational research with the bacterium 

Neisseria gonorrhoeae through the prediction of novel small molecule growth inhibitors via naïve 

Bayesian modeling methodology.

Methods—Inspection and curation of data from the publicly available ChEMBL web site for 

small molecule growth inhibition data of the bacterium Neisseria gonorrhoeae resulted in a 

training set for the construction of machine learning models. A naïve Bayesian model for bacterial 

growth inhibition was utilized in a workflow to predict novel antibacterial agents against this 

bacterium of global health relevance from a commercial library of >105 drug-like small molecules. 

Follow-up efforts involved empirical assessment of the predictions and validation of the hits.

Results—Specifically, two small molecules were found that exhibited promising activity profiles 

and represent novel chemotypes for agents against N. gonorrrhoeae.
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Conclusions—This represents, to the best of our knowledge, the first machine learning approach 

to successfully predict novel growth inhibitors of this bacterium. To assist the chemical tool and 

drug discovery fields, we have made our curated training set available as part of the 

Supplementary Material and the Bayesian model is accessible via the web.

VISUAL ABSTRACT
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INTRODUCTION

The Gram-negative bacterium Neisseria gonorrhoeae is the etiological agent of the sexually 

transmitted infection (STI) gonorrhoeae, which if left untreated can cause pelvic 

inflammatory disease, infertility, ectopic pregnancy, neonatal conjunctivitis resulting in 

blindness, and increased HIV transmission (1–4).The STI gonorrhoeae is considered by the 

World Health Organization (WHO) as a major public health challenge because of the high 

number of infected cases worldwide and the emergence of drug-resistant strains (5). The 

WHO estimated 78 million new cases of gonorrhea per year among individuals between the 

ages of 15 and 49 years-old (5–7). The Centers for Disease Control and Prevention reported 

an increased rate of gonorrhea infections in the United States of 5.0% from 2017 to 2018, 

which is an increase of over 82.0% since the last historical low in 2009, with the highest 

rates of reported infection being among adolescents and young adults (8).

The current treatment regimen for gonococcal infection relies on antibacterials due to the 

lack of an effective vaccine (9). The first-line treatment features a combination of 

azithromycin and ceftriaxone or a single dose of ceftriaxone, cefixime, or spectinomycin. 

Drug therapy after first-line treatment failure is based on higher doses of ceftriaxone and 

azithromycin in combination (5, 8). The rise of antibacterial resistance in different strains of 

N. gonorrhoeae in recent years to tetracyclines, macrolides (including azithromycin), 

sulfonamide and trimethoprim combinations, quinolones, and recently third-generation 

cephalosporins exemplifies a multi-drug resistance global health crisis (7, 8, 10). On a 

molecular level, this has been traced to mutations in penA that encodes the penicillin-

binding protein PBP2 (11), increased efflux of antibacterials via multidrug efflux pumps 
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such as MtrC–MtrE–MtrD and its repressor mtrR (12), and decreased permeability of 

antibacterials into the bacterium through mutations in genes such as penB, which encode 

transport proteins(13).

Given the dire need for new therapeutic regimens to treat N. gonorrhoeae infections, our 

laboratory has explored the potential to extend our machine learning platform from 

Mycobacterium tuberculosis (14–16) to this Gram-negative bacterium. Specifically, we have 

explored the application of naïve Bayesian (heretofore referred to as Bayesian) models to 

learn from publicly available whole-cell phenotypic assay data for N. gonorrhoeae to predict 

small molecule growth inhibitors of this bacterium. Herein, we report the execution of this 

strategy to construct and validate the first such models and disclose the identification of new 

small molecule inhibitors with potential as chemical tools and/or drug discovery entities 

relevant to N. gonorrhoeae.

MATERIALS AND METHODS

Training Set Construction and Curation:

The model training set was extracted from ChEMBL (17) (https://www.ebi.ac.uk/chembl/) 

by searching for whole-cell growth inhibition data versus N. gonorrhoeae with the query 

keywords “Neisseria gonorrhoeae” and “MIC”. The curation process consisted of manually 

inspecting the dataset to remove duplicates, selecting a conservative MIC value of 8.0 

μg/mL, converting as necessary MIC units from μM to μg/mL, as well as removing false 

positives, which are compounds that were incorrectly deposited in ChEMBL as actives 

against N. gonorrhoeae. Subsequently, a manual inspection of the 2D structures of all active 

compounds was performed to detect reactive and Pan Assay INterference compoundS 

(PAINS) (18, 19), which we then excluded from the training set in a process called 

“structural pruning” – an extension of the data pruning approach described in our previous 

work (20, 21). The final dataset contains 282 compounds, of which 160 (56.7%) were 

labelled as active compounds (Supplemental Information; File: Neisseria training set.sdf).

