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ABSTRACT Swine influenza virus (SIV) can cause respiratory illness in swine. Swine
contribute to influenza virus reassortment, as avian, human, and/or swine influenza
viruses can infect swine and reassort, and new viruses can emerge. Thus, it is important
to determine the host antiviral responses that affect SIV replication. In this study, we
examined the innate antiviral cytokine response to SIV by swine respiratory epithelial
cells, focusing on the expression of interferon (IFN) and interferon-stimulated genes
(ISGs). Both primary and transformed swine nasal and tracheal respiratory epithelial
cells were examined following infection with field isolates. The results show that IFN
and ISG expression is maximal at 12 h postinfection (hpi) and is dependent on cell
type and virus genotype.

IMPORTANCE Swine are considered intermediate hosts that have facilitated influenza
virus reassortment events that have given rise pandemics or genetically related
viruses have become established in swine. In this study, we examine the innate anti-
viral response to swine influenza virus in primary and immortalized swine nasal and
tracheal epithelial cells, and show virus strain- and host cell type-dependent differen-
tial expression of key interferons and interferon-stimulated genes.

KEYWORDS interferon-stimulated gene, interferons, swine influenza virus, swine nasal
cells, swine tracheal cells

nfluenza is an orthomyxovirus that encodes 11 different proteins. These include the

envelope proteins (hemagglutinin [HA] and neuraminidase [NA]) and viral RNA poly-
merases, matrix proteins, and nonstructural proteins (1, 2). Influenza viruses are classi-
fied into A, B, C, and D types (3). Swine influenza virus (SIV) is an acute viral infection of
the respiratory tract caused by influenza type A viruses (4, 5). SIV may infect poultry
and humans, but interspecies transmission is infrequent. Several subtypes of influenza
A virus (IAV) circulate in swine, i.e,, HINT, HIN2, H3N1, and H3N2 (6, 7). Human-origin Citation Bakre A, Jones L, Murray J, Reneer ZB,
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tern recognition receptors (PRR), e.g., Toll-like receptors (Toll-like receptor 3 [TLR3] and
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TLR7) and the cytoplasmic retinoic acid-induced gene 1-like receptor (RIG-1) (16-18),
and induces an antiviral response (16, 18). PRR interaction initiates signal transduction
events and ultimately the release of antiviral type | IFNs (alpha interferon [IFN-a] and
IFN-B), and type Ill IFN (IFN-A), as well as that of cytokines and chemokines (19-21).
IFNs activate the JAK-STAT signaling pathway to induce transcription of I1SGs that com-
bat viral infections (22, 23).

In this study, we examined SIV replication in primary and immortalized swine nasal
and tracheal epithelial cells and determined the levels of IFN and ISG expression at early
time points postinfection. We investigated four different SIV strains, i.e,, A/swine/North
Carolina/154072/2015 (H1N1), A/swine/North Carolina/156551/2015 (H1N2), A/swine/
North Carolina/157674/2015 (H3N2), and A/Swine/MN/2009 (H1N1), isolated from swine
nasal wash specimens. The glycan-binding profiles (24, 25) of the SIV were determined
and the viruses sequenced. IFN and ISG expression was determined following SIV infec-
tion of primary swine nasal epithelial cells (SNECs), primary tracheal epithelial cells
(STECs), immortalized swine nasal epithelial cells (SINECs), or immortalized swine tracheal
epithelial cells (SITECs). Specifically, the expression of two key IFNs (IFN-3 and IFN-y) and
several ISGs (OAST, IRF7, GBP1, and DDX58) were determined between the respiratory
cell types at 1 h postinfection (hpi), 12 hpi, and 24 hpi. Treatment of the respiratory
epithelial cells with inactivated SIV did not induce substantial IFN and ISG expression,
suggesting that the antiviral cytokine expression involves virus replication. The results
show that IFN and ISG expression is cell type and virus specific, and oligonucleotide ade-
nylate synthase 1 (OAS1) expression is expressed to high levels by inactivated SIV.

