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INTRODUCTION

In 2002, we published a review in Journal of Clinical
Oncology examining the potential of KIT inhibition to
treat advanced cancer.1 At that time, imatinib was the
first and only US Food and Drug Administration–ap-
proved kinase inhibitor and there were many unan-
swered questions (Table 1). Now, nearly 20 years later,
there are five FDA-approved KIT-targeted kinase in-
hibitors, including imatinib. We have learned a great
deal more about KIT and how mutations affect its
function. We have also elucidated how specific sec-
ondary KIT mutations confer drug resistance in pa-
tients. This review will explore the journey of
therapeutic KIT targeting that began with imatinib 20
years ago. We will discuss the basic research and
clinical findings that informed the development of
additional KIT inhibitors and how they were suc-
cessfully integrated into patient care to combat re-
sistance. We will make comparisons between the two
malignancies that have been most significantly af-
fected by KIT-targeted therapies, GI stromal tumor
(GIST) and mast cell malignancies, to highlight the
importance of genetic profiling in informing treatment
success. Furthermore, we will discuss the lessons
learned through the development of the five FDA-
approved KIT targeted therapies (Table 2) and pre-
dictions for the future of the field.

HISTORICAL DEVELOPMENTS

Precision medicine, or targeted therapy, as a paradigm for
cancer treatment is a relatively recent development. It
began with the discovery that recurrent activating muta-
tions in oncogenes can drive cancer development and
sustain cell proliferation and survival. Chemical com-
pounds were identified that have the ability to block the
activity ofmutant enzymes and thus reduce tumor viability,
revolutionizing cancer treatment. The first, and most
significant, of these compounds was imatinib (originally
known as CGP57418B or STI-571), an inhibitor of BCR-
ABL1, the oncogenic driver in chronic myeloid leukemia
(CML).2 After extensive testing in preclinical models,
imatinib demonstrated both safety and efficacy in CML,
moving quickly from phase I through III, as it surpassed
the standard of care (interferon plus cytarabine).3-5 Based
on these studies, in 2001, imatinib set a new record for
fastest FDA approval (Fig 1).

As the first successful targeted cancer therapy, imatinib
opened the door for a new way of thinking about the
treatment of cancers driven by distinct oncogenic
mutations. At that time, evidence was building that KIT
serves as an oncogene in several cancers and was
therefore a logical therapeutic target. KIT, a member of
the type III receptor tyrosine kinase (RTK) family, was
originally discovered through the viral oncogene v-kit,
encoded by theHarvey-Zuckerman-4 strain of the feline
sarcoma virus.6-8 Activating human KIT mutations were
first identified in systemic mastocytosis (SM) cell lines
and in humans with SM9,10 (Fig 1). A few years later,
Hirota et al reported activating KIT mutations in GI
mesenchymal tumors that came to be known as GIST.
Unlike BCR-ABL1, which is a fusion gene product,
mutations in KIT were point mutations or small indels
distributed throughout the kinase domain, and the lo-
cation of mutations differed by tumor type.

From these early studies, it was apparent that KIT
mutations are important in both SM and GIST, but
there are important differences. It is now appreciated
that . 80% of SM cases in adults have KIT mutations
with the majority occurring in the activation loop (AL,
KIT exon 17), the dominant being D816V (Fig 2).
Rarely adult SM patients have mutations affecting the
KIT extracellular (encoded by KIT exons 8 and 9),
transmembrane (KIT exon 10), or juxtamembrane
(JM, KIT exon 11) domains. Interestingly, these mu-
tations are much more frequent in pediatric SM cases,
of which 75% are KIT mutant.11,12 In contrast, more
than 70% of mutations in GIST involve the JM
domain.13-15 Mutations of the KIT extracellular domain
and kinase domain (KIT exons 13 or 17) are found in a
minority of GIST.14,16,17 Notably, the D816V mutation
typical of adult mast cell neoplasms has not been
observed as a primary mutation in GIST, but other AL
(KIT exon 17) mutations do rarely occur (Fig 2).14,15,18