Neisseria Bayesian Model:

The Neisseria Bayesian model was developed using the Assay Central™ software (https://

assaycentral.github.io). It involved the following steps: (1) dataset standardization consisted 

of removing salts, neutralizing unbalanced charges, and merging duplicate structures. (2) For 

the model generation phase, Bayesian classifier models were created utilizing Extended-

Connectivity Fingerprints (ECFP6; each atom was described by taking into consideration its 

6 nearest neighbors) (22–24) as the descriptor, and the model parameters such as the number 

of bins, bin size, and fingerprint contributions (23–25) were varied and assessed via internal, 

5-fold cross-validation. These run parameters for the model were optimized by using the 

well-known metrics such as recall, precision, specificity, F1-score, Receiver Operating 

Characteristic (ROC) curve, Cohen’s Kappa (CK) and the Matthews Correlation Coefficient 

(MCC) (26–28). More detailed descriptions of Assay Central™ have been previously 

disclosed (23, 24, 29, 30). In conducting this process, two compounds were removed from 

the initial training set of 282 compounds. This was due to salt differences that when stripped 

afforded a single compound entry. This pertained to CHEMBL2023883 and 
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CHEMBL2023877 (in this case, the former was considered active and the latter inactive; 

overall, the parent, neutral molecule was considered active), and to CHEMBL3274638 and 

CHEMBL3274636.

Virtual screening:

The Neisseria Bayesian model was used to virtually screen the Asinex BioDesign Library, a 

commercial library of over 190,000 small molecules, described as synthetic molecules with 

features in common with, or inspired by, natural product architectures and approved drugs 

(http://www.asinex.com/libraries_biodesign-html/). The screening library was downloaded 

from the Asinex website in .sdf format. Subsequently, the library file was processed to 

remove salts, neutralize unbalanced charges, and merge duplicate structures. The output of 

the virtual screen with the Neisseria Bayesian model was a ranked list of compounds, where 

each molecule’s score scaled with the likelihood of it meeting the activity criterion of an 

MIC ≤ 8.0 μg/mL. The 10,000 top-ranked compounds (Supplemental Information; File: 

Asinex top 10000 by Bayesian.sdf) then underwent a structural diversity evaluation, which 

consisted of selecting the most mutually diverse structures from the top scoring compounds 

by using ECFP6 fingerprints and Tanimoto similarity. The top-scoring 100 most diverse 

compounds (Supplemental Information; File: Asinex top 10000 by Bayesian then top 100 by 

diversity.sdf) were visually inspected to triage chemically reactive compounds(31) and 

nitroheterocycles given our previous work with them (32, 33). The filtered top-scoring 20 

compounds were then commercially sourced, verified as to their purity by HPLC (typically 

≥95% at 250 nm) and identity by MS (typically observing the M+H ion). Overall, these 20 

compounds displayed an HPLC purity ≥ 95%, except for the compounds JSF-4437 (BDE 

32402339) and JSF-4438 (BDE 33873286) which each exhibited a purity of 81%.

In vitro assays:

For the MIC assay, seven representative strain isolates (FA1090 (ATCC 700825), FA19 

(ATCC BAA-1838), F62 (ATCC 33084), FA6140 (https://www.ncbi.nlm.nih.gov/genome/?

term=Neisseria%20gonorrhoeae%20FA6140), F89 (34), 35/02 (https://

www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=528346), and 59/03 (35)) were 

sub-cultured from frozen stocks onto GC medium base agar supplemented with hemoglobin 

powder (Sigma) and IsoVitaleX Enrichment (BD Biosciences) at 36 – 37 °C with 5% CO2 

for 24 or 48 h. The MIC values were determined by the broth microdilution method using 

fastidious broth (FB; Hardy Diagnostics) with hematin solution (Sigma), Tween 80 (Sigma), 

and IsoVitaleX Enrichment (BD Biosciences) (36, 37). Overnight cultures of the strain being 

tested were diluted 1:10 with FB to approximately 5 × 105 CFU/mL (5 × 104 CFU/well), 

and 100 μL of the suspension were inoculated into a 96-well plate with serial dilutions; the 

last column of each plate contained only bacteria and served as a no-drug control. The plates 

were incubated for 24 or 48 h at 36 – 37 °C in a moist atmosphere containing 5% CO2. The 

