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Abstract

Investigating the similarity and changes in brain networks under different mental conditions has 

become increasingly important in neuroscience research. A standard separate estimation strategy 

fails to pool information across networks and hence has reduced estimation accuracy and power to 

detect between-network differences. Motivated by a fMRI Stroop task experiment that involves 

multiple related tasks, we develop an integrative Bayesian approach for jointly modeling multiple 

brain networks that provides a systematic inferential framework for network comparisons. The 

proposed approach explicitly models shared and differential patterns via flexible Dirichlet process-

based priors on edge probabilities. Conditional on edges, the connection strengths are modeled via 

Bayesian spike and slab prior on the precision matrix off-diagonals. Numerical simulations 

illustrate that the proposed approach has increased power to detect true differential edges while 

providing adequate control on false positives and achieves greater network estimation accuracy 

compared to existing methods. The Stroop task data analysis reveals greater connectivity 

differences between task and fixation that are concentrated in brain regions previously identified as 

differentially activated in Stroop task, and more nuanced connectivity differences between exertion 

and relaxed task. In contrast, penalized modeling approaches involving computationally 

burdensome permutation tests reveal negligible network differences between conditions that seem 

biologically implausible.
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1 Introduction

The Stroop task (Stroop, 1935) is one of the most reliable psychometric tests (MacLeod, 

1991) that is widely used as an index of attention and executive control. It has been 

extensively employed to investigate the neural underpinnings of mental effort that is defined 

as the deployment of mental resources in a demanding task that needs to be willfully 

maintained. Stroop task experiments have been successfully adopted in neuroimaging 

studies targeting child development (Levinson et al., 2018) and aging (Duchek et al., 2013), 

addictive behavior (Wang et al., 2018), psychiatric conditions (Woodward et al., 2016), and 

several other areas. Neuroimaging studies have shown differential activation in several brain 

regions related to the Stroop task (Gruber et al., 2002; Shan et al., 2018). However, there are 

limited advances for understanding the neural circuitry changes related to differences in the 

capacity to exert mental effort (Levinson et al., 2018). Existing connectivity studies have 

focused on independent component analysis or ICA (Wang et al., 2018), seed region based 

correlation analysis (Levinson et al., 2018), and pairwise correlation analysis (Peterson et 

al., 1999). While useful, ICA based studies do not provide edge-level interpretations 

necessary for graph theoretic insights, whereas seed region-based analysis are subjective and 

do not use whole brain information. Moreover, pairwise correlations fail to account for 

spurious effects of third party nodes (Smith et al., 2011) that may lead to misleading 

connectivity findings. In addition, none of existing methods investigated connectivity 

differences related to varying mental effort in Stroop task, although recent evidence point to 

significant brain activation differences when the task is performed by voluntarily engaging a 

maximum or a minimum of mental effort (Khachouf et al., 2017).

In one of the first such efforts to our knowledge, we investigate how the brain network 

reorganizes under different cognitive conditions corresponding to passive fixation and task 

performance, as well as between effortful and relaxed task performance, under a Stroop task 

experiment. The scientific hypothesis based on previous studies is that considerable 

neurobiological and connectivity differences should be present between the different 

cognitive conditions. The investigation of brain network differences may be performed on a 

single subject or, as in our case, at a group level which is expected to average out subject-

specific idiosyncrasies (Kim et al., 2015). Under a graph-theoretic approach, edges featuring 

differential strengths correspond to brain connections that are more activated or suppressed 

during one experimental condition as compared to others. On the other hand, connections 

shared across networks may represent an intrinsic functional network architecture which is 

common across experimental conditions (Fox et al., 2007). However, separate estimation of 

multiple networks may not have enough power to accurately detect shared and differential 

features between networks due to the inherent noise in fMRI data. Separate network 

estimation may also be inadequate in terms of comparing multiple networks (a central 

question of interest in our applications), due to a lack of systematic inferential tools to test 

significant connectivity differences between experimental conditions. The above factors 

could potentially result in a loss of biological interpretability, as illustrated via our Stroop 

task data analysis. These critical issues can be potentially resolved via a joint learning 

approach for multiple networks that pools information across experimental conditions to 
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learn shared and differential features. Such an approach is motivated by the success of recent 

data fusion methods for multiple datasets in literature (Lahat et al., 2015).

There has been a limited development of approaches for the joint estimation of multiple 

networks. Penalized approaches for the joint estimation of multiple Gaussian graphical 

models (GGM) (Guo et al., 2011; Danaher et al., 2014; Zhu et al., 2014) typically smooth 

over the strength of connections across networks to enforce shared edges, which is a useful 

modeling assumption but may not be supported in practical brain network applications. 

Further, they often require a careful choice of more than one tuning parameter that results in 

an increase in computational burden, and they do not provide measures of uncertainty which 

are often desirable in characterizing heterogeneity in group level analyses. With the 

exception of a recent penalized neighborhood selection approach by Belilovsky et al. (2016), 

few penalized methods have been vetted for the joint estimation of multiple brain networks. 

Unfortunately, the approach by Belilovsky et al. (2016) cannot be used to obtain positive 

definite precision matrices that are necessary for quantification of edge strengths via partial 

correlations. Moreover, a major difficulty under penalized approaches arises when 

comparing multiple networks, since the estimated network differences may be artifacts 

resulting from estimation errors under point estimates (Kim et al., 2015). Penalized methods 

for comparing networks rely on permutation tests that are computationally burdensome and 

hence not scalable, or they construct null distributions to conduct hypothesis testing 

(Higgins et al., 2019) that may be restrictive when the associated assumptions are not 

satisfied. Hence, penalized approaches may not be adequate for inferring network 

differences between multiple experimental conditions, which is a central objective in this 

article.

Several Bayesian approaches, including spike and slab methods (Yu and Dauwels, 2016; 

Peterson et al., 2015), and continuous shrinkage methods (Carvalho et al., 2010; Polson and 

Scott, 2010; Piironen et al., 2017; Li et al., 2017) have been proposed for individual 

precision matrix estimation. Though Bayesian approaches have proven extremely useful in 

estimating brain networks (Mumford and Ramsey, 2014), few attempts have been made to 

develop Bayesian methods for the joint estimation of multiple networks. Some existing 

Bayesian methods for joint network estimation include the approach by Yajima et al. (2012), 

who focused on multiple directed acyclic graphs, and the Bayesian Markov random field 

approach by Peterson et al. (2015) for estimating multiple protein-protein interaction 

networks. The former cannot be used to obtain undirected brain networks which is the focus 

of this article, while the latter is only applicable to examples involving a small number of 

nodes and can not be scaled up to whole brain network analysis considered in this study. 

