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Abstract

Objective: Modeling variable-sized regions of interest (ROIs) in whole slide images using deep 

convolutional networks is a challenging task, as these networks typically require fixed-sized inputs 

that should contain sufficient structural and contextual information for classification. We propose a 

deep feature extraction framework that builds an ROI-level feature representation via weighted 

aggregation of the representations of variable numbers of fixed-sized patches sampled from nuclei-

dense regions in breast histopathology images.

Methods: First, the initial patch-level feature representations are extracted from both fully-

connected layer activations and pixel-level convolutional layer activations of a deep network, and 

the weights are obtained from the class predictions of the same network trained on patch samples. 

Then, the final patch-level feature representations are computed by concatenation of weighted 

instances of the extracted feature activations. Finally, the ROI-level representation is obtained by 

fusion of the patch-level representations by average pooling.

caner.mercan@radboudumc.nl. 

HHS Public Access
Author manuscript
IEEE J Biomed Health Inform. Author manuscript; available in PMC 2022 June 03.

Published in final edited form as:
IEEE J Biomed Health Inform. 2021 June ; 25(6): 2041–2049. doi:10.1109/JBHI.2020.3036734.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results: Experiments using a well-characterized data set of 240 slides containing 437 ROIs 

marked by experienced pathologists with variable sizes and shapes result in an accuracy score of 

72.65% in classifying ROIs into four diagnostic categories that cover the whole histologic 

spectrum.

Conclusion: The results show that the proposed feature representations are superior to existing 

approaches and provide accuracies that are higher than the average accuracy of another set of 

pathologists.

Significance: The proposed generic representation that can be extracted from any type of deep 

convolutional architecture combines the patch appearance information captured by the network 

activations and the diagnostic relevance predicted by the class-specific scoring of patches for 

effective modeling of variable-sized ROIs.

Index Terms—

Digital pathology; breast histopathology; deep feature representation; weakly supervised learning; 
region of interest classification

I. INTRODUCTION

Histopathological image analysis systems aim to provide an accurate modeling of the image 

content and an objective quantification of the tissue structure. Whole slide imaging has aided 

these systems via digitization of glass slides into very high resolution images. In addition to 

the computational challenges due to data sizes, the main semantic challenge is to design an 

effective representation of the local image details.

For the particular case of breast histopathology, a continuum of histologic features exists in 

the tissue structures where different types of proliferation have different clinical 

significance. For example, proliferative changes are considered benign, and do not 

necessitate additional procedures. However, other diagnoses such as atypical hyperplasia and 

in situ carcinoma carry different risks of progressing into malignancy and lead to different 

clinical actions such as surgery, radiation, and hormonal therapy [1], [2]. An automated 

diagnosis system should involve all intermediate steps that contain both the identification of 

diagnostically relevant regions and the association of each of these individual regions with a 

diagnostic category.

Given the high level of uncertainty regarding the correspondence between the diagnostic 

class of the whole slide and the diverse content in the local details in the image data [3], the 

main focus of the relevant work has been to perform both training and evaluation tasks on 

isolated regions of interest (ROI)1 with no ambiguity in their diagnostic labels. Among these 

works, deep learning-based approaches, in particular convolutional neural networks (CNN), 

have had the greatest success in recent years [4]. Earlier studies using deep networks focused 

on the binary (benign vs. malignant) classification problem. For example, Cruz-Roa et al. [5] 

use a deep network to classify 100×100 pixel patches as benign or invasive for breast 

1We define ROIs as regions that are identified to be diagnostically relevant by human experts during their interpretation of the slides.
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histopathology. The BreaKHis data set [6] that consists of 700×460 pixel images has also 

been popular for benign vs. malignant classification. The common approach is to sample 

32×32 or 64×64 pixel patches, classify them by using deep networks, and obtain the image-

level diagnoses by combining patch-level outputs using methods such as averaging class 

probabilities [7] or majority voting [8].

Classifying a tissue as one of multiple cancerous or precancerous lesions as is required in 

clinical practice holds a higher clinical significance compared to only as benign or 

malignant. There exist multiple works studying multi-class classification of breast 

histopathology images with CNNs. For example, the BACH data set [9] that consists of 

fixed-sized images labeled as normal, benign, in situ, and invasive has been used in several 

competitions. Uniformly sampling patches over a regular grid, and obtaining the image-level 

diagnoses via majority voting or averaging patch-level probabilities has been the common 

choice [10], [11]. Training a separate classifier on the patch-level outputs using logistic 

regression [12], recurrent neural networks [13], or multiple instance learning [14], [15], [7] 

are used as alternatives to fixed fusion rules. Besides CNNs, stacked autoencoder-based 

unsupervised feature representations are also used as patch models [16], [17].