The clinical success of imatinib in CML and the growing
interest in targeting KIT led to efforts to identify a KIT
inhibitor suitable for clinical testing. Originally, KIT was
not an identified target of imatinib, but based on its
activity against the homologous PDGFRA and PDGFRB
RTKs, the ability of imatinib to inhibit ligand-activated
KIT was investigated. This was the first example of drug
repurposing to inhibit a target other than that for which it
was originally designed. Imatinib was found to inhibit
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not only wild-type KIT with similar potency to the BCR-ABL1
and PDGFRA/B but also potently the KIT JM–mutant kinase
activity, like thosemost commonly described in GIST.19,20 No
activity, however, was seen against KIT with compound
JM 1 D816V mutations for reasons that were unknown at
the time.21,22 Further preclinical testing demonstrated that
imatinib decreased proliferation and survival in the first KIT-
mutant GIST cell line, indicating the oncogenic dependence
of GIST cells on the kinase activity of mutated KIT.23

As the previous century ended, the stage was set for testing
imatinib in GIST and mast cell neoplasms. The available
preclinical data predicted that imatinib might be effective for
treating GIST, which typically expresses imatinib-sensitive
KIT JMmutations, but was unlikely to be effective against the

majority of mast cell neoplasms that express the imatinib-
resistant KIT D816V. In retrospect, these preclinical results
not only were excellent predictors of the primary response
outcomes in human studies of imatinib but also predicted
how compound mutations in different parts of the kinase
domain differentially affect kinase conformation and thus
drug binding. As discussed below, the limitations of imatinib
drove serial efforts to produce more potent KIT inhibitors for
patients with GIST and SM.

IMATINIB, THE FIRST CLINICALLY EFFECTIVE KIT INHIBITOR

GIST Clinical Studies

The first clinical success with imatinib in GIST was seen in
the treatment of a single patient with heavily chemotherapy

CONTEXT

Key Objective
Imatinib, the first kinase inhibitor for cancer treatment, was developed over 20 years ago. In that time, imatinib as a KIT-

targeted therapy revolutionized the treatment of patients with KIT-driven malignancies, primarily GI stromal tumor and
systemic mastocytosis, and led to the development of additional KIT inhibitors that have significantly improved patient
outcomes. We explore the history of KIT-targeted therapies beginning with imatinib.

Knowledge Generated
Numerous lessons have been learned from the initial preclinical and clinical studies with imatinib and other KIT inhibitors.

The clinical use of imatinib has also provided the basis to understand the molecular properties of KIT and its interactions
with drugs, allowing for rational design of more successful KIT inhibitors.

Relevance
The development of imatinib, as well as later-line KIT-targeted kinase inhibitors, has transformed the way we treat GI stromal

tumors and mast cell malignancies. Further understanding of KIT biology and resistance mechanisms will further inform
and refine our treatment of KIT-driven diseases.

TABLE 1. Outstanding Questions 2000 Versus 2020
Topic Outstanding Questions in 2000 Outstanding Questions in 2020

Treatment What are the side effects of long-term imatinib treatment?
What is the potential of KIT TKI for treating acute myelogenous
leukemia, melanoma, germ cell tumors, and other cancers?a

Are KIT overexpressing cancers treatable with KIT inhibitors?

What are the side effects of new type I and switch pocket KIT TKIs?
Can combination treatments be developed?
How to use KIT inhibitors in SM-AHN where there is a complex mutational

landscape beyond KIT, which reflects the associated hematologic
neoplasm?

KIT biology How do somatic mutations activate KIT?
Which KIT mutations are sensitive to imatinib?

Can agents that selectively degrade KIT be developed, thereby enabling
mutation agnostic therapy?

Is it possible for a single inhibitor to be effective against ATP binding pocket
and AL mutations?

Resistance What are the potential mechanisms of resistance to imatinib and
how can they be overcome?

How can we design new and better KIT inhibitors?

What are the resistance mechanisms to new type I and switch pocket KIT
TKIs?

With the use of multiple lines of KIT inhibitors, will tumors eventually
become KIT-independent?

Can mutation agnostic therapies be developed to control advanced
disease?