There is also some recent work on jointly estimating multiple temporally dependent 

networks (Qiu et al., 2016; Lin et al., 2017), but these approaches cannot be directly 

generalized for the integrative analysis of multiple brain networks across different 

experimental conditions. The above discussion suggests a clear need for developing flexible 

and scalable Bayesian approaches for joint estimation of multiple brain networks which pool 

information across experimental conditions to provide more accurate estimation and 

inferences. An appealing feature of Bayesian joint modeling approaches is that they provide 

a rigorous inferential framework for comparing networks at multiple scales using Markov 

chain Monte Carlo (MCMC) samples, which precludes the need for computationally 
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involved permutation tests or constructing test statistics based on heuristic null distributions. 

While a separate Bayesian estimation for multiple networks also enables one to test for 

network differences using MCMC samples, it is unable to pool information across 

experimental conditions and can not account for dependencies across multiple related 

networks.

In this article, we develop a Bayesian GGM approach for jointly estimating multiple 

networks. This approach models the probability of a connection as a parametric function of a 

baseline component shared across networks and differential components unique to each 

network. The shared and differential effects are modeled under a Dirichlet process (DP) 

mixture of Gaussians prior (Müller et al., 1996), and the edge probabilities are estimated by 

pooling information across experimental conditions, thereby resulting in the joint estimation 

of multiple networks. An exploratory analysis of the Stroop task data, which involved 

deriving the subject-specific network for each of the 45 subjects under the task and rest 

conditions using the graphical lasso (Friedman et al., 2008), and then estimating the group 

level probability for each edge by combining the edge sets across all subjects, followed by a 

K-means algorithm on the edge probabilities, revealed clearly defined and well separated 

clusters for these probabilities. This provides a strong motivation for a DP mixture approach 

to cluster the edge probabilities under BJNL. The role of the edge probabilities is twofold - 

they characterize uncertainty in network estimation and allows one to pool information 

across networks. The connection strengths are encapsulated via network specific precision 

matrices, which are modeled separately for each network under a spike and slab Bayesian 

graphical lasso prior conditional on the above edge probabilities. Adopting a joint modeling 

approach that involves a combination of a parametric link function with flexible DP priors 

on the shared and differential components within the edge probabilities results in an 

interpretable and flexible approach. It also enables more accurate estimation of edge 

strengths and provides improved network comparisons (greater power to detect true 

differential connections while ensuring adequate control for false positives), as demonstrated 

via extensive numerical experiments. Another important advantage in using the DP prior on 

the components is the robustness to the specification of the parametric link function, as 

evident from simulation results. The approach, denoted as Bayesian Joint Network Learning 

(BJNL), is implemented via a fully Gibbs posterior computation scheme.

Our BJNL analysis of the Stroop task data confirmed the hypothesis that brain connections 

as well as global and local topological characteristics of the brain network are considerably 

different when subjects are actively engaged in the task as compared with the rest condition, 

which is not surprising given the difference in the cognitive requirements of the two 

conditions. The connectivity differences between task and passive fixation also aligned with 

the theory of global workspace (Gießing et al., 2013), which confirms the biological 

interpretability of the BJNL findings. Subtler network differences were observed between 

effortful and relaxed task conditions that is somewhat expected, since these conditions differ 

only in the mental attitude voluntarily applied to the performance of the same task. The 

BJNL connectivity differences were concentrated in brain regions previously shown to be 

differentially activated by a varying degree of willfully applied mental effort (Khachouf et 

al., 2017), which supports the plausibility of BJNL findings and provides important evidence 

supporting the scientific hypothesis of connectivity differences formed under the different 

Lukemire et al. Page 4

J Am Stat Assoc. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cognitive conditions. In addition to the BJNL analysis, we also performed a comparative 

analysis using penalized approaches such as the graphical lasso and the joint graphical lasso 

(JGL) (Danaher et al., 2014). The analysis under the penalized approaches revealed 

negligible network differences between effortful and relaxed task performance, and very 

limited network differences between task and passive fixation, which did not always involve 

brain regions implicated in previous activation studies (Khachouf et al., 2017). Hence these 

findings appeared to be inconsistent with our scientific hypothesis.

In addition to the advantage in terms of biological interpretability of findings, the BJNL 

analysis of Stroop task data also provides another major advantage over penalized methods 

for joint modeling in terms of computation time. Unlike BJNL that provided a robust 

inferential framework for comparing networks via MCMC samples, network comparisons 

under penalized approaches involved computationally burdensome permutation tests. In fact, 

the permutation tests under JGL using a full tuning parameter search procedure requires an 

hour to run per permutation (compared to an overall run time of a few hours for BJNL), 

which makes the approach impractical in terms of comparing brain networks. Due to this 

prohibitive computational burden, tuning parameters for JGL were chosen in an iterative 

manner across permutations, which reduced the computation time to around 27 hours but 

also potentially resulted in sub-optimal performance in brain network analysis. The 

computation efficiency of BJNL represents an important practical advantage in terms of 

comparing multiple whole brain networks, compared to other methods for joint estimation of 

multiple networks that may be hindered by computational bottlenecks.

2 Methodology

2.1 Description of the fMRI data set

Forty-five volunteers participated in the study. All subjects were right handed with an 

average age of 21.9 (SD = 2.2) years. MRI scanning was performed at the N.O.C.S.A.E 

Hospital in Baggiovara (MO), Italy, using a 3T Philips Achieva scanner. For each subject, 

the imaging session consisted of the collection of 6 echo-planar imaging (EPI) runs (112 

volumes each, TR=2.5s, 25 axial slice, 3 × 3 × 3 mm voxels) and a T1-weighted high-

resolution volume (180 sagittal slices, 1mm isotropic voxels) for anatomical reference. 

While in the scanner, subjects performed a 4-color version of the Stroop task with a button-

press response modality (Gianaros et al., 2005). In this task, subjects are presented with a 

color word displayed in colored fonts in the center of a computer screen and are asked to 

press a button on a response device corresponding to the font color of the stimulus. There are 

two types of trials: congruent trials, where the font color matches the text (e.g., the word 

‘RED’ in red fonts), and incongruent trials, where the font color does not match the text 

(e.g., the word ‘RED’ in green fonts). The ‘Stroop effect’ refers to a significant slowing of 

response times to the incongruent trials compared to the congruent ones (Stroop, 1935). 