MIC was defined as the lowest concentration of the compound tested that inhibited visible 

growth of the bacterium under the defined conditions. A subset of ESKAPE bacteria were 

utilized in a similar protocol to assess the MIC of a compound.

The MBC for select compounds was quantified using the strain FA1090 by culturing 20 μL 

of the MIC well and that from the wells above and below it (2x change in compound 
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concentration in each direction from the MIC) onto GC agar plates. The number of colonies 

were counted after the inoculated GC agar plates were incubated for 24 h at 36 – 37 °C with 

5% CO2 (36, 38). The MBC was defined as the lowest concentration of the compound to kill 

99% of the initial bacterial inoculum tested.

Mouse liver microsome stability and kinetic aqueous solubility assays: These assays were 

performed by BioDuro, Inc. (https://bioduro.com) and were as according to literature 

procedures (39).

Principal Component Analyses and Tanimoto similarity calculations:

Principal Analysis (PCA) was used to compare the chemical space between the training set 

and the Asinex library that was screened. PCA was also used to compare the chemical 

property space between the set of 20 filtered, top-scoring compounds and the 160 known N. 
gonorrhoeae inhibitors in the training set. In both cases, the datasets to be compared were 

converted to .sdf files and then combined into a single .sdf. The single .sdf file set was 

utilized in a PCA through Discovery Studio Version 2017 R2 (40) and Pipeline Pilot Version 

2017 R2 (41), using the following eight interpretable descriptors: LogP, molecular weight, 

number of rotatable bonds, number of rings, number of aromatic rings, number of hydrogen-

bond acceptors, number of hydrogen-bond donors, and molecular fractional polar surface 

area. The pairwise Tanimoto similarity (42) was calculated between the three most 

promising compounds (JSF-4439, JSF-4444, and JSF-4447) from the top 20 compounds 

selected and the 160 known N. gonorrhoeae inhibitors available in the training set. To 

calculate the pairwise Tanimoto similarity we used the “find similar molecules by 

fingerprints” protocol in Discovery Studio, which consists of measuring the similarity by 

comparing a selected fingerprint property (ECFP6).

Synthetic Chemistry:

All reagents were obtained from commercial vendors and used as received unless noted 

otherwise. Whenever necessary, reactions were performed under a nitrogen atmosphere and 

anhydrous solvents were used. NMR spectra of the synthesized compounds were recorded 

on Avance III 500 MHz spectrometers from the Bruker Corporation (Billerica, MA, USA). 

Reverse-phase high performance liquid chromatography (HPLC) and electrospray ionization 

(ESI) mass spectra were obtained on an Agilent 6120 single quadrupole LC/MS system 

using a reverse-phase EMD Millipore Chromolith SpeedRod RP-18e column (50 × 4.6 mm). 

In general, a 10 - 100% gradient of acetonitrile/water containing 0.1% formic acid was used 

for the analysis of the samples. All compounds were purified to >95% peak area (i.e., purity) 

via an HPLC UV trace at 220 nm or 250 nm with observation of a low-resolution MS m/z 
consistent with each compound. High-resolution mass spectral data were acquired with an 

Agilent 6230B Accurate Mass TOF spectrometer. Purification of samples by flash 

chromatography was performed on a Teledyne ISCO CombiFlash Rf+ system using a 

Teledyne RediSep normal phase silica gel column. For TLC, aluminum plates coated by 

silica gel 60 with F254 fluorescent indicator from EMD Millipore were used. Preparative 

reverse-phase HPLC was performed on a Varian (now Agilent) SD-1 preparative HPLC 

system equipped with an Agilent Pursuit (10 μm, 250 x 21.2 mm) C-18 column with 
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detection UV wavelength set at 220 nm or 250 nm. A gradient of acetonitrile in water at a 

flow rate of 20 mL/min was used for the separation.