Abbreviations: AL, activation loop; AML, acute myeloid leukemia; NCCN, National Comprehensive Cancer Network; SM, systemic mastocytosis; SM-AHN,
SM with associated hematological neoplasm; TKI, tyrosine kinase inhibitor.

aClinical testing of imatinib in other tumors with activating KIT mutations, including germ cell tumors, and rare subsets of melanoma and AML had
disappointing results, with the exception of KIT-mutant melanoma, in which some activity of imatinib was noted.50,133-143 NCCN guidelines suggest imatinib be
considered as a second-line treatment of KIT-mutant melanoma, after progression or intolerance of a first-line immunotherapy regimen.144
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pretreated, KIT JM–mutant GIST.24 This small proof-of-
concept trial was initiated amid concerns over drug ab-
sorption in patients with GIST, many of whom had un-
dergone resection of the gut (stomach, small bowel, or
colon), as well as drug metabolism, since these patients
often had liver metastases and/or prior hepatic surgery.25-27

Despite these concerns, the first patient’s tumor showed a
complete metabolic response and a 52% decrease in size
after one month. Imatinib was well-tolerated, and the side
effect profile was consistent with those reported in CML.24

Based on these results, two randomized phase I-II studies
were opened in the United States and Europe in 2000.28-30

In both studies, the objective response rate (ORR) was
approximately 67% and no new imatinib safety signals were
noted.27,31 Two large randomized phase III studies con-
firmed the efficacy of imatinib in GIST, with an ORR of
approximately 50%, a median progression-free survival
(PFS) of around 2 years, and a median overall survival (OS)
of 4-5 years.32-35 More recently, long-term follow-up of
these phase III studies has estimated 10-year PFS and OS
rates of 8% and 20%, respectively.36,37 Imatinib was
granted FDA approval for treatment of unresectable, re-
current, and/or metastatic GIST in February 2002, just nine
months after its initial approval for CML38 (Fig 1). Additional
accelerated and subsequently regular approvals for the
adjuvant treatment of patients following complete gross
resection of GIST were granted in 2008 and 2012,
respectively.39

Mastocytosis

Although the majority of KIT-mutant GIST have imatinib-
sensitive mutations, the converse is true in SM. The D816V
mutation is resistant, and only a small number of other KIT

mutations are imatinib sensitive (Fig 2).20,22,40-43 These
preclinical observations were confirmed in the initial clinical
studies in mastocytosis, where the majority of patients who
had meaningful responses to imatinib were those with co-
existent eosinophilia. Further analysis of these exceptional
responders, as well as patients with hypereosinophilic
syndrome without a diagnosis of SM, identified a chro-
mosomal translocation producing the imatinib-sensitive
FIP1L1-PDGFRA fusion kinase as the underlying molec-
ular basis for response.44,45 Based on these observations, in
2008, the WHO reclassified these cases as myeloid and
lymphoid neoplasms with eosinophilia and abnormalities of
PDGFRA, PDGFRB, FGFR1, or PCM-JAK2.

In contrast, SM patients with the typical D816V had minimal
or no response to imatinib, whereas the rare patients with
imatinib-sensitive mutations involving KIT exons 8, 9, 10, or
17 were observed to have very good responses to
imatinib.46-50 In addition, some responses were noted in SM
patients with no molecular analysis of KIT or PDGFRA
mutations. In October 2006, the FDA approved imatinib for
treatment of patients with aggressive SM whose disease had
no detectable KIT D816V mutation or had an unknown KIT
mutational status (Fig 1).51 However, in retrospect, it is likely
that many of these cases had imatinib-sensitive mutations
that were not identified because of an incomplete spectrum
of mutational analysis or insensitive technologies for
detecting mutations in a background of normal cells.12,52,53

Lessons Learned From the Initial Experience in Treating

KIT-Mutant Malignancies With Imatinib

Despite initial concerns that a potent KIT inhibitor might
cause unacceptable short-term or long-term toxicities,

TABLE 2. Summary of FDA-Approved KIT-Targeted Therapies
Drug Name
(Alternative Name)

TKI
Class

Original
Targets Approved GIST Indication Approved SM Indication

Imatinib (STI-571) Type II BCR-ABL1 Patients with KIT (CD117)-positive unresectable and/or
metastatic malignant GIST38

Adult patients with ASM without the D816V
c-KIT mutation or with cKIT mutational
status unknown51