Figure 1 illustrates the Stroop task experiment.

Stimuli were presented in (task) blocks of 30s containing 6 congruent and 6 incongruent 

trials appearing in a pseudo-random order with a 2.5s inter-trial interval. Each task block 

was alternated with 25s-blocks of passive fixation on a centrally presented cross. Six fMRI 

runs were collected for each subject, with each run consisting of 4 blocks of task and 5 
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blocks of passive fixation appearing in ABABABABA order (A=passive fixation, B=task). 

Crucially, subjects were instructed to perform odd-numbered runs “with maximum exertion” 

(EXR condition) and even-numbered runs “as relaxed as possible” (RLX condition). This 

scheme was reversed for a subset of volunteers to check for potential order effects. A major 

aim of the study was to compare the brain connectivity under REST (passive fixation) and 

the two TASK conditions (RLX and EXR) (Khachouf et al., 2017).

2.2 Bayesian modeling of multiple networks

We develop a novel Bayesian approach for jointly estimating multiple group-level brain 

functional networks from multi-subject fMRI data. For each subject, the data are demeaned 

and pre-whitened across time points, where the pre-whitened fMRI observations are 

considered statistically independent. The pre-whitened fMRI data over p nodes or regions of 

interest (ROI) for the i-th subject and gth experimental condition at time point t is denoted 

by yit (g) = (yit1(g), … , yitp(g)), i = 1, … , n, t = 1, … , Tig, g = 1, … , G. Our goal is to 

jointly estimate multiple networks denoted by G1, … , GG using Gaussian graphical models 

characterized by sparse inverse covariance matrices. The graph Gg is defined by the vertex 

set V= {1, … , p} containing p nodes and the edge set Eg containing all edges/connections in 

the graph Gg, g = 1, … , G.

The pre-whitened fMRI measurements for g-th experimental condition are modeled as yit(g) 

~ Np(0, Ωg
−1), i =1, …, n, t =1, …,Tig, g =1, …, G, where

π Ωg = Cg
−1 ∏

k = 1

p
E ωg, kk; α

2 ∏
k < l

wg, klN ωg, kl; 0, τg, kl
−1

+ 1 − wg, kl DE ωg, kl; λ0 I Ωg ∈ M+ ,
(1)

where π(·) denotes the prior distribution, ωg,kl and wg,kl denote the strength and probability 

of the functional connection between nodes k and l for network Gg respectively, M+ denotes 

the space of all positive definite matrices, I(·) denotes the indicator function, Cg is the 

intractable normalizing constant for the prior on the precision matrix, Np (·;0,Σ) denotes a p-

variate Gaussian distribution with mean 0 and covariance Σ, and E(α) and DE(λ) denote the 

exponential and double exponential distributions with scale parameters α−1 and λ−1 

respectively. Small values of the scale parameters τg,kl ~ π (τg,kl) and λ0
−1 in equation (3) 

result in a spike and slab prior (George and McCulloch, 1993) on the precision off-

diagonals, so that Ωg ~π(Ωg) is denoted as the spike and slab Bayesian graphical lasso. The 

spike and slab prior shrinks the values corresponding to absent edges toward zero and 

encourages values away from zero for important connections. The slab component is 

modeled under a Gaussian distribution having thick tails under small values of the precision 

parameter, while the spike component is modeled under a double exponential distribution 

having a sharp spike at zero under a large value of λ0. It is straightforward to show that Cg < 

∞ so that the prior in model (1) is proper using the results in Wang et al. (2012).

Pooling Information Across Experimental Conditions: Information is pooled across 

experimental conditions to estimate the edge weights wg,kl, k ≠ l, k, l =1, …, p, leading to 
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joint estimation of multiple networks. Note that by pooling information to model the edge 

probabilities instead of the edge strengths, we are able to jointly model multiple brain 

networks without constraining the edge strengths in separate networks to be similar. The 

prior weights represent the unknown probabilities of having functional connections, and are 

modeled via a parametric link function comprising unknown shared and differential effects 

as described below

wg, kl = ℎ η0, kl, ηg, kl , η0, kl ∼ f0, ηg, kl ∼ fg, f0 ∼ DP MP0 , fg ∼ DP MP0 , (2)

for k ≠l, k, l = 1, …, p, g = 1, …, G, where h(·) is the parametric link function relating the 

probability for edge (k, l) in network Gg to the network specific differential effect (ηg,kl) and 

common effect (η0,kl) across all networks, and DP (MP0) denotes a Dirichlet process 

mixture prior defined by the precision parameter M and base measure P0 ≡ N 0, ση2 . The 

Dirichlet process mixture prior induces a flexible class of distributions on the edge 

probabilities and also results in clusters of edges having the same prior inclusion 

probabilities, enforcing parsimony in the number of model parameters. The number of 

clusters and the cluster sizes are unknown and controlled via the precision parameter M 
(Antoniak, 1974).

Under specification (2), the baseline effect η0,kl represent the shared feature for edge (k, l) 
which is estimated by pooling information across experimental conditions, resulting in the 

joint estimation of multiple networks. The baseline effect controls the overall probability of 

having an edge across all networks, while the differential effects contribute to the network 

specific variations which are estimated using the information from individual experimental 

conditions. For example, large differences between ηg,kl and ηg′,kl, g ≠ g′ potentially imply 

a differential status for edge (k, l) between Gg and Gg′. On the other hand when ηg,kl = 

ηg′,kl , g ≠ g′, the model specifies equal probability for edge (k, l) in networks Gg and Gg′. 

For ease in interpretability we choose a logistic form link in (2) as h(η0,kl, ηg,kl) = exp{η0,kl 

+ ηg,kl}/[1 + exp {η0,kl + ηg,kl}], g= 1, …, G, so that ηg,kl + η0,kl can be interpreted as the 

log odds of having the edge (k, l) in the network Gg , and the log odds ratio of having edge 

(k, l) in the brain network Gg versus Gg′ can be expressed as ηg′,kl − ηg,kl (g ≠ g′). A 

schematic representation of the proposed model is illustrated in Figure 2.