In all of the works reviewed above, typically small, fixed-sized, manually cropped images 

are used as the final targets in the classification task. However, in a realistic clinical setup, 

the ROIs often vary significantly in size and in content. In the former scenario where 

relatively small and isolated ROIs that belong to distinct categories are used, it can be safe to 

assume that the sampled patches are all similarly relevant for the diagnosis. However, in the 

latter unconstrained scenario where the ROIs are obtained by manual delineation in free 

form or by using machine learning-based ROI detectors, typically not all patches are equally 

informative. Thus, modeling variable-sized ROIs using deep networks remains an open 

problem. For such ROIs, commonly used transformations such as cropping may lead to loss 

of important local details, and resizing may result in the loss of important scale information. 

Furthermore, other popular approaches that involve pooling of pixels into pre-defined grids 

[18] may also suffer from the aforementioned problems in histopathology images.

An alternative is to design a representation that can capture the variations in local details of 

variable-sized ROIs. For example, Mehta et al. [19] propose the Y-Net framework that is 

jointly trained for segmentation and classification where the classification output is used 

with a threshold to obtain a tissue-level discriminative segmentation mask. Then, the 

frequencies of the selected tissue components are used with a multi-layer perceptron to 

obtain the ROI-level diagnosis. Mercan et al. [20] use superpixels to aggregate the pixel-

level tissue segmentation, estimate the duct locations from the epithelium regions, and 

compute histograms of the tissue types within layers of superpixels both inside and outside 

of these ductal components as structure features for ROI-level classification.

Our whole slide analysis pipeline involves three stages illustrated in Figure 1: 1) detection of 

ROIs; 2) modeling of these ROIs using a variable number of fixed-sized patches; 3) 

modeling of slides using these ROIs. This model can be considered within the weakly 
supervised learning paradigm where ROI-level class labels are missing when only slide-level 

diagnoses are available, and the contributions of individual patches to an ROI are also not 

Mercan et al. Page 3

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2022 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



known. We proposed both traditional [21] and deep learning-based [22] solutions to the first 

stage. We also proposed a multi-instance multi-label learning formulation [3] for the third 

stage. In this paper, we focus on the second stage of modeling the individual ROIs by 

designing an ROI-level representation via weighted aggregation of patch-level 

representations. The proposed approach can be applied to both manually and automatically 

identified ROIs. The weights can be considered as confidence scores that quantify the 

importance and informativeness of the patches for the ROI-level diagnosis. We have shown 

that such weighted combinations of patch-level representations are quite powerful for 

simultaneous learning of attention and classification models when only image-level labels 

are available during weakly supervised learning [23]. Here, the patch-level feature 

representations are obtained from both fully-connected layer activations and pixel-level 

convolutional layer activations, and the weights are obtained from the class predictions. Our 

main contributions include a new patch-level representation based on convolutional 

activation maps, a generic representation for modeling variable-sized ROIs that is illustrated 

by using two different deep network architectures, and extensive evaluation using a 

challenging multi-class breast histopathology data set that covers the whole histologic 

spectrum. We compare this representation to alternative representations as well as to 

operations such as cropping, resizing, and pooling. A preliminary version of this work was 

presented in [24].

The paper is organized as follows. Section II introduces the data set. Section III describes the 

deep feature representation methodology. Section IV presents how these representations can 

be used for classification. Section V provides the experimental results. Finally, Section VI 

gives the conclusions.

II. DATA SET

We use a data set of 240 breast biopsies that was developed as part of an NIH-sponsored 

project to study variability in the interpretation of breast histopathology [1]. The 

haematoxylin and eosin (H&E) stained slides that belonged to independent cases from 

different patients were selected from cancer registries associated with the Breast Cancer 

Surveillance Consortium by stratified sampling to cover the full range of diagnostic 

categories from benign to cancer. The study was approved by the institutional review boards 

at Bilkent University, University of Washington, and University of Vermont.