RESULTS

SIVs replicate in swine respiratory epithelial cell types. We determined early
antiviral responses to SIV infection in respiratory epithelial cells. Previously, SIV infec-
tion of newborn swine tracheal cells was examined for induction of JAK-STAT and
MAPK signaling pathways (26). Since primary and immortalized swine nasal and tra-
cheal cell lines were developed and shown to support the growth of human and swine
nasal isolates (27), we compared how these cell lines responded to infection with the
following SIV field isolates, HIN1-NC, HIN2-NC, H3N2-NC, or HIN1-MN, at a multiplicity
of infection (MOI) of 0.1 for 1 hpi, 12 hpi, and 24 hpi. Following infection, the medium
was removed, replaced with fresh medium, and incubated for the time points indi-
cated. The cells were infected with HIN1-NC, HIN2-NC, or H3N2-NC because these are
field isolates and host response to infection in primary swine respiratory epithelium is
unknown. HIN1-MN is also a clinical isolate and was examined as a control virus (21).
Importantly, analysis of intervirus segment-specific identities (Table 1) shows that the
H1N1-MN virus diverged from the other clinical isolates in the HA, NP, NA, M1, and
NS1/NEP segments, with sequence identities of ~25%.

Use of M gene expression as a surrogate for viral replication demonstrated higher M
gene levels in nasal epithelial cells relative to those in tracheal cells (primary or immortal-
ized). The different levels of replication likely reflect cell type tropism (28, 29) and/or are
affected by the antiviral response to infection, i.e., expression of IFNs and I1SGs (30-32).

Virus titers in the cell-free supernatants were determined at 24 hpi by plaque enu-
meration on MDCK cells. The data showed that HIN1-NC replicated the best in all cell
types, with no statistically significant differences in titers between the cell types (Fig. 1b).
For HIN2-NC infected cells, the viral titers were comparable, with significant differences
observed between SiNECs and STECs (Fig. 1d). HIN1-MN virus replication was 2 to 3 log
higher in all cell types compared to that of the other isolates. Among cell types, HIN1-
MN virus titers were considerably higher in SINECs and STECs than in SNECs (Fig. 1f). The
H3N2-NC virus titers were significantly different between SiNECs and SNECs and were
higher in SiTECs (Fig. 1h). Beta propiolactone-inactivated SIV did not produce plaques on
any cell types, as expected.

Comparison of SIV titers between cell types showed that HIN1 SIV (HIN1-NC and
H1N1-MN) replicated best in all respiratory epithelial cell types (Fig. 2), while the H3N2-NC
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TABLE 1 Virus segment identities

Segment identity (%)*

Gene Strain H1N1-NC H1N2-NC H1N1-MN H3N2-NC
PB2 H1N1-NC 100

H1N2-NC 97 100 97

HIN1T-MN 96 97 100 97

H3N2-NC 98 100
PB1 H1N1-NC 100

H1N2-NC 46 100 98

H3N2-NC 46 100
PA H1N1-NC 100

H1N2-NC 93 100 93

H3N2-NC 99 100
HA H1NT-NC 100

H1N2-NC 78 100 52

HIN1T-MN 93 76 100 51

H3N2-NC 56 100
NP H1NT-NC 100

H1N2-NC 94 100 93

HIN1-MN 25 25 100 25

H3N2-NC 97 100
NA H1N1-NC 100

H1N2-NC 94 100 93

HIN1-MN 25 25 100 25

H3N2-NC 97 100
M1 H1N1-NC 100

H1N2-NC 98 100 98

HINT-MN 24 24 100 24

H3N2-NC 99 100
NS1/NS2 H1N1-NC 100

H1N2-NC 98 100 97

HINT-MN 26 27 100 26

H3N2-NC 98 100

aPercent identities between each segment among the SIV used in the study were calculated using SIAS (74).

virus showed modest growth in SiTECs. HIN1-NC replicated to higher titers in SINECs com-
pared to those of HIN2-NC or H3N2-NC, but to lower titers compared to those of HIN1-
MN. In SNECs, the HIN1-NC titer was higher than that of H3N2-NC but was not statistically
different compared to those of HIN2-NC or HIN1-MN. In STECs, HIN1-MN replicated to
higher titers than those of the other three isolates. For SiTECs, HIN1-NC titers were signifi-
cantly higher than those of HIN2-NC (Fig. 2).