Note that the parameters η0,kl, ηg,kl, in (2) are not identifiable since h(η0,kl, ηg,kl) = h(η0,kl 

+c, ηg,kl −c) for any real constant c. However, the functionals of interest such as the log odds 

(η0,kl + ηg,kl), the log-odds ratio (ηg,kl − ηg′,kl), and the edge probabilities themselves are 

clearly identifiable, which is adequate for our purposes. The proposed specification (2) is 

purposely overcomplete, which is an issue routinely arising in Bayesian models. By 

“overcomplete,” we mean that we include G + 1 parameters in the weights model when G 
parameters would suffice. Such overcompleteness allows us to pool information in a 

systematic manner, and ensures computational efficiency and interpretability in terms of 

shared and differential group effects and is designed to avoid any problems in identifiability 

of functionals of interest - refer, for example, to Ghosh and Dunson (2009).

Our treatment of the edge weights is motivated by existing literature on modeling binary or 

ordered categorical responses using mixture distributions (Kottas et al., 2005; Jara et al., 
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2007; Gill and Casella, 2009; Canale and Dunson, 2011). Specifically we are able to achieve 

both the interpretability discussed above and a high degree of flexibility while also reducing 

the sensitivity to the link function and enabling straightforward posterior computation. A 

similar approach was taken by Durante et al. (2017) who modeled structural connections in a 

population of networks via a mixture of Bernoulli distributions, although they did not focus 

on joint estimation of multiple networks.

3 Posterior Computation

We design a block Gibbs sampler in order to fit the proposed model (1). The sampler enables 

data adaptive shrinkage by introducing latent scale parameters to sample the precision 

matrix off-diagonals corresponding to the spike component under a scale mixture 

representation of Gaussians while defining conjugate priors on the precision parameters in 

the slab component. Define edge inclusion indicators as δg,kl =1 if edge (k, l) is included in 

Gg , and δg,kl = 0 otherwise, where P(δg,kl = 1) = wg,kl . The augmented likelihood for 

equation (1) can be written as

π Ωg ∣ λ0, τg, τg∗ = Cτ, g
−11 Ωg ∈ M+ ∏

l = 1

p
Exp ωg, ll; α/2 × ∏

l = 1

p
∏
k < l

wg, kl
δg, kl 1 − wg, kl

1 − δg, k

× ∏
l = 1

p
∏
k < l

N ωg, kl; 0, τg, kl
−1 δgk ∫ N ωg, kl; 0, τg, kl

−1 Exp τg, kl;
λ0

2

2 dτg, kl

1 − δg, kl
,  with 

π τg, τg∗ ∝ Cτ, g ∏
p

l = 1
∏
k < l

Ga τg, kl; aτ, bτ × Exp τg, kl
∗ ; λ0

2/2 ,

(3)

where τg ={τg,kl, k ≠ l, k, l =1, …, p}, τg∗ = τg, kl
∗ , k ≠ l, k, l = 1, …, p , Ga(·;aτ,bτ) 

corresponds to a Gamma distribution with mean aτ/bτ, and Cτ,g is the intractable 

normalizing constant which cancels out in the expression for π(Ωg , λ0, τg, τg∗) to yield a 

marginal prior π(Ωg, λ0, τg) as in (1) after integrating out τg∗. In our implementation we pre-

specify λ0 =100 to ensure a sharp spike at zero leading to strong shrinkage for precision off-

diagonals corresponding to absent edges. On the other hand, we choose aτ and bτ such that 

aτ/bτ is small, enabling adaptive thick tails for the Gamma prior on the latent scale 

parameters corresponding to the slab component.

We choose a logistic link function in (2) for our purposes, although more general link 

functions can also be used. For implementing a fully Gibbs sampler, we rely on an 

approximation to the logistic function using a probit link, which employs a data 

augmentation scheme as in O’brien and Dunson (2004). In particular,

eμ∗

1 + el∗
≈ ∫0

∞
t u; μ∗, π2(ϕ − 2)

3ϕ du = ∫0
∞

N u; μ∗, π2(ϕ − 2)
3ϕ σϕ

2 π σϕ
2; ϕ

2 , ϕ
2 du,

where t(·) denotes a t-distribution, π σϕ
2  corresponds to a inverse Gamma distribution, ϕ= 

7.3, and u is the Gaussian latent variable used for data augmentation. This approximation 
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results in sampling from a posterior that is approximately equal to the posterior under 

specification (1)-(2) using a logistic link function. Although such an approximation is used, 

we note that the resulting posterior computation is fully Gibbs since all MCMC samples are 

drawn from exact posterior distributions. Alternatively, one could adapt the Polya-gamma 

data augmentation in Polson et al. (2013) for Bayesian logistic regression. However, the 

approximation in O’brien and Dunson (2004) works reasonably well in a wide variety of 

numerical studies in our experience. Moreover, the stick-breaking representation 

(Sethuraman, 1994) is used for the Dirichlet process mixture prior in (2), which facilitates 

posterior computation and can be written as

ηg, kl ∼ fg, fg = ∑
ℎ = 1

∞
vg, ℎδηg, ℎ, ηg, ℎ

∗ ∼ N 0, ση2 , vg, ℎ = vg, ℎ ∏
l < ℎ

1 − vg, l , vg, ℎ

∼ Beta(1, M), g = 0, …, G,
(4)

where Beta(·) denotes a Beta distribution. The slice sampling technique (Walker, 2007) is 

used to sample the atoms from the infinite mixture in (2), which significantly expedites 

computation. See Section 1 of the Supplementary Materials for posterior computation 

details.

Edge Detection:

The important network edges (and hence the network structure) can be estimated by either 

including edges with high marginal inclusion probabilities or those with non-negligible 

absolute values for the precision off-diagonals, lying above a chosen threshold. We propose 

a strategy to choose such thresholds in a manner which controls the false discovery rate 

(FDR). Denoting ζg,kl as the marginal posterior exclusion probability for edge (k, l) in 

network Gg , one can compute the FDR as in Peterson et al. (2015) as

FDR =
∑g = 1

G ∑k < lζg, kl1 ζg, kl < κ
∑g = 1

G ∑k < l 1 ζg, kl < κ
,  or FDR

=
∑g = 1

G ∑k < l ζg, kl1 ωg, kl > κ∗

∑g = 1
G ∑k < l 1 ωg, kl > κ∗ ,

(5)

depending on whether the edges are included based on posterior inclusion probabilities or 

edge strengths. Clearly the FDR increases with κ/κ*, and one can choose a suitable 

threshold to control the FDR. In our numerical experiments we found that choosing the 

edges based on whether the absolute precision off-diagonals were greater than 0.1 results in 

overall good numerical performance and FDR values which are less than 0.03 across a wide 

spectrum of scenarios. Hence we recommend this as a default threshold under our approach, 

and we note that the corresponding threshold for posterior probability for edge selection can 

be obtained as one which yields similar FDR as computed using (5).