Preparation of 1-(2-(2-chlorophenyl)-2-(1H-indol-3-yl)ethyl)-2-oxo-1,2-dihydropyridine-3-

carboxylic acid (JSF-4439): Methyl 2-oxo-2H-pyran-3-carboxylate (15 mg, 0.097 mmol) 

was dissolved in 1 mL DMF. The solution was cooled to 0 °C, and a solution of 2-(2-

chlorophenyl)-2-(1H-indol-3-yl)ethan-1-amine (26 mg, 0.097 mmol) in 1 mL DMF was 

added dropwise. The mixture was warmed gradually to rt and was stirred for 7 - 9 h. After 

confirming the formation of an intermediate (Michael addition) product via LC-MS, the 

mixture was cooled back to 0 °C, after which DMAP (2.0 mg, 0.019 mmol) and EDC•HCl 

(22 mg, 0.11 mmol) were added sequentially, and the mixture was warmed gradually to rt 

and stirred for an additional 12 h. The reaction mixture was diluted with water and the 

organic layer was extracted with ethyl acetate. The combined organic layers were washed 

successively with water, and dried over anhydrous sodium sulfate. The solvent was removed 

in vacuo and the crude product was dissolved in 2 mL of 3:1 THF/MeOH. Then, LiOH•H2O 

(18 mg, 0.29 mmol) was added and the mixture was stirred for 3 - 4 h at rt. The mixture was 

cooled to 0 °C, and a few drops of 1 N HCl were added until reaching pH ~ 2. The product 

was then extracted with ethyl acetate. The combined organic layers were dried over 

anhydrous sodium sulfate. The solvent was removed in vacuo, and the crude product was 

purified via HPLC (H2O/CH3CN 100 to 20% gradient for 15 min; seven runs). Pure 

fractions, as judged by LC-MS, were combined and lyophilized for 18 h to afford the desired 

product as a pale yellow product (7.0 mg, 18% overall yield): 1H NMR (500 MHz, CDCl3) δ 
8.43 (d, J = 6.7 Hz, 1), 8.18 (s, 1), 7.41 (d, J = 7.9 Hz, 1), 7.36 (m, 3), 7.19 (m, 4), 7.05 (t, J 

= 7.4 Hz, 1), 6.29 (t, J = 6.8 Hz, 1), 5.42 (t, J = 7.7 Hz, 1), 5.19 (dd, J = 12.7, 7.1 Hz, 1), 

4.28 (dd, J = 12.5, 8.5 Hz, 1). Two hydrogens (presumably the COOH, and NH) were 

unaccounted for. 13C NMR (126 MHz, CDCl3) δ 166.2, 164.6, 145.9, 142.4, 137.9, 136.6, 

134.6, 130.1, 129.6, 128.9, 127.7, 126.7, 123.0, 122.0, 120.2, 119.2, 118.0, 114.3, 111.5, 

108.0, 53.9, 38.5. Calculated for C22H18ClN2O3 (M+H)+ = 393.1008; Observed 393.1001.

Preparation of 6-((8S,8aR)-8,8a-dimethyl-1,2,3,4,6,7,8,8a-octahydronaphthalen-2-yl)-6-

methyl-5,6-dihydrofuro[2,3-d]pyrimidine-2,4(1H,3H)-dione (JSF-4444): To a stirred 

solution of valencene (2.55 g, 12.5 mmol) and barbituric acid (0.64 g, 5.0 mmol) in 

acetonitrile at −10 °C was added ceric ammonium nitrate (5.48 g, 10.0 mmol) in portions 

over several minutes. The reaction mixture was stirred at −10 °C for 2 h. The reaction 

mixture was quenched with saturated aqueous ammonium chloride solution, and the solvent 

was removed in vacuo. The reaction mixture was extracted with diethyl ether and the 

combined organics were washed with saturated aqueous brine solution, dried over anhydrous 

sodium sulfate, and the volatiles were removed in vacuo to provide a yellow oil. The crude 

reaction product was purified by flash chromatography on silica gel, eluting with 

dichloromethane, to afford the desired product as a white solid (12 mg, 0.73%): 1H NMR 

(500 MHz, CDCl3) δ 9.42 (br s, 1), 8.16 (s, 1), 5.36 (d, J = 2.2 Hz, 1), 2.95 (dd, J = 13.7, 5.3 