Swine respiratory epithelial cells infected with SIV express type | and Il IFNs.
Viral replication is affected by cellular receptors that enable viral entry. It is understood
that SIV primarily binds to «2,6 sialic acid receptors, which are expressed on airway epi-
thelial cells (14, 15). Bound viruses undergo endocytosis, a process that activates PRRs,
e.g., TLR3, TLR7, and RIG-1 (16-18), inducing an antiviral response. The expressed viral
genomes and gene products are recognized by surface and intracellular PRRs, which
induce secretion of IFNs and ISGs that establish an antiviral state in the infected cell, as
well as in adjoining tissue via paracrine signaling (33). We hypothesized that the differ-
ential replication kinetics of the SIV isolates was linked to differential induction of IFNs
between SNECs, SiNECs, STECs, and SiTECs. To determine how these SIV field isolates
may modulate the antiviral response, we examined the expression of type | and IIl IFNs
in the respiratory epithelial cell types at 1 hpi, 12 hpi, and 24 hpi following infection
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FIG 1 Swine primary and immortalized cells permit SIV replication. Relative influenza M gene
expression at 12 h (open) and 24 h (filled) bars are shown for HIN1-NC (a), HIN2-NC (c), HIN1-MN
(e), and H3N2-NC (g). Viral titers (log,,) at 24 hpi for HIN1-NC (b), HIN2-NC (d), HIN1-MN (f), and
H3N2-NC (h) are shown. Data represent mean =+ standard error of the mean (SEM) of three replicates
for M gene or plaque numbers at 24 hpi on MDCK cells. *, P<0.05. Statistical methods used to
determine significance are described in detail in Materials and Methods.

with HIN1-NC, HIN2-NC, HIN1-MN, and H3N2-NC viruses. These cell types were mock
treated, poly(lI-C) treated, or treated with beta-propiolactone (BPL)-inactivated SIV
(validated as inactivated by plaque assay on MDCK cells; data not shown) (see Table S1
in the supplemental material).

IFN-A is the primary antiviral IFN against RNA virus infections (20, 34-36). IFN-A induces
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expression of indoleamine oxidase1 (IDO1) in respiratory epithelial cells after influenza vi-
rus infection (37). We measured IFN-A expression during SIV infection in the swine respira-
tory epithelial cells types. For HIN1-NC, infection induced IFN-A expression at 1 hpi in
nasal epithelial cell types (SNECs and SiNECs), but did not induce IFN-A expression in tra-
cheal cell types (STECs and SIiTECs) (Fig. 3a). This may explain why tracheal cells may be
more permissive than nasal epithelial cells to HIN1-NC replication. In contrast, low levels
of IFN-A were expressed at 1 hpi in SINECs following HIN2-NC infection, but not in the
other respiratory epithelial cell types (Fig. 3b). However, following HIN2- NC infection, all
respiratory epithelial cell types expressed IFN-A at 12 hpi and 24 hpi (Fig. 3b). The differen-
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SiNECs, STECs, and SIiTECs infected with HINT-NC (a), HIN2-NC (b), HIN1-MN (c), and H3N2-NC (d)
relative to mock-infected cells and 18S rRNA as a housekeeping control. Data represent mean = SEM
of three replicates. *, P<0.05. Statistical methods used to determine significance are described in
detail in Materials and Methods.
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FIG 4 Expression of IFN-B. Panels show fold change in IFN-B expression (log,,) between SNECs,
SiNECs, STECs, and SIiTECs infected with HIN1-NC (a), HIN2-NC (b), HIN1-MN (c), and H3N2-NC (d)
relative to mock-infected cells and 18S rRNA as a housekeeping control. Data represent mean = SEM
of three replicates. *, P<0.05. Statistical methods used to determine significance are described in
detail in Materials and Methods.

ces in IFN-A expression are SIV strain specific, as the magnitude and IFN-A expression pat-
terns for HIN1-MN (Fig. 3c) and H3N2-NC (Fig. 3d) are different.