The slides were scanned by the same iScan Coreo Au digital slide scanner (Roche). The 

cases were independently interpreted by three experienced pathologists who then met in 

consensus meetings to define a single consensus diagnosis for each case. At the end, each 

case was classified into one of the following 4 classes with example diagnostic terms: class I 

benign without atypia (Benign), class II atypical ductal hyperplasia (ADH), class III ductal 

carcinoma in situ (DCIS), and class IV invasive cancer (INV). The benign class includes 

samples that contain non-proliferative changes, fibroadenoma, intraductal papilloma without 

atypia, usual ductal hyperplasia, columnar cell hyperplasia, sclerosing adenosis, complex 

sclerosing lesion, and flat epithelial atypia. The ADH class includes atypical ductal and 

lobular hyperplasia, and intraductal papilloma with atypia. The DCIS class includes both 

ductal and lobular carcinoma in situ. The difficulty of this multi-class problem can also be 
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confirmed from the evaluations in [1], [25] where a large set of pathologists’ concordance 

rates compared with the consensus diagnoses were 82% for Benign, 43% for ADH, 79% for 

DCIS, and 93% for INV. The study in [9] also reported that the benign and in situ classes 

were the most difficult to classify. Our data set contains a very diverse mix of sub-categories 

considered benign. It also includes the challenging and clinically significant ADH class that 

was not present in any of the work (except [3], [19], [20], [22] that used the same data set) 

reviewed in Section I.

We divided the data set equally into two as training and test sets so that the slide-level class 

distribution between the two sets are kept as close as possible while each subset has slides 

from different patients. The ROI-level analysis studied in this paper uses the ROIs marked 

by the pathologists as one or more representative regions in each slide to support the 

corresponding diagnosis for that slide. In total, there are 437 consensus ROIs, having the 

same diagnostic labels as the slide-level consensus labels. The class distribution of slides 

and ROIs are shown in Table I. The ROIs have considerable amount of variability in size as 

shown in Table II. Note that all diagnostic categories exhibit this variability that further 

supports the need for developing new feature representations for multi-class modeling of 

variable-sized ROIs.

III. DEEP FEATURE REPRESENTATION

We introduce a deep feature extraction method for variable-sized ROIs, while preserving 

patch-level local information and their relative contribution for ROI-level diagnosis. First, a 

CNN is trained on the patches sampled from the ROIs. Then, a patch-level feature 

representation is obtained by concatenation of weighted instances of feature activations 

computed for the patch by the network. The weights are also obtained from the network as 

the class probabilities for the corresponding patch. Finally, the ROI-level representation is 

obtained via aggregation of the patch-level representations by average pooling. This generic 

representation that can be extracted from any type of deep convolutional architecture aims to 

combine the patch appearance information modeled by the network activations and the 

diagnostic relevance modeled by the class-specific scoring of the patches. The details of 

each step of this representation are described below.

A. Patch-level Deep Network Training

State-of-the-art deep convolutional architectures that aim to produce image-level class 

probability scores face a challenge for ROIs with significantly different shapes and sizes. 

Our proposed solution is to model each ROI as a combination of variable number of 

potentially salient fixed-sized patches.

1) Identification of Patches from ROI: The first step involves identification of 

informative and diverse set of patches to represent the structural and contextual information 

in the ROI. According to pathologists, appearance of the cell nuclei and their spatial 

distribution within the ducts are important indicators for the diagnosis [17]. Eye tracking 

studies also show high correlation between the regions viewed by the pathologists and the 

computer vision-based saliency detector outputs that highly overlap with epithelium-rich 

regions [26]. In this paper, informativeness is achieved by sampling the patches from nuclei-
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dense areas in the ROI, and diversity is attained by enforcing a constraint that two patches 

should not overlap by more than a margin. We show in Section V-C that this is empirically 

an effective choice as well.

An efficient way of locating nuclei-dense regions as potential locations for ductal structures 

is to use the haematoxylin channel estimated from the RGB image. We use the built-in stain 

vectors in the ImageJ implementation (https://imagej.net/Colour_Deconvolution) of the 

color deconvolution algorithm in [27]. After obtaining the haematoxylin value at each pixel, 

we compute a non-parametric Parzen density estimate [28], and apply a threshold to this 

estimate to eliminate the regions with little to no nuclei. The remaining regions are used to 

sample the center pixels of patches on a uniform grid to enforce a limit on the patch overlap. 

The image magnification used is determined in coordination with the patch size required by 

the network architecture as described in Section V-A. The patches should not be too large to 

risk simultaneous inclusion of details from irrelevant proliferations and too small to contain 

insufficient context. The patch selection process is illustrated in Figure 2.