Sunitinib Type II VEGFR and
FLT3

GIST after disease progression on or intolerance to imatinib
mesylate145

NA

Regorafenib Type II VEGFR Locally advanced, unresectable, or metastatic GIST that has
been previously treated with imatinib, mesylate, and sunitinib
malate146

NA

Midostaurin
(PKC412)

Type I PKC NA ASM, SM-AHN, or MCL116

Ripretinib (DCC-
2618)

Type
IIa

KIT Indicated for the treatment of adult patients with advanced GIST
who have received prior treatment with three or more kinase
inhibitors, including imatinib107

NA

Avapritinib (BLU-
285)

Type I KIT/
PDGFRA

Not approved for KIT-mutant GIST, but approved for PDGFRA
exon 18-mutant GIST147

NAb

Abbreviations: ASM, aggressive systemic mastocytosis; FDA, US Food and Drug Administration; GIST, GI stromal tumor; MCL, mast cell leukemia; NA, not
available; SM, systemic mastocytosis; SM-AHN, SM with associated hematological neoplasm; TKI, tyrosine kinase inhibitor.

aRipretinib is a type II inhibitor, but is not ATP-competitive.
bApproval of avapritinib for advanced SM (and possibly indolent SM) anticipated for 2021-2022 time frame.
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especially in terms of myelosuppression, the data from the
initial imatinib studies in CML and GIST revealed an ac-
ceptable safety profile. Many patients have now been
treated for more than a decade or two without any known
long-term side effects. This important finding from the early
imatinib studies generated interest in developing additional
KIT kinase inhibitors.36,54,55

The results from the early imatinib studies in treating GIST
and SM demonstrated a strong relationship between the
underlying oncogenic mutation and drug response. In
GIST, the best outcomes were seen with patients with KIT
JM–mutant tumors.56,57 Randomized phase III studies
demonstrated that patients with KIT exon 9-mutant GIST
respond better to high-dose imatinib (800 mg daily),

2000: 
    STI-571 inhibits KIT and kills human 
    KIT-mutant mast cells and GIST cells
    First GIST patient treated with imatinib
    shows remarkable response
    Phase II trial with imatinib in advanced
    GIST opens 

1998: KIT mutations found in human GIST

1997: First kinase inhibitor, STI-571,
developed

1993: KIT mutations found in human
mast cell leukemia

2002: FDA approves imatinib for advanced
GIST

2002: Initiation of phase II study of the
efficacy of imatinib treatment in patients
with advanced SM (reported 2009)

2006: FDA approves imatinib for patients
with SM lacking KIT AL mutations

2009: Initiation of phase II study of the
efficacy, safety, and patient-reported
outcomes of midostaurin treatment in
patients with advanced SM
(NCT00782067)

2006: FDA approves sunitinib for second-
line therapy of advanced GIST

2013: FDA approves regorafenib for third-
line therapy of advanced GIST

2015: Initiation of phase I study of the
efficacy and safety of avapritinib in
advanced GIST and SM (NAVIGATOR,
NCT02508532)

2015: Initiation of phase I study of the
efficacy and safety of ripretinib in
advanced GIST and SM (NCT02571036).

2017: FDA approves midostaurin for
advanced SM

2018: Initiation of phase II of avapritinib in
advanced SM (PATHFINDER, NCT03580655)

2019: Initiation of phase II of avapritinib
in ISM (PIONEER, NCT03731260)

2018: Phase III trial with ripretinib for
advanced GIST in fourth line (INVICTUS,
NCT03353753) 

2019: Phase III trial with ripretinib v
sunitinib for second line GIST initiated
(INTRIGUE, NCT03673501) 

2011: Initiation of phase III trial of
regorafenib for third-line therapy of
advanced GIST (NCT01271712)

2004: Initiation of phase III of sunitinib in
patients with GIST who have failed imatinib
(NCT00075218)

2012: Imatinib approved for adjuvant
therapy in GIST

2004: Crystal structure of KIT bound to
imatinib in the inactive conformation
reported

2003: First patient with SM treated with
midostaurin

2020: Ripretinib approved for fourth-line GIST

2016: Initiation of phase I of avapritinib in
advanced SM (EXPLORER, NCT03580655)