IFN-B. Type | IFNs constitute an important arm of the antiviral response against
influenza viruses (30, 31, 38). IFN-3 expression in HIN1-NC-infected SiNECs, SNECs, and
STECs increased at 12 hpi and continued at 24 hpi. SITECs did not express substantial
IFN-B at 1 hpi (Fig. 4a), and expression was lower at 12 hpi and 24 hpi compared to
that of the other respiratory epithelial cell types. In contrast, SNECs were the only cell
type to express IFN-3 at all time points postinfection. A similar IFN-3 expression profile
was seen for HIN2-NC-infected respiratory epithelial cells (Fig. 4b), except low-level
IFN-B expression occurred in STECs at 1 hpi. HINT-MN infection of SNECs and SiTECs
did not induce IFN-B expression (Fig. 4c) at 1 hpi, but all other respiratory epithelial
cell types expressed IFN-B at 12 hpi and 24 hpi. Following H3N2-NC infection, only
STECs expressed IFN-B at 1 hpi (Fig. 4d), but all respiratory epithelial cell types
expressed IFN-B at 12 hpi and 24 hpi.

RIG-I (or DDX58). Retinoic acid-inducible gene | (RIG-I), or DExD/H-Box helicase 58
(DDX58), is an innate immune receptor that senses cytoplasmic viral nucleic acids and
activates a downstream signaling cascade that leads to the production of type | IFNs
(16, 18). We examined RIG-I expression in SIV-infected respiratory epithelial cells at 1
hpi, 12 hpi, and 24 hpi. Early (1 hpi) RIG-I expression was only evident in nasally derived
SINECs and SNECs (Fig. 5), but all respiratory epithelial cell types expressed RIG-1 at
12 hpi and 24 hpi (Fig. 5a). This may be due to the anatomical location of nasal versus
tracheal cells and the potential exposure to respiratory virus infection. Similar levels of
RIG-1 expression by nasal or tracheal cells at 12 hpi and 24 hpi were expressed follow-
ing HIN2-NC infection (Fig. 5b). HIN1-MN infection induced RIG-I expression in SiNECs
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FIG 5 Expression of RIG-l. Panels show fold change in RIG-I expression (log,,) between SNECs, SiNECs,
STECs, and SIiTECs infected with HIN1-NC (a), HIN2-NC (b), HIN1-MN (c), and H3N2-NC (d) relative to
mock-infected cells and 18S rRNA as a housekeeping control. Data represent mean = SEM of three
replicates. *, P<<0.05. Statistical methods used to determine significance are described in detail in
Materials and Methods.

at 1 hpi and 24 hpi, but not at 12 hpi (Fig. 5c). A similar pattern of RIG-I expression was
observed between H1N1-NC- (Fig. 5a) and H3N2-NC (Fig. 5d)-infected respiratory epi-
thelial cell types, suggesting that the pattern of RIG-l expression may not be SIV strain
dependent.

IRF7. Interferon regulatory factor 7 (IRF7) is a key transcriptional regulator of type |
IFNs and has a critical role in the innate immune response against DNA and RNA viruses
(36-38). IRF7 deficiency has been reported to cause impaired type I IFN induction in mul-
tiple cell types (39), and thus we determined IRF7 expression in respiratory epithelial cell
types infected with SIVs at 1 hpi, 12 hpi, and 24 hpi (Fig. 6). Similar patterns and kinetics
of IRF7 expression were expressed for HIN1-NC- (Fig. 6a) and H1N2-NC (Fig. 6b)-infected
respiratory epithelial cells, suggesting a lack of SIV strain differences mediating expres-
sion. In contrast, both HIN1-MN- (Fig. 6¢c) and H3N2-NC-infected (Fig. 6d) respiratory epi-
thelial cells had distinct IRF7 expression profiles and kinetics. Of note, HIN1-MN-infected
cells for the most part caused minimal IRF7 expression, particularly the trachea-derived
STECs and SiTECs. A similar trend was evident for H3N2-NC-infected STECs and SiTECs
compared to those infected with HIN1-NC and H1N2-NC. The differences between respi-
ratory epithelial cell types may be associated with the expression levels of IFN-a and/or
IFN-B, which regulate IRF7 and whose levels are unknown for the respiratory epithelial
cell types examined here.