Inferring Network Differences:

In addition to network estimation, the proposed BJNL provides a natural framework for 

testing network differences between experimental conditions at multiple scales. In particular, 

for our Stroop task data analysis, we use MCMC samples under BJNL to obtain the 
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posterior distribution for differences in edge level partial correlations as well as global and 

local network metrics. At the edge-level, T-tests of the Fisher Z-transformed partial 

correlation differences for all MCMC samples (after burn-in) were used to infer differences 

in edge strengths across networks. Similarly, the differences in the graph metrics across 

conditions were computed at each MCMC iteration, and the central tendency and dispersion 

of their distributions were statistically assessed by T-tests and Kolmogorov-Smirnov (KS) 

tests. The p-values of these tests were used to assess significance after controlling for false 

discoveries (Benjamini and Hochberg, 1995).

4 Numerical Studies

4.1 Simulation Setup

We conducted a series of simulations to compare group level network estimation between 

BJNL and competing methods. These approaches include the graphical horseshoe estimator 

(HS) (Carvalho et al., 2010; Li et al., 2017) which extends the horseshoe prior in regression 

settings to graphical model estimation, and the graphical lasso approach (GL) (Friedman et 

al., 2008) which imposes L1 penalty on the off-diagonals to impose sparsity, as well as the 

Joint Graphical Lasso (JGL) (Danaher et al., 2014) which uses a fused lasso penalty to pool 

information across graphs while encouraging sparsity via a L1 penalty. While both the HS 

and GL approaches estimate individual networks separately, the JGL approach is designed to 

jointly estimate multiple networks. The HS was implemented using Matlab codes provided 

on the author’s website. The JGL and the graphical lasso were implemented using the JGL 
and glasso packages in R, respectively. Our method was implemented in Matlab, version 

8.3.0.532 (R2014a), and a GUI implementing the method has been submitted as a 

Supplemental Material.

The data for the simulation study was generated under a Gaussian graphical model for n=60 

subjects with T=300 time points each and for dimensions p = 40, 100. Each subject had data 

corresponding to two experimental conditions having networks with shared and differential 

patterns. We considered three different network structures: (a) Erdos-Renyi networks which 

randomly generate edges with equal probabilities, (b) small-world networks generated under 

the Watts-Strogatz model (Watts and Strogatz, 1998), and (c) scale-free networks generated 

using the preferential attachment model (Barabási and Albert, 1999) resulting in a hub 

network. For each type of network, we obtained an adjacency matrix corresponding to the 

first experimental condition, and then flipped a proportion of the edges in this adjacency 

matrix to obtain the second network, adding edges where there were no edges and removing 

an equal number of edges. The proportion of flipped edges was set to 25%(low), 50%

(medium), and 75%(high), which correspond to varying levels of discordance between the 

experimental conditions.

After generating the networks, the corresponding precision matrices were constructed as 

follows. For each edge, we generated the corresponding off-diagonal element from a 

Uniform(−1,1) distribution and fixed the diagonal elements to be one and the off-diagonals 

corresponding to absent edges as zero. In order to ensure that the resulting precision 

matrices were positive definite, we subtracted the minimum of the eigenvalues from each 

diagonal element of the generated precision matrix. To enable a group level comparison for 
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each scenario, all subjects had the same network across all time points within each 

experimental condition and the same precision matrices for each network.

Tuning: We used BJNL with 1000 burn-in iterations and 5000 MCMC iterations. We 

specified the tuning parameters as follows. We chose λ0 =100 and τg,kl ~ Ga(aτ,bτ) with aτ 
= 0.1 and bτ = 1 in prior specification (3) to enforce a sharp spike at zero and thick tails for 

the slab component. The stick breaking weights in the mixture distribution in (4) were 

modeled as νg,h ~ Be(1,M) , where M ~ Ga(am, bm), and we choose am =1, bm =1, to 

encourage a small number of edge clusters for a parsimonious representation. We could 

increase am to encourage a larger number of clusters. However, we have observed that 

varying am has a limited effect on the final estimated network, as demonstrated through 

simulations in Section 2 of the Supplementary Materials. Our experience in extensive 

numerical studies suggests that the performance of the approach is not overly sensitive to the 

choice of λ0 as long as it is large enough (> 100); however, extremely large values of λ0 can 

result in numerical instability. Moreover, performance is fairly robust to the choice of the 

hyperparameters in the prior for the precision parameter of the slab component in (3), as 

long as the ratio aτ/bτ <1. For the joint graphical lasso that depends on two tuning 

parameters (a lasso penalty and a fused lasso penalty), we searched a 30×30 grid over [0.01, 

0.1] for both parameters to find the best combination using a AIC criteria as recommended 

in Danaher et. al (2014). The graphical lasso was run independently for each network over a 

grid of regularization parameter values, and the optimal graph was selected for each network 

using a BIC criteria as described in Yuan and Lin (2007).

Performance metrics: We assessed the performance of the three algorithms in terms of 

the ability to estimate the individual networks, as measured by the area under the receiver 

operating characteristic (ROC) curve (AUC), the accuracy in estimating the strength of 

connections, as measured by the L1 error in estimating the precision matrix (L1 error), the 

power to detect true differential edges as measured via sensitivity (TPR) and control over 

false positives for differential edges which is computed as 1-specificity (FPR). For all the 

metrics, we performed pairwise comparisons using Wilcoxon signed rank tests in order to 

assess whether one approach performed significantly better than the others. For edge 

detection, point estimates for the penalized networks were obtained by choosing the 

threshold for the absolute off-diagonal elements as 0.005, while for BJNL we computed 

thresholds controlling for false discoveries as described in Section 3.

4.2 Simulation Results

Figure 3 displays the ROC curves for the 100 node simulations, Figure 4 displays box plots 

of the reported metrics for the Erdos-Renyi case, and Table 1 reports results for the 100 node 

simulations. The box plots for the other networks and the results for the 40 node case are 

reported in the Supplementary Materials due to space constraints. The results across the 

three network types are relatively consistent. First, we note that the degree of dissimilarity 

between the networks does not appear to have a major effect on the relative performance of 

the algorithms, although we conjecture that the differences could be more pronounced for 

smaller sample sizes. For all settings involving Erdos-Renyi graphs, the proposed BJNL 

approach outperformed the HS, JGL, and GL uniformly across all metrics under the 
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Wilcoxon signed rank test. Notably, the proposed approach simultaneously achieved a 

significantly higher TPR and a significantly lower FPR for differential edges, indicating that 

it was both better able to detect significant differences and less likely to incorrectly classify 

an edge as differential. These, and the additional box plots in the Supplementary Materials, 

suggest a greater power to detect true differential edges with an adequate control over false 

positives across all network types, under the BJNL. Further, an increased improvement of 

the TPR over competing approaches and relative stability of the FPR for differential edges 

for p = 100 versus p = 40 indicates a clear advantage of the proposed joint estimation 

approach for increasing dimensions. For the small-world and scale-free networks, the BJNL 

also had significantly improved AUC, TPR, and L1 error metrics, and a comparable or lower 

FPR, compared to all other considered approaches.