20202020

20102010

20002000

19901990

FIG 1. Significant milestones in KIT-targeted treatment (1990-2020). Events shown chronologically from top to bottom.
Events relevant to mast cell disease shown on the left and those for GIST on the right. AL, activation loop; FDA, US Food
and Drug Administration; GIST, GI stromal tumor; ISM, indolent systematic mastocytosis; SM, systemic mastocytosis.
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whereas patients with KIT JM–mutant GIST had similar
outcomes with standard (400 mg daily) or high doses.32,58

Additionally, patients with GIST lacking KITmutations rarely
responded to imatinib, but analysis of the few responsive
cases revealed imatinib-sensitive PDGFRA mutations as
the basis for response.57,59,60 However, the majority of
PDGFRA-mutant GIST have an imatinib-resistant mutation,
PDGFRA D842V, which is homologous to the KIT D816V
mutation seen in SM.59,60 Based on these observations, a
molecular classification of GIST was proposed and has
been used to guide therapy and also to focus discovery
efforts on subsets of GIST lacking any definable oncogenic
mutations16,26 After two decades of research, the patho-
genic cause of more than 99% cases of GIST can be
identified and used to guide therapy.61

As noted above, imatinib was successfully repurposed from
the BCR-ABL1 kinase inhibitor development program to
target KIT. This paradigm has been extended in other
diseases, where a kinase inhibitor used to target one
particular kinase can be clinically expanded to homologous
oncogenic kinases in the same or different diseases.62,63

Adoption of imatinib as a KIT inhibitor helped lay the
foundation for what has become a molecularly focused,
histology agnostic approach to drug development.64

When imatinib was identified using high-throughput
chemical compound screens, there were no crystal
structures for ABL1 or KIT. When Schindler et al65 reported
the crystal structure of the ABL1 catalytic domain com-
plexed with an imatinib analog, it was revealed that imatinib
bound to the inactive conformation of ABL1 Subsequently,
a similar mode of imatinib binding to the inactive KIT

structure was reported (Fig 1).66 Thus, imatinib is classified
as a type II kinase inhibitor (binds to the inactive struc-
ture).67 These results suggested that mutations of the AL
that stabilize the active conformation of KIT would result in
imatinib resistance, explaining the differential activity of
imatinib against the typical GIST-associated KIT JM mu-
tations (inactive conformation favored) versus the typical
SM KIT D816V mutation (active conformation strongly
favored).68,69 Based on these and other considerations,
structural biology-guided drug design became standard
practice in drug development programs.67,70-72

Consistent with the observation that imatinib binds to the
inactive KIT conformation, secondary mutations involving
the KIT AL were discovered to be a common cause of
acquired imatinib resistance in GIST. The other major class
of secondary resistance mutations involves the KIT ATP
(and imatinib) binding pocket (Fig 3).73-78 Largely parallel to
conclusions from the analysis of secondary ABL1mutations
in imatinib-resistant CML, these observations supported
that KIT-mutant GIST remained strongly dependent upon
KIT signaling.79-82 This conclusion led to the hypothesis that
imatinib-resistant GIST might be effectively treated using
alternative KIT tyrosine kinase inhibitors (TKIs) that could
overcome AL or ATP binding pocket mutations.

Development of Additional Type II Inhibitors for Imatinib-

Resistant GIST

By the time resistance to imatinib was fully appreciated,
many other kinase inhibitors had been created. The dis-
covery that drug-resistant, KIT-mutant GIST remained KIT-
dependent led to the development of salvage treatments for
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imatinib-resistant GIST. The first of these to be tested
clinically was sunitinib, originally known as SU11248 and
developed as an inhibitor of FLT3, which is an RTK closely
related to KIT.77,83-85 Promising activity in a phase I-II study
led to a randomized, double-blind, placebo-controlled,
multicenter, international trial,77,86,87 which led to the
2007 FDA approval of sunitinib for treatment of patients
with GIST with disease progression or intolerance to ima-
tinib.88 A number of other repurposed KIT inhibitors were
tested for treatment of imatinib-resistant GIST, including
dasatinib, sorafenib, and nilotinib.89-93 However, neither
dasatinib nor sorafenib advanced to phase III studies
(because of insufficient activity and competing kinase
development programs, respectively). A phase III study to
test the superiority of nilotinib versus imatinib for the front-
line treatment of GIST was terminated early because of
futility.94 In contrast, another multitargeted kinase inhibitor
with activity against KIT, regorafenib, was successfully
tested in both a phase II and a placebo-controlled, double-
blind, multicenter, international phase III study.95,96 Despite
the lack of a survival benefit in this or in the sunitinib study,
real-world data from a large patient-reported registry
strongly suggest that the availability of additional lines of
therapy after front-line imatinib has improved OS for pa-
tients with advanced GIST during the 2000-2020 time
period.97