GBP1. Guanylate binding protein 1 (GBP1) is an ISG that can inhibit influenza virus
replication in cell lines (40). GBP1 is an IFN-induced GTPase that has been shown to
have antiviral activities against vesicular stomatitis virus (VSV) (40), dengue virus (41),
classical swine fever virus (42), influenza virus (43), and porcine reproductive and respi-
ratory syndrome virus (44). GBP1 expression did not occur early (1 hpi) in trachea-
derived STECs and SIiTECs, but was expressed at 12 hpi and 24 hpi (Fig. 7). HIN1-NC
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Materials and Methods.

infection induced GBP1 expression at 12 hpi and 24 hpi in all respiratory epithelial cell
types, but HIN1-NC infection induced GBP1 at 1 hpi in SNECs (Fig. 7a). HIN2-NC infec-
tion induced GBP1 expression to similar levels in all respiratory epithelial cell types
(Fig. 7b). HIN1-MN infection induced GBP1 expression in SiNECs at 1 hpi and 24 hpi,
with low expression at 12 hpi (Fig. 7c). GBP1 expression was also induced in SNECs and
STECs by 12 hpi, but no GBP1 expression was detectable at 24 hpi. SITECs expressed
GBP1 at 12 hpi and 24 hpi (Fig. 7c). H3N2-NC infection did not substantially induce
GPB1 expression at 1 hpi, but robust GPB1 expression was evident in all respiratory epi-
thelial cell types (Fig. 7d).

OAS1. OAS1 (2'-5'-oligoadenylate synthetase 1) is induced by IFNs and encodes a
protein that synthesizes 2’-5'-oligoadenylates. This protein activates latent RNase L,
which results in viral RNA degradation and the inhibition of viral replication (45, 46).
Multiple transcript variants of OAS arising from alternative splicing exhibit different en-
zymatic activities (47, 48). OAS1 activation is highly dependent on both RNA sequence
and the context of activating RNA motifs (49). OAS1 expression has been shown to
have antiviral activities against West Nile virus (50, 51), dengue virus (52), Japanese en-
cephalitis virus (53), influenza virus (54), and several other RNA viruses. OAS1 expres-
sion by the respiratory epithelial cell types examined was comparatively high at 12 hpi
and 24 hpi but was most highly expressed in cells of tracheal origin, i.e., STECs and
SiTECs (Fig. 8). OAS1 expression by SNECs and STECs was detected at 1 hpi, but the lev-
els were low. SIV infection of any respiratory epithelial cell type induced similar pat-
terns and tempos of OAST expression following HIN1-NC (Fig. 8a), HIN2-NC (Fig. 8b),
H1N1-MN (Fig. 8c), or H3N2-NC (Fig. 8d) infection.
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SIV genome differences, virus replication, and IFN antagonism. To aid our
understanding of the potential molecular mechanisms affecting virus replication and the
induction of IFNs and ISGs, we examined the genomes of the SIV isolates. We analyzed
the differences in all genes at the nucleotide level (Table 1), except for segments 2 and 3
of HIN1-MN, which have not been sequenced. We hypothesized that differences in IFN
antagonism may inform as to why there is differential SIV replication kinetics. We
focused on important genes with known roles in modulating innate immune responses,
i.e, PA (55), PA-X (56, 57), NS1 (58-60), and PB1-F2 (61, 62). The polymerase subunits,
PB2 and PA, were highly conserved across the three strains at the nucleotide level; how-
ever, the H3N2 PA sequence had a premature stop codon at nucleotide (nt) 664 and was
predicted to lack the C-terminal 53 amino acids present in the HIN1-NC and H1N2-NC
viruses. PB1 was highly divergent between HIN1-NC, H1N2-NC, and H3N2-NC viruses at
the nucleotide level. The HAs from H1N1-NC, HIN2-NC, and HIN1-MN had >78% nucle-
otide identity, and HA from H3N2-NC was divergent, as expected. The NP, NA, MP, and
NS1/NS2 gene segments were conserved for HIN1-NC, HIN2-NC, and H3N2-NC SIV, but
diverged considerably for HIN1-MN.