Hz, 1), 2.61 (t, J = 13.5 Hz, 1), 2.27 (t, J = 15.0 Hz, 1), 2.12 (d, J = 11.3 Hz, 1), 2.00-1.92 

(m, 4), 1.88-1.84 (m, 1), 1.80-1.72 (m, 2), 1.44(s, 2), 1.42 (s, 2), 1.16-0.96 (m, 2), 0.92 (d, J 
= 3.9 Hz, 2), 0.88 (dd, J = 10.5, 5.8 Hz, 3), 0.85-0.81 (m, 1). 13C NMR (125 MHz, DMSO) 

δ 162.3, 161.9*, 151.5, 142.5, 120.5, 97.9*, 85.2*, 67.2, 46.6, 42.4*, 40.6, 37.5*, 34.9, 34.6, 
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31.9*, 28.3*, 27.1, 25.7, 23.9*, 18.7*, 16.1*. *Corresponded to carbons in 1:1 

diastereomeric ratio. Calculated for C19H26N2O3 (M+H)+ = 331.2022; Observed 331.2016.

RESULTS

The dataset used to train the Neisseria Bayesian model was extracted from ChEMBL (17) 

(https://www.ebi.ac.uk/chembl/) with the query keywords “Neisseria gonorrhoeae” and 

“MIC”. The results were manually curated to remove false positive compounds, via 

comparison of tabulated data on the web site versus the published data, duplicates, and Pan 

Assay INterference compoundS (PAINS) (18, 19) or colloidal aggregators (43). Ultimately, 

the curated training set (Supplemental Information; File: Neisseria training set.sdf) 

contained 282 molecules, of which 160 compounds (56.7%) were deemed as “active,” given 

a practical minimum inhibitory concentration (MIC; typically the minimal concentration to 

result in a no-growth phenotype) cutoff of ≤ 8.0 μg/mL given our experience. A Principal 

Component Analysis (PCA) was performed to visualize the placement of active and inactive 

compounds in chemical space (Fig. S1). Graphically, the majority of the actives and 

inactives in the training set are clustered together.

Given our previously published work disclosing the utilization of naive Bayesian (heretofore 

Bayesian) models to discover novel antitubercular agents (44), we began with utilization of 

the Assay Central™ software and its Bayesian approach (45). Further curation of the 

training set included removal of molecular charges and duplicates. The run parameters were 

varied and optimized to produce the final Bayesian model. This was accomplished with 

ECFP6 fingerprints (22–24) and the use of 5-fold cross-validation with typical model 

evaluation metrics (recall, precision, specificity, F1-score, ROC, CK, and MCC as defined in 

the Materials and Methods section). The optimized Neisseria Bayesian model displayed the 

following internal statistics: AUC ROC = 0.8470, recall = 0.7736, precision = 0.8200, 

specificity = 0.7769, F1 score = 0.7961, CK = 0.5456, and MCC = 0.5467 (Fig. 1). The 

Neisseria Bayesian model was subsequently used to virtually screen over 190,000 small 

molecules from the Asinex BioDesign Library, characterized as containing chemical features 

present in approved drugs and natural products in synthetically accessible molecules. This 

library is shown (Fig. S2) to occupy a similar chemical space as does the training set. The 

top 10,000 compounds ranked by the Neisseria Bayesian model (Supplemental Information; 

File: Asinex top 10000 by Bayesian.sdf) were subjected to chemical diversity evaluation 

using the Assay Central™ workflow. The evaluation consisted of selecting the 100 most 

diverse compounds by using ECFP6 fingerprints as the descriptor and the Tanimoto score to 

calculate the dissimilarity index and subsequently rank this set using the Neisseria Bayesian 

score. These 100 compounds (Supplemental Information; File: Asinex top 10000 by 

Bayesian then top 100 by diversity.sdf) were visually inspected to remove chemically 

reactive compounds(31) and nitroheterocycles given our desire to explore chemotypes 

different from those being studied in the laboratory at the time (32, 33). The resulting top-

scoring 20 compounds were purchased from Asinex and assayed for purity by HPLC and 

identity by MS.