On the other hand, the significantly higher L1 error under the JGL potentially points to the 

perils of smoothing over edge strengths across networks under penalized approaches. In 

particular, assigning similar magnitudes for precision matrix off-diagonals for shared edges 

may adversely affect the identification of differential edges, as well as the estimation of 

varying edge strengths for common edges across networks. Moreover while HS has low 

FPR, it consistently exhibits the lowest AUC and TPR and the highest L1 error for p = 100 

across all scenarios, which is concerning. On the other hand, the GL had the highest FPR for 

both the small-world and scale-free network simulations, but has a reasonable TPR. These 

results under HS and GL illustrate the difficulties resulting from the separate estimation of 

individual networks which may result in exceedingly low power to detect true positives (as 

with HS), or an inflated number of false positives (as with GL).

To examine the sensitivity of the proposed approach with respect to the chosen link function, 

we performed additional simulation studies by fitting the proposed model to the 100 node 

data generated as above, but under a probit link. The results in Table 2 illustrate non-

significant differences in the performance metrics for network estimation across the logit 

and the probit links, which illustrate the robustness of the proposed approach resulting from 

the specification of the DP prior on the shared and differential components in (2).

5 Stroop task analysis

5.1 Description of Analysis

We applied the proposed BJNL to the fMRI Stroop task study to investigate similarities and 

differences in the brain network under the two experimental conditions and passive fixation 

(REST). The first analysis was aimed at comparing the mental states of task performance 

(TASK) and passive fixation (REST), with the hypothesis that the brain networks exhibit 

major differences between these two grossly different conditions. The TASK data consisted 

of the subject-wise concatenation of the prewhitened fMRI time courses acquired during the 

exertion (EXR) and relaxed (RLX) task blocks, while the REST data consisted of the 

subject-wise concatenation of the prewhitened fMRI time courses acquired during the 

passive fixation blocks. The second analysis aimed to detect finer differences in connectivity 

between the mental states of EXR and RLX task performance. The study hypothesized that 

the mental states should be similar between the two task conditions with some fine network 
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differences. In this case, the subject-wise prewhitened fMRI time courses were concatenated 

for the EXR blocks and also separately for the RLX blocks for analysis.

We performed a brain network analysis based on region of interest (ROI) level data, 

adopting the 90 node Automated Anatomical Labeling (AAL) cortical parcellation scheme 

described in Tzourio-Mazoyer et al. (2002). For each ROI, we estimated the representative 

BOLD time series by performing a singular value decomposition on the time series of the 

voxels within the ROI and extracting the first principal time series. This resulted in 90 time 

courses of fMRI measurements, one for each ROI, which were then demeaned. We classified 

each ROI into one of nine functional modules as defined in Smith et al. (2009). We 

performed standard pre-processing including slice-timing correction, warping to standard 

Talairach space, blurring, demeaning, and pre-whitening. The fMRI time series was 

prewhitened using an ARMA(1,1) model, as is common in imaging toolboxes such as AFNI 

(Cox, 1996). Further details are provided in Section 5 of the Supplementary Materials. The 

proposed BJNL was run using the same tuning parameters as in the simulations. Dickey-

Fuller tests of stationarity were performed to assess convergence of the MCMC sampler (see 

Section 7 of the Supplementary Materials). We also examined the widths of the credible 

intervals in Section 8 of the Supplementary Materials, where Figure 7 of the Supplementary 

Materials demonstrates that the credible intervals for absent-edges are much narrower than 

the credible intervals for present-edges. Finally, we performed chi-squared goodness of fit 

tests under BJNL (see Section 9 of the Supplementary Materials).

Graph metrics: We analyzed the brain’s connectivity structure during the different mental 

states in terms of four graph metrics: global efficiency, local efficiency, clustering 

coefficient, and characteristic path length. Efficiency and characteristic path length measure 

how effectively information in transmitted between nodes, while clustering coefficient 

measures the interconnectedness of the network -see Section 6 in the Supplementary 

Materials for a full description. All metrics were calculated using the Matlab Brain 

Connectivity Toolbox (Rubinov and Sporns, 2010). In addition, we also examined 

differences in local graph metrics across experimental conditions corresponding to several 

brain regions (see Tables 2-3 in the Supplementary Materials) that were found to be 

differentially activated in a previous study using the same Stroop task experiment (Khachouf 

et al., 2017). Although distinct from earlier activation analysis, potential connectivity 

differences in these previously identified brain regions will bolster earlier activation based 

discoveries and also help illustrate the biological interpretability of the connectivity analysis.

5.2 Results

TASK vs REST Conditions: The analysis produced a large contingent of edges with 

significantly different edge strengths in the two mental states - Figure 6 displays a heatmap 

of the significant edge counts by functional module. Our analysis revealed 1550 significantly 

different edges (under T-tests) that provide evidence supporting the study hypothesis that 

there are major differences in the brain networks due to the manifest phenomenological and 

procedural dissimilarity of task performance and rest. Moreover, our examination revealed 

significant differences in the mean (under T-tests) and the posterior distributions (under KS 

tests) for all network metrics between the two conditions (Figure 5). Additional examination 
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of local network differences between task and fixation conditions corresponding to 20 pre-

specified regions revealed larger clustering coefficients for REST in all implicated regions, 

and larger local efficiencies for REST in 18 of the 20 regions (see the Supplementary 

Materials Table 2 for the brain regions and p-values).