The results of these studies showed the limitations of serial
treatment with type II inhibitors, as the ORR decreased from
around 50% with front-line imatinib to only 4.5% with third-
line regorafenib. There was a corresponding decrease in
median PFS, dropping from approximately 20-22 months
with imatinib to 4.8 months with regorafenib.26,34,35,37,87,96

These results are explained by in vitro studies showing that
sunitinib is active against all secondary KIT ATP-binding
pocket mutations (V654A and T670I), but has minimal
activity against AL mutations (D816V, D820A, etc).77,98 In
contrast, regorafenib has limited activity against secondary
KIT mutations located in the ATP binding pocket, but
clinically useful activity against (some but not all) AL mu-
tations.98 Given the widespread heterogeneity of clones
with different secondary mutations between lesions and
within a given lesion,99 it is likely that we are nearing the
limits of what conventional type II inhibitors can deliver in
the setting of advanced, drug-resistant GIST (Fig 3).

Attempts to Develop Type I KIT Inhibitors to Treat GIST

Based on the above observations, several type I inhibitors
that target the active conformation of KIT have been tested
for treatment of advanced GIST. Ponatinib, a TKI approved
for treatment of CML and acute lymphoblastic leukemia,
showed promising activity in vitro against secondary KIT AL
mutations, but failed to demonstrate sufficient activity in a
phase II study of drug-resistant GIST.100 The results from
this study have not been fully reported, but based on in vitro
data, it is likely that ponatinib lacked sufficient potency
against the common KIT V654A (ATP binding pocket)

secondary mutation to produce meaningful disease
control.101

More recently, a rationally designed type I KIT inhibitor,
avapritinib (formerly BLU-285), has been clinically devel-
oped. This compound was designed by optimizing activity
against the prototypical KIT AL mutation, D816V, an ap-
proach that differed from testing repurposed compounds
against wild-type or KIT JM–mutant kinases. The end result
of this screening approach yielded a compound with
marked potency against all KIT AL mutations, including KIT
D816V.102-104 Avapritinib showed promising activity against
drug-resistant KIT-mutant GIST in a phase I study, but
overall clinical activity was limited by a lack of potency
against KIT ATP binding pocket mutations.105 Recently, the
top-line data of a phase III randomized study of avapritinib
versus regorafenib for patients with GIST who experience
treatment failure during prior imatinib and sunitinib therapy
were reported (VOYAGER, ClinicalTrials.gov identifier:
NCT03465722). Unfortunately, avapritinib did not confer
treatment benefit in terms of median PFS compared with
regorafenib. However, it should be noted that avapritinib
has strong clinical activity against the PDGFRA D842V
mutation, homologous to KIT D816V, which is found as a
primary mutation in 7%-10% of all primary GIST.104,106 In
January 2020, avapritinib was FDA-approved for treatment
of GIST with a PDGFRA exon 18 mutation (Fig 1).107

Development of Type I KIT Inhibitors for Mastocytosis

The primary KIT AL mutation, D816V, in patients with SM
presented an urgent clinical challenge that required the
development of type I KIT inhibitors from the start. In vitro
studies of the type I inhibitor dasatinib demonstrated ac-
tivity against D816V-mutant KIT.22,41 However, when this
agent was tested in a phase II study of patients with indolent
or advanced SM,108 the ORR was 33% (11 of 33), and the
only two complete responses were in patients whose dis-
ease lacked the KIT D816Vmutation. The partial responses
observed in the other nine patients were due to improved
symptoms only, with no objective evidence of decreased
neoplastic mast cell numbers using laboratory or pathology
testing methods.