The top 20 compounds selected by the Neisseria Bayesian model were then assayed for in 
vitro growth inhibition activity (Table 1 and Table S1) against three representative strains of 
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N. gonorrhoeae most commonly used as laboratory strains (FA1090 (ATCC 700825), FA19 

(ATCC BAA-1838), and F62 (ATCC 33084)), demonstrated to be susceptible to cefixime, 

ceftriaxone, ciprofloxacin, doxycycline, rifampicin, and azithromycin (Table S2) (46). Two 

compounds may be considered active compounds or hits (2/20 = 10% hit rate). JSF-4439 

(BDE 33956561) and JSF-4444 (BDG 33899218), were active against all three strains. 

JSF-4439 and JSF-4444 exhibited the same MIC value of 7.0 μg/mL (18 μM for JSF-4439 

and 21 μM for JSF-4444) versus FA1090 and 8.0 μg/mL (20 μM for JSF-4439 and 24 μM 

for JSF-4444) against F62, while displaying values of 6.2 μg/mL (16 μM) and 12 μg/mL (36 

μM), respectively, versus the strains FA19 strain. JSF-4447 (LAS 13556723) did not meet 

the activity criteria of MIC ≤ 8.0 μg/mL versus any of these laboratory strains, 

demonstrating MIC values of 25, 50, and 50 μg/mL (77, 150, and 150 μM) versus the 

FA1090, FA19, and F62 strains. The remaining 17 tested compounds were inactive against 

all three laboratory strains (MIC > 50 μg/mL; Table S1). Finally, all 20 compounds were 

also inactive against four multi-drug resistant N. gonorrhoeae strains: FA6140 (https://

www.ncbi.nlm.nih.gov/genome/?term=Neisseria%20gonorrhoeae%20FA6140), F89 (34), 

35/02 (https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=528346), and 

59/03 (35) (Tables S2 and S3). JSF-4439 and JSF-4444 exhibited minimum bactericidal 

concentrations (MBC; minimum concentration to afford a 2 log10 reduction in bacterial 

colony-forming units) of 3.2 – 6.3 and 12 – 25 μg/mL, respectively, versus the FA1090 strain 

(Fig. S3).

JSF-4439 and JSF-4444 were next assayed against a subset of ESKAPE bacteria to query for 

broad-spectrum antibacterial activity. The ESKAPE panel consisted of Enterococcus 
faecium (NCTC 7171), Staphylococcus aureus (ATCC 43300), Klebsiella pneumoniae 
(BAA 2146), Acinetobacter baumannii (ATCC 19606), Pseudomonas aeruginosa (HER 

1018), and Enterobacter cloacae (ATCC 13047) strains. JSF-4439 and JSF-4444 exhibited 

selective inhibition of N. gonorrhoeae growth, as each demonstrated an MIC of >50 μg/mL 

versus all six strains.

JSF-4439 was sourced through synthesis via adaptation of a route disclosed in a Takeda 

Pharmaceutical Company patent (47) (Fig. 2A). Commercially available 2-(2-

chlorophenyl)-2-(1H-indol-3-yl)ethan-1-amine and methyl 2-oxo-2H-pyran-3-carboxylate 

were subjected to the addition of N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide 

hydrochloride in the presence of 4-dimethylaminopyridine in N,N-dimethylformamide to 

afford methyl 1-(2-(2-chlorophenyl)-2-(1H-indol-3-yl)ethyl)-2-oxo-1,2-dihydropyridine-3-

carboxylate (1). Saponification of the methyl ester in 1 afforded synthetic JSF-4439 in 18% 

overall yield. JSF-4444 was prepared in one low-yielding step, via a literature route (48), 

involving the oxidative coupling of commercial (+)-valencene and barbituric acid (Fig. 2B). 

In both cases, the LC-MS, 1H NMR, and high-resolution mass spectrum of the synthetic 

materials matched those of the commercial materials, and their assays profiles were similar.

JSF-4439 and JSF-4444 were compared to the curated actives in the training set via 

calculation of their pairwise Tanimoto scores using ECFP6 fingerprints. With this Tanimoto 

calculation, the score ranges from 0 to 1.0 (for identical compounds). JSF-4439 and 

JSF-4444 presented maximum Tanimoto similarities to the training set actives of 0.31 and 

0.39, respectively, with minimum Tanimoto similarities of 0.10 (Table S4). Visually, the two 
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hits are chemically distinct from their closest actives in the training set. The PCA (Fig. S4) 

indicates that JSF-4439 and JSF-4444 have predicted chemical properties similar to those of 

known N. gonorrhoeae inhibitors, but they are generally not within the main clusters of these 

previously characterized inhibitors. Additionally, searches of SciFinder (http://

scifinder.cas.org) and PubChem (https://pubchem.ncbi.nlm.nih.gov failed to uncover 

previous disclosure of these two compounds as growth inhibitors of N. gonorrhoeae or as 

antibacterial agents, in general. Representing novel hits against N. gonorrhoeae, JSF-4439 

and JSF-4444 were profiled for mouse liver microsome (MLM) stability and kinetic aqueous 

solubility (S) in pH 7.4 phosphate-buffered saline to inform future optimization campaigns. 