Amino-terminal deletions of PA (PA-N155 and PA-N182) have been documented
previously (63). A +1 frameshift in the PA-protein that leads to PA-X expression is a
major regulator of the host response (55) and virulence of triple-reassortant H1N2
influenza infection (56). PA-X protein decreases replication and pathogenicity of SIVs
(57). In contrast, an R195K mutation in PA-X has been shown to increase virulence and
transmission of IAV (58), while a C-terminal 20-amino-acid truncation arising from a fra-
meshift has been shown to alter SIV replication kinetics (58, 59). PA-X expression is
highly conserved (60) and arises by alternative translation initiation at a highly con-
served UCCUUUCGUC motif in PA. Sequence analysis of the putative PA-X proteins for
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FIG 8 Expression of OAS1. Panels show fold change in OAS1 expression (log,,) between SNECs,
SiNECs, STECs, and SiTECs infected with HIN1-NC (a), HIN2-NC (b), HIN1-MN (c), and H3N2-NC (d)
relative to mock-infected cells and 18S rRNA as a housekeeping control. Data represent mean = SEM
of three replicates. *, P<<0.05. Statistical methods used to determine significance are described in
detail in Materials and Methods.

H1N1-NC, HIN2-NC, and H3N2-NC shows identity in the PA-X C terminus (see Fig. S1 in
the supplemental material). Previous studies have shown that mutations in NS1 are
linked to reduced inhibition of IFN signaling (61, 62, 64). For example, dephosphoryl-
ation of Y73 and S83 residues in NS1 reduces the ability of NS1 to antagonize IFN-S via
disengagement of the RIG-I signaling pathway (62). Similarly, serine 42 to proline
(S42P) NS1 point mutants are unable to antagonize IFN-a and IFN-B via deactivation
of IRF3 (62). The NS1 sequences between the SIVs examined in this study show that
the amino acids are identical (see Fig. S2 in the supplemental material). It may be that
the differential SIV replication observed (Fig. 2) is linked to differences in defective
interfering (DI) particles. However, C453 and D529 in PA, which have been shown to in-
hibit DI particles (65), are identical for the SIVs examined (see Fig. S3 in the supplemen-
tal material), and R638, which is linked with increased production of DI particles, is also
conserved for all SIV strains (Fig. S3). This refutes the hypothesis that differential repli-
cation may be due to differences in the SIV; rather, it is more likely due to differences
in host cell permissiveness. Furthermore, we recently investigated the glycan-binding
profiles of the SIV field isolates used in this study and showed that these SIVs bound
primarily to 2,6 sialic acid linkages (66). The respiratory epithelial cells used in this
study have been shown to express primarily «2,6 sialic acid linkages (27), and thus nei-
ther SIV genomes nor the ability of these viruses to binding to the respiratory epithelial
cells types likely is linked to differences in virus replication, suggesting that the antivi-
ral response by the cell types is most likely the cause. PB1-F2 has been shown to mod-
ulate the early innate response without altering pathogenicity during HIN1 infection
(68). PB1-F2 in H3N2 viruses show strain-specific inhibition (69). PB1-F2 immune modu-
lation is mediated by binding to mitochondrial antiviral signaling protein (MAVS) and
inhibiting MAVS signaling (70). In this study, H1 and H3 PB1-F2 sequences differ
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appreciably (see Fig. S4a in the supplemental material). PB1-F2 for both HIN1-NC and
H1N2-NC were considerably different from H1 PB1-F2 sequences (Fig. S4b).
Comparative alignment of H3 PB1-F2 showed that H3N2-NC PB1-F2 lacked an N-termi-
nal 10-amino-acid stretch (Fig. S4c). Thus, it is unlikely that changes in PB-F2 account
for the differences observed in SIV replication.

DISCUSSION

Swine are a good model to study influenza replication because of their ability to
support the reassortment and growth of avian, swine, and human influenza viruses. To
understand the host response to IAV infection, we infected primary and immortalized
swine nasal and tracheal cells with SIV field isolates and determined the innate antiviral
response by swine respiratory epithelial cells. Our data show that SIV field isolates dif-
ferentially infect swine respiratory epithelial cells. For example, HIN1-NC and H1N1-
MN viruses infected all swine respiratory epithelial cell types well, while HIN2 and
H3N2 replicated less well in these cell types. We examined BPL-inactivated SIV to deter-
mine if they signaled for similar antiviral responses in the swine respiratory epithelial
cell types. BPL-inactivated SIV was unable to infect these cell types, as expected, but
did induce a low level of antiviral responses; however, SIV infection induced the high-
est level of antiviral expression, so we focused on those responses.

