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It has been more than 100 years since Beaston and
Boyd independently reported that bilateral oopho-
rectomy was an effective treatment or adjuvant for
breast cancer, observations that together initiated the
use of endocrine therapy for this disease.1,2 Re-
markably, these advances were made before the
discovery of 17b-estradiol (E2) or the establishment of
its role as a mitogen in breast cancer cells. Prophet-
ically, Boyd surmised that some substance produced
by the ovaries was having a positive impact on tumor
growth and survival, but it took nearly 75 years to
advance endocrine therapy beyond surgical oopho-
rectomy and/or radiation-induced ovarian ablation.
Notable in this regard was the work of Elwood Jensen,
William Hoekstra, Jack Gorski, and David Toft, who, in
the 1960s, defined the biochemical entity that we now
know to be the estrogen receptor (ER), and the subse-
quent studies by Bert O’Malley, which demonstrated that
ER was, in fact, a ligand-regulated transcription factor.3-6

Formany years prior to these discoveries, and absent any
understanding of themolecularmechanism of ER action,
there had been considerable interest and success in
developing estrogen-like compounds for use as emer-
gency contraceptives.7 In the early 1970s, Craig Jordan
was one of the first to capitalize on the availability of these
drugs, which displayed different pharmacologic attri-
butes (ie,mimicked or opposed the action of estrogens in
reproductive tissues).8,9 He demonstrated that one such
antiestrogen, tamoxifen, which earlier had shown effi-
cacy in the treatment of metastatic breast cancer, ac-
tually functioned as a direct competitive inhibitor of ER,
and its activity in models of carcinogen-induced mam-
mary tumors suggested that it was likely to have activity in
the adjuvant setting.10-12 This body of work also led to the
establishment of a simple model of ER pharmacology
that posited that upon binding an agonist, ER underwent
a biochemical transformation that enabled it to regulate
target gene transcription and that antagonists functioned
simply by competitively inhibiting agonist binding to the
receptor.9 Within the confines of this model, it was
considered that, notwithstanding improvements in af-
finity and pharmaceutical properties of drugs, additional
discovery in this areawould likely lead to only incremental
advances in efficacy.

With the emergence and clinical success of aromatase
inhibitors in the early 2000s, there was little interest in

the pharmaceutical industry in the continued devel-
opment of ER modulators for breast cancer.13,14

However, there continued to be considerable re-
search defining the mechanism of action of ER and in
identifying the molecular determinants of ER phar-
macology. This was driven in large part by two phar-
macologic curiosities: (1) tamoxifen and another drug
raloxifene, while functioning as antagonists in breast
cancer cells, exhibited different degrees of estrogenic
activity in different cells, and (2) in both patients and
preclinical models of breast cancer, there was evi-
dence that resistance to tamoxifen occurred when
something happened in cells that enabled them to
switch from recognizing tamoxifen as an antagonist to
an agonist.15-18 These observations framed the im-
portant question as to how the same drug, acting
through the same receptor, could have different ac-
tivities in different cells. Leveraging insights from our
work and from other investigators, we developed a
contemporary model to explain the molecular
pharmacology of ER, which holds that (1) the overall
conformation of ER is influenced by the nature of the
ligand to which it is bound, (2) differences in ER
conformation allow the differential presentation of
protein-protein interaction surfaces on the receptor,
and (3) the relative and absolute expression of
functionally distinct receptor-interacting proteins
(coregulators) dictate how differently conformed ER-
ligand complexes are recognized in cells (Fig 1).19-21

Thus, with respect to drug discovery, the primary
exploitable feature of ER is the ability to use small-
molecule ligands to manipulate its conformation,
and this engenders different coregulator interactions.21-23

Reflecting their ability to induce different alterations in ER
structure and manifest tissue-selective agonist and an-
tagonist activities, tamoxifen and raloxifene were
reclassified as selective estrogen receptor modulators
(SERMs).24 These insights informed the discovery of new
SERMs with unique clinical profiles such as lasofoxifene,
bazedoxifene, pipendoxifene, ospemifene, and more
recently H3B-6545, some of which are being evaluated
as breast cancer therapeutics.25-29

Whereas SERMs have found utility in the treatment
and prevention of osteoporosis, dyspareunia, and other
symptoms associated with estrogen deprivation (men-
opause), there emerged a disappointingly long list of
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next-generation SERMs that failed to show efficacy as second-
line endocrine therapies in breast cancer.30 Several related
discoveries provided a potential explanation for these drug
failures. The first was the observation that certain ER cor-
egulators (eg, SRC1 and SRC3) were significantly overex-
pressed in advanced disease, which decreased the inhibitory
activity of even themost antagonistic SERMs.31 Further, it was
demonstrated that breast cancer cells likely use the same
mechanism, overexpression of coregulators, to circumvent
the estrogen deprivation afforded by aromatase inhibitors.32,33

Even more problematic from a therapeutic point of view was
the observation that coregulators and ER itself were post-
translationally modified upon the activation of several intra-
cellular signaling pathways (eg, mitogen-activated protein
kinase and phosphoinositide 3-kinase) and that this enabled
ER to direct target gene transcription absent a canonical
small-molecule ligand.34,35 These insights reduced enthusi-
asm for further development of SERMs as therapeutics in
advanced disease.