EXR vs. RLX conditions of task performance: Compared with the relatively large 

network differences between TASK and REST, the network structures corresponding to the 

EXR and RLX task conditions exhibited more nuanced differences. Our analysis revealed 

226 significantly different edges between the EXR and RLX conditions - see Figure 6 for a 

heatmap of the significant edge counts by functional module. None of the graph metrics 

were significantly different between the EXR and RLX conditions, implying that the 

network differences did not manifest at a global level (Figure 5). However, more localized 

changes were discovered in the pre-selected regions that were previously shown to be 

differentially activated between EXR versus RLX (Khachouf et al., 2017). Significant 

differences were found in terms of mean local efficiency in the right inferior occipital node 

and the left caudate. Similarly, significant differences were found in mean and distribution 

for the clustering coefficient for the right inferior occipital node. Several borderline network 

differences were also identified - see Table 3 in the Supplementary Materials for reported p-

values.

Interpretation of Findings: Our BJNL analysis identified strong connectivity differences 

between Stroop task performance and passive fixation in terms of significantly higher 

efficiency and clustering, and lower characteristic path length for REST as well as stronger 

positive connections involving frontoparietal circuits, EC, DMN, sensorimotor, and visual 

cortices in the TASK condition compared to REST. Our findings also aligned with the 

widely used theory of global workspace where more difficult tasks are associated with 

increased connection distance, as well as reduced clustering (GeiBerg et. al, 2013). More 

localized associations were also discovered in all regions identified as differentially activated 

in previous studies (Khachouf et al., 2017), which highlights the biological interpretability 

of our connectivity findings. Our analysis provides exciting new insights into the 

connectivity differences between passive fixation and the task-related network that requires a 

rearrangement of connections in order to perform the task.

On the other hand, fewer connectivity differences were discovered between EXR and RLX 

task performance, as expected due to the only difference between conditions being the level 

of voluntary effort invested in the task. While no global topological differences between the 

EXR and RLX conditions were discovered, the BJNL analysis did reveal some fine 

differences in the functional modules including the EC and FPL that are involved in high 

level cognitive function, as well as some limited localized connectivity differences in 23 pre-

specified brain regions that previously showed major activation differences in (Khachouf et 

al., 2017). In general compared to TASK versus REST, the RLX task performance condition 

featured significantly more negative connections between regions compared to EXR, and 

there were fewer connectivity differences between nodes within the EC. Compared to a 

much larger number of connectivity differences in EC and other functional modules in 

Lukemire et al. Page 14

J Am Stat Assoc. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TASK versus REST, the limited connectivity differences between EXR and RLX implies a 

restricted rearrangement of the network between EXR and RLX.

Comparison with penalized approaches: We are also interested in comparing the 

network differences under BJNL with those obtained under penalized methods. Hence we 

performed an illustrative analysis for the Stroop task data using the GL and JGL approaches 

that involved permutation testing to infer significant network differences between 

experimental conditions. A permuted sample for two experimental conditions was generated 

by randomly switching the labels across conditions multiple times. Then, the networks 

corresponding to these permuted samples were computed using JGL and GL. Subsequently, 

the network differences corresponding to distinct experimental conditions were computed. 

The above process was repeated 10,000 times, and the permutation distributions for 

between-network differences were constructed to compute p-values to test for significant 

differences.

Note that it was computationally infeasible to use AIC to select the tuning parameters for 

JGL for all 10,000 permutations since the run time for the best tuning parameter search over 

a grid took one hour per permutation. Hence, the starting values for the tuning parameters 

for JGL were selected as those values used for the JGL analysis for the original data without 

permutation. The tuning parameters were then adaptively searched on a permutation-by-

permutation basis until the resulting edge density was within 20% of the edge density for the 

network corresponding to the original samples. While the process was required to make 

testing under the JGL computationally feasible, it could potentially result in misleading 

results under JGL due to possible mis-specification of network densities.

The analysis revealed that only one of the resulting edges for the EXR versus RLX network 

comparisons was significant under the GL, whereas only 62 edges were significant for the 

JGL. Similarly, for the analysis of TASK versus REST, the JGL identified 476 edges with 

differential strengths and 3873 common edges (versus 1550 differential edges and 1565 

common edges under BJNL). In this case, GL was able to identify 51 edges with differential 

strengths, and 552 common edges. We believe that the low number of differential edges 

between EXR versus RLX conditions under the penalized approaches is unrealistic, and that 

more differences are to be expected between TASK and REST since it involves significant 

differences in brain activation across the brain (Khachouf et al., 2017). Further, only 5 of the 

20 pre-specified brain regions which were shown to be differentially activated had 

significant network differences between TASK and REST under the penalized approaches 

(see Supplementary Materials Table 1). These results suggests the proposed BNJL method 

has much better statistical power to detect differences in brain networks under different 

cognitive states compared to penalized approaches for modeling networks.

6 Discussion

In this paper we introduced a novel Bayesian approach to joint estimation of multiple group 

level brain networks that pools information across networks to estimate shared and 

differential patterns in brain functional networks formed under different cognitive 

conditions. The proposed BJNL approach naturally enables a systematic inferential 
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framework for comparing networks, which is a central question of interest in many 

connectome studies including our Stroop task application where the focus is to investigate 

connectivity differences between passive fixation and relaxed and exertion modes of Stroop 

task. Our analysis of Stroop task data revealed important dissimilarities between the task and 

rest conditions, but more subdued differences between the two task conditions, which aligns 

with the scientific hypotheses of the study. Moreover the connectivity differences were 

found to be concentrated in brain regions shown to be differentially activated for Stroop task 

in previous studies, which signifies that the connectivity differences are biological 

interpretability. In contrast, a separate estimation of networks using penalized approaches 

identified negligible or limited connectivity differences between varying modes of mental 

effort that seem biologically implausible. In addition, the joint estimation of multiple 

networks under a penalized approach is not naturally conducive for comparing networks and 

hence one had to use computationally prohibitive permutation tests that tend to give sub-

optimal results in terms of network accuracy and inferring between-network differences.