Respiratory epithelial cell types expressed abundant IFN-A and IFN-3 following SIV
infection, which usually peaked at 12 hpi. SIV infection also induced IFN and ISG
expression that was largely cell type and virus specific. RIG-l expression was substan-
tially altered in STECs and SiTECs following H1N1-NC infection, and in SiNECs and
SNECs following HIN1-MN and H3N2-NC infection. Differences in IRF7 expression were
significant only in STEC cells following HIN2-NC infection. Of the ISGs examined (GBP1
and OAS1), OAST expression had the highest induction following any SIV infection,
and the OAS1 response was predominantly in the STECs and SiTECs. OAS1 expression
by the respiratory epithelial cell types was maximal at 12 hpi and then declined by
24 hpi in all respiratory epithelial cell types, indicating that OAS1 may be temporally
regulated. Analysis of the SIV gene segments among the SIV used in the study identi-
fied differences at the nucleotide level between H1IN1-NC, H2N2-NC, H3N2-NC, and
H1N1-MN SIV. However, the key genes with known antiviral activity were conserved
and thus did not explain the differential SIV replication and induction of the IFN and
ISG response between the viruses. Despite conservation of the PA residues linked to DI
particle formation among the SIVs tested here, it is possible that the DI particles in the
SIV inoculum were different. Treatment of each of the respiratory epithelial cell types
with BPL-inactivated virus did induce low levels of type IIl IFN and ISG expression, sug-
gesting that IFN and ISG induction was partly replication independent (data not
shown). In this study, we show that SIV field isolates can replicate in undifferentiated
primary immortalized nasal and tracheal cells and induce differential IFN and ISG
responses that are relevant to influenza virus replication and possible reassortment.

MATERIALS AND METHODS

Cell lines and SIV infection. SNECs and STECs were isolated from swine and are nasal epithelial cells
or tracheal primary epithelial cells, respectively. SINECs and SiTECs are immortalized swine nasal epithe-
lial cells or swine tracheal epithelial cells from primary cells (27). These cell lines have been shown to
support the replication of diverse human, swine, and avian influenza viruses, and were propagated as
described (27). Briefly, the swine cell lines were grown in T25 flasks (Corning) coated with 50 wg/ml rat
collagen (Sigma, St. Louis, MO) prepared in 0.02 N acetic acid (Sigma) used for coating the flasks. For SIV
infection, 96-well flat-bottomed plates (Costar) were plated with 50 uwg/ml rat collagen as above, coated
overnight at room temperature (RT), and the medium decanted before 2 x 10* cells/well were added.
The plated cells were incubated overnight at 37°C and 10% CO,, after which the cells were infected for
1 h with SIV at an MOl of 0.01 in serum-free minimal essential medium (MEM; HyClone, UT). The inocu-
lum was decanted and infection proceeded for indicated time points in fresh MEM with 1:1,000 diluted
tosylsulfonyl phenylalanyl chloromethyl ketone (TPCK)-trypsin. Mock treatment consisted of cells treated
with infection medium alone. Positive-control cells were treated with 50 wg/ml poly(I-C) (Sigma), a TLR3
agonist, for the indicated time points. A/swine/North Carolina/154072/2015 (H1N1-NC), A/swine/North
Carolina/156551/2015 (H1N2-NC), and A/swine/North Carolina/157674/2015 (H3N2-NC) were collected
during passive SIV surveillance in commercial swine farms (66), while A/Swine/MN/02749/2009 (H1N1-
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MN) was provided by Marie Culhane at the University of Minnesota. All isolates were passaged <3 times
in MDCK cells. The viral isolates grew to similar but not identical titers in the swine and MDCK cells.
Specifically, the HIN1-MN grew to higher titers than those of the other three viruses.