The observation that coregulator biology is frequently
dysregulated in breast cancer and that ER can activate
transcription absent a ligand suggested that removal of ER,
rather than solely inhibiting its classical activities, may have
particular utility in breast cancer. Indeed, this idea was
supported by the observation in preclinical models that
fulvestrant, a first-in-class selective estrogen receptor
downregulator or degrader (SERD), was effective in animal
models of endocrine therapy–resistant breast cancer.36

Fulvestrant is approved for use as a second-line endo-
crine therapy, and despite the fact that it is an injectable
with considerable pharmaceutical liabilities, its effective-
ness in metastatic disease has validated the general SERD
approach.37-40 The early clinical experience with fulvestrant
drove the search for effective oral SERDs, which have in-
creased efficacy in the setting of metastatic disease and
which would also be suitable for use in the adjuvant setting
in patients at high risk for recurrence. To our knowledge,
our group identified the first oral SERD etacstil (DPC974),
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FIG 1. Endocrine therapy landscape for ER-positive breast cancer. SERMs such as tamoxifen inhibit ER-positive breast tumor growth by competitively
blocking estrogen binding to the receptor, whereas AIs function by blocking the production of estrogens from androgens. These treatments are not
curative as growth factor signaling pathways can mediate resistance by activating the receptor-CoA complex in the absence of hormone or when the
receptor is occupied by an SERM. Treatment escape following AI therapy, and to a lesser extent SERM therapy, is also often accompanied by the
expression of constitutively active ERmutants, most commonly ER-D538G and ER-Y537S. SERDs, such as fulvestrant and elacestrant (RAD1901), can
circumvent some of the therapeutic liabilities of SERMs and AIs by degrading both wild-type and mutant receptors. AIs, aromatase inhibitors; AKT,
protein kinase B; CoA, coactivator; EGF, epidermal growth factor; ER, estrogen receptor; GRB2, growth factor receptor-bound protein 2; IGF1, insulin-
like growth factor 1; MAPK, mitogen-activated protein kinase; MEK, mitogen-activated protein kinase kinase; PI3K, phosphoinositide 3-kinase; RAF,
Raf oncogene; RAS, Ras oncogene; SERD, selective estrogen receptor downregulator or degrader; SERM, selective estrogen receptor modulator; SOS,
son of sevenless homolog 1.
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whose development, despite evidence of clinical efficacy,
was discontinued for business reasons.41 However, the
clear understanding of themechanism of action of this drug
led others to pursue this therapeutic modality with the result
that there are currently at least 13 oral SERDs (and two new
classes of SERM) in clinical development for breast cancer
(Fig 2). As described in the accompanying article,
RAD1901 (elacestrant), a drug our group repurposed for
breast cancer, having identified it to be an oral SERD, is the
furthest along in development.42-44 The positive clinical
activity of RAD1901 in breast cancer reported by Bardia
et al42 bodes well for the success of the oral SERDs as a
class and is instructive with respect to biomarkers that may
predict positive response in patients. Preliminary efficacy
data should be available for several other drugs of this class
later this year.

In addition to wild-type ER (wtER), there has emerged
considerable interest in understanding how SERDs work in
breast (and gynecologic) cancers harboring ESR1 muta-
tions, recently found to occur in approximately 40% of the
metastatic lesions in patients who have progressed on
aromatase inhibitors.45-47 These mutations, which occur
within the ligand-binding domain of ER, alter the phar-
macology of the receptor, facilitate constitutive coregulator
binding, and permit ligand-independent transcriptional
activity.46 They may also endow upon the receptor neo-
morphic pathologic activities.48 Whereas it is believed that
these mutants are directly involved in the regulation of
processes that affect disease pathology, it remains to be
determined how, given their low allelic frequency and the

fact that they likely are coexpressed with wtER inmost cells,
they affect cancer cell biology. Indeed, we have recently
demonstrated that the pharmacology of the most com-
monly occurring mutants is normalized in cells when wtER
is present.49 Intriguing to us is the possibility that the
presence of ESR1 mutations in tumor cells may be a
predictive biomarker that reads on the acute estrogen
dependency of a tumor and thus may serve as a positive
predictor of response to SERDs or even some SERMs. It is
notable in this regard that although the sample size was
small, it was reported in the accompanying study that the
response to the SERD, elacestrant (RAD1901), was greater
in patients in which an ESR1 mutation was detected (ORR
33% in patients harboring ESR1 mutations v 19% in all
comers).42 It may be possible to identify those patients who
will most likely respond to second-line endocrine therapies
by virtue of being able to detect ESR1mutations in biopsied
metastatic tumors or in circulating tumor DNA.