JSF-4439 exhibited an MLM half-life (t1/2) of 15.6 min and a S = 202.0 μM, while JSF-4444 

was characterized by MLM t1/2 = 19.6 min and S = 301.5 μM.

DISCUSSION

Although an urgent need exists for new drug treatments for Neisseria gonorrhoeae infection, 

the previously reported machine leaning efforts pertaining to this STI have not been directly 

relevant to drug discovery. Machine learning methods for N. gonorrhoeae have been limited 

to: 1) phenotype prediction by using Multiple Instance Learning models (49); 2) 

antibacterial-resistant DNA identification by using Random Forest, naïve Bayesian, and 

Support Vector Machine (50) approaches; and 3) bacteria imaging identification through a 

combination of Deep Neural Networks and Support Vector Machine (51, 52) methods. To 

the best of our knowledge, we present the first application of machine learning, a Bayesian 

model, for successfully predicting novel compounds with in vitro antibacterial activity 

against N. gonorrhoeae. Significantly, this modeling effort produced a training set, curated 

from the ChEMBL database, which we provide as an .sdf file in the Supplemental 

Information so that it may serve as a training set for the efforts of other laboratories, using 

other modeling approaches. In addition, this Bayesian model, upon publication, will be 

made publicly available at www.assaycentral.org.

The Neisseria Bayesian model workflow identified two promising hit compounds (JSF-4439 

and JSF-4444) out of a library of over 190,000 candidates. JSF-4439 and JSF-4444 were 

initially ranked by the Neisseria Bayesian model at positions 83 and 791, respectively 

(Supplemental Information; File: Asinex top 10000 by Bayesian.sdf). After the diversity 

filter was applied, and compounds were sorted by the Neisseria Bayesian model score, 

JSF-4439 and JSF-4444 ascended to the 2nd and 4th positions, respectively (Supplemental 

Information; File: Asinex top 10000 by Bayesian then top 100 by diversity.sdf). Without the 

diversity filter, we would not have inspected JSF-4444; consequently, it would not have been 

assayed. However, the diversity filter alone was not sufficient to identify the hit compounds 

against N. gonorrhoeae. It is interesting to note that the two hits were not amongst the top 

100 most diverse molecules chosen from the Asinex library of over 190,000 compounds 

(Supplemental Information; File: Asinex top 100 by diversity.sdf), but both were amongst 

the top 1000 most diverse molecules (Supplemental Information; File: Asinex top 1000 by 

diversity.sdf). Therefore, combining a diversity filter with the Neisseria Bayesian model 

improved the performance of the workflow for this screening campaign.
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Diversity has occupied an important role in machine learning with regard to decreasing the 

redundancy between data and model, providing informative data, and generating 

representative models (53). Diversity as a strategy is mainly applied to improve the 

representativeness of the training set (54, 55), to select informative parameters (56, 57), and 

to combine distinct models (ensemble models) to reduce the generalization error of the 

prediction (58) (59). The chemical diversity of compounds has been intensively scrutinized 

to design virtual screening libraries (60), to improve the training data (61), and to select 

parameters and/or models (62, 63).

In this work, we present an alternative use of chemical diversity for improving machine 

learning models by decreasing the redundancy amongst the model’s top-ranked compounds. 