RNA isolation. Total RNA was isolated from mock-treated or SIV-infected cells using the RNAdvance
Cell v2 kit (Beckman Coulter, CA) at the time points indicated using solid-phase reversible immobiliza-
tion (SPRI) paramagnetic beads to isolated total RNA from cultured cells. Briefly, cell pellets in 96-well
plates were lysed with included lysis buffer, incubated with proteinase K for 30 min at RT, and lysates
transferred to new plates. Paramagnetic beads in bead-binding solution were added to the wells and
mixed to bind the total RNA. The plates were incubated on 96-well magnetic plates for 5 min at RT to
separate RNA bound to beads, and supernatant was removed. The beads were washed off magnetic
plates with wash buffer and applied to the magnetic plate, then washed with 70% ethanol. The ethanol
was removed, and the pellets were incubated with RNase free DNase | solution for 15 min at RT. DNase
activity was stopped using wash buffer followed by 70% ethanol washes per the manufacturer’s proto-
col, then by air-drying the washed beads. Total RNA was eluted in RNase-free molecular grade water
(Sigma) and quantified using a NanoDrop 1000 spectrophotometer (Thermo Fisher, MA, USA).

qRT-PCR. Total RNA was reverse transcribed using the LunaScript RT Supermix kit (New England
Biolabs, MA, USA). Briefly, RNA samples were mixed with 5x LunaScript RT Supermix, which contained ran-
dom hexamers, oligo(dT), deoxynucleoside triphosphates (dNTPs), RNase inhibitor, and Luna reverse tran-
scriptase. Reverse transcription-quantitative PCR (qQRT-PCR) runs contained undiluted cDNA, Luna universal
probe qPCR master mix (New England Biolabs), and forward and reverse primers and probes. Reactions
were amplified by denaturation at 95°C for 60sec, and 40 cycles of denaturation at 95°C for 15 sec, fol-
lowed by annealing at 60°C for 30 sec on a Stratagene Mx3005P instrument (Agilent, CA, USA). Swine-spe-
cific TagMan gene expression assays were used for IFN-A (Ss03820546_u1), IFN-B (Ss03378485_u1), RIG-I
(5s04322983_m1), IRF7 (Ss03385312_u1), GBP1 (Ss04245969_m1), and OAS1 (5s03394660_m1).

Sanger sequencing. SIVs used in this study were sequenced using Sanger sequencing (67). Briefly, viral
RNA was reverse transcribed using primer Uni-12 (5'-AGCAAAAGCAGG-3’) and then amplified using primers
MBTUni-12 (5'-ACGCGTGATCAGCRAAAGCAGG-3') and MBTUni13 (5’'-ACGCGTGATCAGTAGAAACAAGG-3’) for
segments 4 to 8 and primers PB2-1 (5'-AGCRAAAGCAGGTCAATTATATTCA-3') and PB2-2341R (5'-AGTAGAA
ACAAGGTCGTTTTTAAACTA-3’) for PB2, PB1-1 (5'-AGCRAAAGCAGGCAAACCATTTGAATG-3’) and PB1-2341-R
(5'-AGTAGAAACAAGGCATTTTTTCATGAA-3') for PB1, and PA-1 (5'-AGCRAAAGCAGGTACTGATYCGAAATG-3')
and PA-2233R (5'-AGTAGAAACAAGGTACTTTTTTGGACA-3) for PA. Sequence data are provided as in File S1
in the supplemental material. For HIN1-MN SIV, segments 2 and 3 could not be sequenced.

Statistical analysis. All data are from triplicate measurements and three independent samples. Fold
changes in gene expression were calculated using the threshold cycle (AAC,) method. All gPCR assay
designs were as per MIQE 2 guidelines (71, 72). Prevalidated primer-probes for all genes were obtained
from Applied Biosystems (ABI, CA, USA) or Integrated DNA Technologies (IDT, IA, USA). All statistical
analysis was performed using one-way or two-way analysis of variance (ANOVA) in GraphPad Prism
v9.0.1 with post hoc tests. Significance was determined by one-way or two-way ANOVA with the Geisser-
Greenhouse correction (73), using a mixed-effects model. Multiple comparisons were corrected with
Tukey's post hoc test.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.4 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.04 MB.
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