It is likely that most of the SERDs in development will
demonstrate efficacy in cancers harboring either wild-type
or mutant ESRs, and thus there is a need to consider how
they can be distinguished in a clinically meaningful
manner. Key differentiators will likely be tumor exposure,
target engagement (ER turnover), and tolerability, issues
that to date have significantly limited progress in this area.
Some drugs appear to be associated with significant GI
issues, and bradycardia is a potential liability of at least two
SERDs in development.50 These issues could limit the use
of some SERDs in the adjuvant setting and possibly also in
advanced disease, where they would likely be used in
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FIG 2. ERmodulators that are currently approved for use in the treatment or prevention of ER-positive breast
cancers or that are currently in clinical development. Those drugs (SERDs and SERMs) that are currently
approved for clinical use in breast cancer are highlighted in green. Investigational drugs that are currently in
development for breast cancer are as follows: AZD9833 (NCT04588298; SERENA-3), RG6171 (gir-
edestrant) (NCT04576455), SAR439859 (amcenestrant) (NCT03284957; AMEERA-1), ZN-c5
(NCT03560531), G1T48 (rintodestrant) (NCT03455270), LY3844356 (NCT04188548; EMBER), D-0502
(NCT03471663), SHR9549 (NCT03596658), OP-1250 (NCT04505826), LSZ102 (NCT02734615), ARV-
471 (NCT04072952), bazedoxifene (NCT02448771), RAD1901 (elacestrant) (NCT03778931; EMERALD),
lasofoxifene (NCT03781063; ELAINE-1), and H3B-6545 (NCT04288089). The relative SERD or SERM
activity reflects the authors’ summary of the available literature and may change as more data become
available from comparative studies. ER, estrogen receptor; SERD, selective estrogen receptor downregulator
or degrader; SERM, selective estrogen receptor modulator.
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combination with other drugs that have their own inherent
liabilities (eg, CDK4/6, PI3K, and mTOR inhibitors).51-53

Another important distinguishing feature of SERDs will
be their differential ability to cross the blood-brain barrier,
where they would be anticipated to inhibit the growth or
progression of metastatic lesions. However, the significant
functional differences in the murine and human blood-
brain barriers make it difficult to predict human brain ex-
posure of the various drugs at the current time. Further,
some SERDs, by mechanisms that remain elusive, also
protect against bone loss, and in the adjuvant setting, this is
not only likely to be beneficial to bone health but may also
decrease or prevent secondary metastasis.50,54 Clearly, the
positive or negative activity of these drugs in other ER-target
tissues needs to be considered in evaluating their likely
benefit in patients.

Finally, looking to the future, all the existing SERDs and
SERMs were developed with the understanding that the
most important target in breast tumors is ER expressed
within the cancer cells. Thus, drugs were generally opti-
mized for activity in cellular models of luminal breast
cancer, and then activities were confirmed in xenograft
tumor models as a surrogate for activity in metastatic
disease. However, this established and traditional discovery
path does not reflect the fact that in addition to cancer cells,
ER is expressed in most cells within the tumor microen-
vironment and that the impact of inhibiting this receptor in
these cells remains unknown. There is clearly a need to

define how estrogens, SERMs, and SERDs affect tumor
immunity through actions in T cells, macrophages, and
other cells in the tumor stroma. Somewhat forgotten are the
results of early studies using endocrine therapy that
demonstrated that tamoxifen has considerable efficacy in
patients whose tumors were biochemically ER-negative.10

As compelling were data suggesting that although overall
response to tamoxifen and the high-affinity ER agonist
diethylstilbestrol were equivalent in patients with breast
cancer, those patients taking the estrogen had a better
overall survival.55,56 Also important to consider is the most
updated data from the Women’s Health Initiative, which
reported a reduced incidence of breast cancer in post-
menopausal women receiving supplemental estrogen
therapy.57,58 The ongoing studies with SERDs (and SERMs)
in breast cancer and the correlative studies associated with
these trials may help to address some of these complex
issues. However, it is our strongly held opinion that in the
process of developing the next generation of endocrine
therapies, we should take a step back and define the
activities of ER in different cellular components of the tumor
microenvironment and how they are influenced by different
ERmodulators. With this information in hand, we should be
in a position to identify new drugs that retain their antag-
onist and/or SERD activity on ER within the tumor cells, but
which also exert favorable activities in tumor-associated
cells that contribute to the biology of tumors.
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