Subsequently, several new type I inhibitor therapies for
treatment of KIT D816V1 advanced SM have shown
substantial clinical activity. Midostaurin (formerly PKC412),
a staurosporine derivative, emerged from a chemical
screen of protein kinase C inhibitors and was later found to
also inhibit VEGFRs, PDGFRs, KIT, and FLT3. Activity of
midostaurin against KIT D816V was demonstrated in
several preclinical models including cell lines and malig-
nant mast cells isolated from patients with SM.109-112 Much
like during the development of imatinib to treat GIST, these
preclinical observations led to the testing of midostaurin in a
single patient with mast cell leukemia as part of a com-
passionate use protocol (Fig 1). This patient had evidence
of a partial clinical and molecular response with an 80%
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decrease in the level of detectable KIT D816V in the pe-
ripheral blood.113 Based in part on the results from this
single patient treatment protocol, midostaurin was evalu-
ated in two phase II studies, an open-label, international,
multisite study and a study that reported patient outcomes
with a 10-year median follow-up time.114,115 Overall, mid-
ostaurin treatment was found to be well-tolerated and
highly effective. The initial response rate of patients with SM
to midostaurin was 60%-69%.114,115 The median OS was
28.7 months, and the median PFS was 14.1 months.115

Moreover, with a 10-year follow-up, little toxicity was ob-
served.114 Based on these results, the FDA approved
midostaurin for treatment of advanced SM in 2017 (Fig
1).116

The novel type I inhibitor, avapritinib, also demonstrated
promising in vitro and clinical activity against D816V-mutant
mast cells. In the latest update from a phase I study (EX-
PLORER, ClinicalTrials.gov identifier: NCT02561988) of
avapritinib in advanced SM, the ORR was 75%, with 70%
reporting complete or partial responses.117 Notably, avap-
ritinib induced responses in patients regardless of prior
midostaurin therapy, and these responses were rapid and
long-lasting. In the phase I EXPLORER study, 25% of pa-
tients achieved a complete molecular response of the KIT
D816V mutation using digital droplet PCR (sensitivity ap-
proximately 0.17%), a new response benchmark in the
disease.117,118 Avapritinib is undergoing further testing in a

multicenter phase II study (PATHFINDER, ClinicalTrials.gov
identifier: NCT03580655). Based on its activity in advanced
SM and favorable side effect profile, avapritinib is also being
examined in patients with indolent or smoldering SM whose
symptoms are inadequately controlled by standard therapy
(PIONEER, ClinicalTrials.gov identifier: NCT03731260).119

This study includes a randomized, double-blind, placebo-
controlled component. The clinical evidence to date sug-
gests that avapritinib has a high potential to be approved as
an additional therapy for SM, potentially for both advanced
and indolent SM.

To date, clinical mechanisms of resistance to midostaurin
or avapritinib in SM are not well-understood. In vitro studies
of these agents have suggested that the previously de-
scribed KIT V654A or T670I secondary mutations may
result in midostaurin or avapritinib resistance.103,120 In-
creased variant allele frequency of non-KITmutations such
as K/NRAS, RUNX1, IDH2, or NPM1 has also been
associated with clinical resistance to midostaurin.121 In
addition to the problems with emergence of drug-
resistant mastocytosis clones, there still remains the
challenge of how best to treat patients who have SM with an
associated hematological neoplasm.122

Ripretinib, the Most Recently Approved KIT Inhibitor

Ripretinib (formerly DCC-2618) emerged from a program to
develop novel inhibitors that bind to the switch control
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region of kinases, rather than the ATP-binding
pocket.123-126 This discovery program used the known
KIT structure to develop compounds that bind to the kinase
switch pocket, therefore preventing the AL access to this
region and thereby locking the kinase into the inactive state.
In addition, ripretinib binds to the KIT AL to further secure it
in the inactive state. Unlike all of the previously discussed
inhibitors, ripretinib is not a competitive ATP inhibitor and
thereby retains potency, even in the presence of physio-
logical levels of ATP.127 In preclinical studies, ripretinib had
excellent potency against all tested KIT AL mutations and
was also active, although less so, against KIT ATP–binding
pocket mutations.127