In this paper, we demonstrated BJNL for estimating networks using fMRI data because they 

are the most prevalent type of functional images. However, our method can also be 

generalized to data from other imaging modalities in a straightforward manner. One 

advantage of our proposed approach for clustering the edge weights is that it allows for 

unsupervised estimation of the number of clusters. This means that in generalizing the 

method to other modalities, we do not have to laboriously tune the clustering parameters to 

each individual problem. Going beyond multiple experimental conditions, our approach can 

also be used to jointly model networks across multiple cohorts, such as healthy individuals, 

subjects with mild cognitive disorder, and those with Alzheimer’s disease (Kundu et al., 

2019). Future work should investigate the scalability of BJNL to larger numbers of 

conditions while taking into account the dynamic nature of the brain networks over time.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
An illustration of the Stroop task involving task blocks of congruent and incongruent trials, 

indicated by purple bars and yellow bars respectively, and fixation blocks denoted by a 

centrally fixated cross. The purple and yellow bars are expanded into two boxes, and the 

correct button presses are indicated with a rectangle within each box. Subjects were 

instructed to perform odd-numbered runs “with maximum exertion” (EXR condition) and 

even-numbered runs “as relaxed as possible” (RLX condition).
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Fig. 2. 
Directed graph illustrating the relationships between the model parameters for the case of 

two experimental conditions represented by fMRI data matrices Y1 and Y2. Rectangular 

nodes correspond to parameters which are updated or tuned, diamond-shaped nodes 

correspond to parameters involved in the likelihood, and the circular nodes correspond to the 

observed data.
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Fig. 3. 
ROC curves for edge detection for the 100 node simulations. The blue, green, red, and 

purple solid lines correspond to BJNL, JGL, GL, and HS respectively.
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Fig. 4. 
Box plots of the AUC, L1 Error, and TPR/FPR for differential edge detection for the Erdos-

Renyi simulations for Bayesian Joint Network Learning (BJNL), the Joint Graphical Lasso 

(JGL), Graphical Lasso (GL) and the Graphical Horseshoe Estimator (HS). Within each 

approach, the box plots are organized as: low difference, medium difference, and high 

difference in edges between experimental conditions, in that order.
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Fig. 5. 
Estimated densities of graph metrics for the analysis of task vs. passive fixation and 

maximum exertion (EXR) vs. relaxed (RLX) task performance.
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Fig. 6. 
Heatmaps of the number of differential edges between conditions. The heatmap on the left 

corresponds to the analysis of task vs. passive fixation, and the heatmap on the right 

corresponds to the analysis of maximum exertion (EXR) vs. relaxed task performance 

(RLX).
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Table 1

100 node simulation results comparing Bayesian Joint Network Learning (BJNL), the Joint Graphical Lasso 

(JGL), Graphical Lasso (GL) and the Graphical Horseshoe Estimator (HS). Text in bold indicates a method 

was better than all other competing methods as assessed through Wilcoxon signed rank tests at α= 0.05.

AUC L1 Error × 100

BJNL JGL GL HS BJNL JGL GL HS

Erdos-Renyi         

low 0.97 (0.01) 0.88 (0.02) 0.88 (0.02) 0.72 (0.03) 0.11 (0.01) 1.11 (0.09) 1.66 (0.13) 3.51 (0.19)

med 0.97 (0.01) 0.88 (0.02) 0.88 (0.02) 0.72 (0.04) 0.11 (0.01) 1.09 (0.09) 1.65 (0.14) 3.50 (0.20)

high 0.97 (0.01) 0.88 (0.02) 0.88 (0.02) 0.73 (0.03) 0.11 (0.01) 1.09 (0.07) 1.62 (0.11) 3.50 (0.23)

Small World         

low 0.97 (0.01) 0.95 (0.01) 0.79 (0.01) 0.72 (0.04) 0.25 (0.01) 0.75 (0.12) 2.06 (0.08) 4.70 (0.15)

med 0.97 (0.01) 0.95 (0.01) 0.80 (0.01) 0.72 (0.03) 0.24 (0.01) 0.77 (0.13) 2.07 (0.08) 4.65 (0.14)

high 0.97 (0.01) 0.95 (0.01) 0.79 (0.01) 0.73 (0.03) 0.24 (0.01) 0.78 (0.13) 2.06 (0.08) 4.65 (0.14)

Scale Free         

low 0.96 (0.01) 0.93 (0.01) 0.81 (0.01) 0.64 (0.03) 0.20 (0.01) 1.01 (0.20) 2.23 (0.10) 5.30 (0.23)

med 0.96 (0.01) 0.92 (0.01) 0.81 (0.01) 0.64 (0.03) 0.19 (0.01) 1.02 (0.21) 2.24 (0.90) 5.26 (0.24)

 AUC L1 Error × 100

high 0.96 (0.01) 0.92 (0.01) 0.81 (0.01) 0.64 (0.03) 0.19 (0.01) 1.00 (0.21) 2.20 (0.08) 5.23 (0.23)

 TPR    FPR    

 BJNL JGL GL HS BJNL JGL GL HS

Erdos-
Renyi

        

low 0.87 (0.05) 0.71 (0.07) 0.68 (0.07) 0.43 (0.08) 0.01 (0.001) 0.22 (0.03) 0.10 (0.02) 0.03(0.00)

med 0.88 (0.04) 0.73 (0.04) 0.69 (0.05) 0.44 (0.06) 0.01 (0.001) 0.22 (0.03) 0.10 (0.01) 0.03(0.00)

high 0.88 (0.02) 0.72 (0.03) 0.69 (0.04) 0.44 (0.06) 0.01 (0.001) 0.23 (0.02) 0.10 (0.02) 0.02 (0.00)

Small
World

        

low 0.86 (0.04) 0.47 (0.07) 0.66 (0.06) 0.44 (0.07) 0.02 (0.002) 0.02 (0.00) 0.36 (0.01) 0.06 (0.01)

med .86 (0.04) 0.49 (0.04) 0.67 (0.04) 0.46 (0.05) 0.02 (0.002) 0.02 (0.00) 0.36 (0.01) 0.05 (0.01)

high 0.86 (0.02) 0.48 (0.04) 0.67 (0.03) 0.46 (0.05) 0.01 (0.002) 0.02 (0.00) 0.36 (0.01) 0.05 (0.01)

Scale Free         

low 0.87 (0.05) 0.39 (0.06) 0.63 (0.07) 0.25 (0.06) 0.02 (0.002) 0.02 (0.00) 0.24 (0.03) 0.04 (0.01)

med 0.87 (0.03) 0.41 (0.05) 0.63 (0.04) 0.26 (0.05) 0.02 (0.002) 0.02 (0.00) 0.24 (0.02) 0.04 (0.01)

high 0.87 (0.03) 0.42 (0.04) 0.64 (0.04) 0.27 (0.05) 0.01 (0.002) 0.02 (0.00) 0.25 (0.02) 0.04 (0.01)
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Table 2

Comparison of the 100 node simulation results using the probit link function to the simulation results using the 

logit link function.

Erdos Renyi Small World Scale Free

AUC TPR FPR AUC TPR FPR AUC TPR FPR

Probit 0.97 0.88 0.01 0.96 0.86 0.02 0.97 0.87 0.02

Logit 0.97 0.88 0.01 0.97 0.87 0.02 0.96 0.86 0.02
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