The Neisseria Bayesian model selected as active (score > 0.5) over 10,000 compounds, 

before the diversity filter (Supplemental Information; File: Asinex top 10000 by 

Bayesian.sdf). In the top 100 compounds (Supplementary Information; File: Asinex top 100 

by Bayesian.sdf; score refers to column entitled Ngonor_Prediction), the difference in score 

between the 1st scored compound (score 0.678) and the 100th scored compound (0.633) was 

only 0.044, and the difference between the 56th (0.640) and 100th (0.633) was even smaller 

(0.007). Often, the top compounds ranked by the Neisseria Bayesian model (without the 

diversity filter) presented an overlapping of chemical space. This behavior might be related 

to the over-representation of features among the training compounds labeled as active, which 

directly reflects on the top ranked compounds. The top compounds with similar chemical 

structure will likely share the same over-represented characteristics. A similar assumption 

was presented by the Lounkine group (63), who used feature selection to improve an active 

learning model. We assert that by using the chemical diversity filter we have reduced the 

redundancy of the model’s top-ranked compounds.

Derived from this Bayesian workflow leveraging compound diversity, JSF-4439 and 

JSF-4444 represent novel hit chemotypes that will require mechanism of action studies and 

compound optimization to achieve early lead compound status (39, 64). We envision 

mechanistic studies would involve the generation of drug-resistant mutants by established 

methods which upon validation of the mutation/s would help clarify biological target/s (65, 

66). With regard to compound evolution, limited molecular profiling demonstrated the need 

to improve the in vitro profile of both hits. While an MIC ≤ 8.0 μg/mL is reasonable for a hit 

in our experience, we would prefer to see an MIC ≤ 1.0 μM (or ~0.3 μg/mL for a compound 

of 300 g/mol molecular weight) for both compounds against a range of both N. gonorrhoeae 
drug-susceptible and drug-resistant strains. To this end, the previously stated future goal of 

probing the mechanism should provide insight into potential issues due to cross-resistance 

with existing antibacterials. However, given the novel chemotypes of these two hits, we 

believe the likelihood of them sharing a target with existing antibacterials is relatively low. 

In addition, the identification of molecular target/s may be coupled with X-ray 

crystallography to enable a structure-based design optimization (39). The MLM stability of 

both compounds will need to be improved as the respective values are demonstrative of 

metabolic instability. Typically, we would prefer an early lead to have MLM t1/2 ≥ 60 min 

(64). The aqueous solubility of both compounds significantly exceeded the goal value of 100 

μM (64). We anticipate that an optimization of these two hits will rely on medicinal 

chemistry heuristics, the Neisseria Bayesian model for growth inhibition and specifically its 
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ability to identify which atoms within these compounds are contributing to, or detracting 

from, whole-cell activity (Table S5), our models for MLM t1/2 (67, 68), and our concise 

syntheses of both compounds (Fig. 2). An acceptable early lead compound profile would 

enable mouse pharmacokinetic studies to assess the plasma concentration versus time 

relationship and set the stage for approaching in vivo efficacy studies to pharmacologically 

validate both the chemotype and the elucidated mechanism of action.

CONCLUSIONS

The Bayesian model approach presented herein has supplied what we believe to be the first 

report of a machine learning workflow to predict novel small molecule growth inhibitors of 

N. gonorrhoeae. A key element to the strategy appears to be a diversity filter to perhaps 

better spread the “risk” amongst a wider range of chemotypes when scoring a very large 

library of candidate molecules. In so doing, we disclose JSF-4439 and JSF-4444, which 

represent new hit molecules. Further evolution of their properties should afford valuable 

chemical tools and/or drug discovery molecules. We also anticipate that application of this 

machine learning approach to other bacteria of global health relevance should prove fruitful.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Receiver Operator Characteristic (ROC) curve for the Neisseria Bayesian model.
The Assay Central workflow was utilized in conjunction with the training set to produce an 

optimize a Bayesian model where the ROC curve, generated through 5-fold cross-validation, 

is depicted along with key model parameters.
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Figure 2. Synthetic schemes to provide the two hit compounds (A) JSF-4439 and (B) JSF-4444.
JSF-4439 was prepared in two steps from commercial materials, while JSF-4444 was 

attained in one reaction from commercial materials.
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Table 1.
In vitro growth inhibition profile for hit compounds versus drug-susceptible N. 
gonorrhoeae strains.

The MIC values tabulated are representative of experiments conducted in at least duplicate.

Compound Structure Compound Name
(Asinex)

MIC in μg/mL versus the N. gonorrhoeae strain

FA1090 FA19 F62

JSF-4439
(BDE 33956561)

7.0 6.2 8.0

JSF-4444
(BDG 33899218)

7.0 12 8.0
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