Ripretinib was initially tested in a phase I study (Clinical-
Trials.gov identifier: NCT02571036) that included patients
with both GIST and advanced SM in which the recom-
mended to phase II dose of 150 mg once daily was de-
termined.128 This novel inhibitor had a favorable safety and
tolerability profile and was active in patients with GIST whose
tumors were refractory to multiple previous TKIs (data about
efficacy in SM are not yet reported). Ripretinib was further
evaluated in a double-blind, randomized, placebo-controlled
study (INVICTUS, ClinicalTrials.gov identifier:
NCT03353753) of adult patients with GIST who had pro-
gression or intolerance during prior therapies, which in-
cluded, at a minimum, imatinib, sunitinib, and regorafenib.
Ripretinib was associated with 85% reduction in the risk of
death or progression when compared with placebo and was
associated with an acceptable safety profile.129 Based on
these results, the FDA approved ripretinib in May 2020 for
the treatment of adult patients with advanced GIST who had
received prior treatment with three or more kinase inhibitors,
including imatinib.130 Currently, the activity of ripretinib to
treat patients earlier in their disease course is being tested in
a global, randomized, open-label, phase III study comparing
the safety and efficacy of ripretinib versus sunitinib in pa-
tients with advanced GIST following imatinib (INTRIGUE,
ClinicalTrials.gov identifier: NCT03673501). The primary
end point is PFS, and key secondary objectives include ORR
and OS. Despite the impact of the COVID-19 pandemic, it is
anticipated that accrual to this study will be completed in
2021.131

In conclusion, it has been two decades since the first KIT
inhibitor was approved for treatment of a KIT-mutant dis-
ease. The very first kinase inhibitor approved as a cancer
therapy, imatinib, has provided immense insights into how
to manage the treatment of KIT-mutant neoplasms. At the
time of its approval, we had little knowledge of either

primary or secondary resistance mechanisms. We now
understand the importance of molecular profiling of tumors
to predict drug response as specific mutations, but not
necessarily KIT overexpression or autocrine signaling, can
confer sensitivity or resistance to KIT inhibitors.

In GIST, imatinib is still the first-line therapy for KIT-mutant
patients, themajority of which present with imatinib-sensitive
mutations (encoded in KIT exons 8, 9, 11, and 13). Sec-
ondary resistance because of intra-allelic KIT mutations
emerging during imatinib treatment required the application
of new drugs for second- and third-line treatment to combat
imatinib resistance. Contrarily, the driving KIT mutation
observed in the majority of SM, D816V, confers primary
resistance to type II inhibitors like imatinib. For this reason,
imatinib is not part of the treatment regimen for this form of
SM, but other KIT inhibitors have been developed for this
disease, such as midostaurin and avapritinib.

Early on, drug repurposing was the main approach to drug
discovery. This approach led to the approval of three ad-
ditional KIT inhibitors (sunitinib, regorafenib, and mid-
ostaurin) to treat GIST and SM. However, greater
understanding of primary and secondary KIT mutations
inspiredmore sophisticated approaches to rationally design
KIT inhibitors with greater potency. Ripretinib and avap-
ritinib are two such inhibitors that emerged from these KIT-
focused drug development programs. There are now five
FDA-approved inhibitors to treat KIT-mutant disease, with
another, avapritinib, likely to be approved in the near future
for KIT D816V1 SM (Table 2).

The overarching lesson learned from imatinib, beginning
with BCR-ABL1 and translated to KIT, is that a detailed
understanding of both the target and its mechanisms of
drug escape is necessary to further advance the field. The
introduction of each subsequent KIT inhibitor, first pre-
clinically and then in clinical trials, provided further insight
into how drug development should proceed. Preclinical
studies have shown that the type I TKIs, avapritinib and
midostaurin, will be thwarted by secondary KIT mutations
just like imatinib, and this has been seen in early clinical
data from patients treated with avapritinib, as discussed
above. It is not yet clear if this will be the case with ripretinib,
but it is likely, given that the PFS with this agent is only
slightly more than 6 months. Thus, two decades on, the
lessons from imatinib, the first kinase inhibitor, continue to
be carried forward in the ongoing battle against kinase
inhibitor resistance, leaving new outstanding questions for
basic and clinical researchers to answer (Table 1).
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