2) CNN Training on Patches: Due to the limited availability of labeled histopathology 

images, we opt to fine-tune a pre-trained network. Our first choice for the base CNN 

architecture is the ImageNet pre-trained VGG16 network [29] due to its relatively large 

depth and representational capabilities as well as our good experience with an adaptation of 

this network on the same breast pathology data set [22]. We also use the ResNet-50 network 

[30] to illustrate the generic applicability of the proposed methodology. The RGB patches 

sampled in the previous step are used with the same labels as those of the corresponding 

ROIs to fine-tune both networks. There was no performance improvement when we tried to 

train all network parameters from scratch due to the limited amount of data available for 

training. The experiments in this paper use these two specific networks but, as noted earlier, 

the proposed deep feature representation can be extracted by using any type of deep 

convolutional architecture.

B. Patch-level Deep Feature Representation

Given a deep network that is trained as in Section III-A2, we use two different methods to 

extract the initial patch-level feature representations denoted as ϕ in the rest of the paper.

1) Penultimate Layer Features: The first method for obtaining ϕ is to directly use the 

output of the penultimate layer in the patch-level deep network. As the most commonly used 

approach of employing deep networks for feature extraction, the penultimate layer 

activations, illustrated for the VGG16 network in Figure 3, provide an overview of the patch 

content summarized by the fully-connected operations.

2) Hypercolumn Features: The second method exploits pixel-level convolutional 

activations for feature extraction. The activations in the earlier layers provide low-level 

information such as color, texture, and shape, while the activations in later layers encode 

contextual information about the input image [31]. The hypercolumn feature representation 

of a pixel combines these low-level and high-level features and is obtained by concatenating 
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all activations at that pixel location through the layers in the network when pixel-level 

representations are needed for tasks such as semantic segmentation [32].

Our aim is to extract a patch-level representation from the pixel-level hypercolumn features. 

A naive concatenation of all pixels’ features will produce a huge vector, e.g., with size over 

two hundred million for a mildly deep network such as VGG16, and will be prone to 

overfitting. We designed a procedure that involves statistical operations on a selected set of 

layers of the convolutional network to obtain the feature representation for an input patch. 

Figure 4 illustrates these steps for an example layer. The details are provided below.

The input for each patch is a set of L layers selected from the deep network. Each layer l ∈
{1, …, L} consists of a set of channels that correspond to the convolutional activations 

Ac
l, c = 1, . . . , Cl, where Cl is the number of channels in layer l and Cl is the matrix that 

stores the responses of all pixels to the c’th kernel in that layer. For example, for the layer 

denoted as conv33 in Figure 3, the number of channels Cl is 256, and Ac
l is a matrix of size 

56×56. We select the last layers of the last three groups of convolutional layers for both 

networks. These layers exhibit increasing representational capacity after a sequence of 

consecutive convolution operations within each group right before the feature map size is 

decreased with a pooling operation for the next group. For the VGG16 network, the selected 

layers are conv 33, 43, 53 . For the ResNet-50 network, we use the last layers of the 

conv{3_x,4_x,5_x} blocks as described in the experimental setup in Section V-A.

Given the channels Ac
l, c = 1, . . . , Cl in a selected layer l, we first identify the maximum 

activation in each convolutional channel and turn off the remaining activations as

Ac
l = Ac

l x * , y * if x * , y * = argmaxAc
l,

0 otherwise,
(1)

where (x,y) is the pixel location. The resulting matrix Ac
l  contains a single non-zero pixel 

that corresponds to the maximum in (1). Then, we combine the top activations by summing 

over the convolutional channels to obtain an aggregate activation map of the associated layer 

as

Aagg
l = ∑

c = 1

Cl

Ac
l . (2)

The resulting map, with the same size as the matrices Ac
l and Ac

l , preserves the most 

prominent responses that contain information from different local structures activated by 

various convolutional kernels in that particular layer. Finally, the resulting maps 

Aagg
l , l = 1, . . . , L for all layers are vectorized and concatenated as

ϕ = vec Aagg
1 T , vec Aagg

2 T , . . . , vec Aagg
L T T

(3)
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where vec(·) denotes the vectorization operation of a given matrix, and ϕ is the pixel-level 

convolutional hypercolumn feature representation of the input patch.

C. ROI-level Deep Feature Representation

Our previous research showed that weighted pooling of patches within larger images works 

well for weakly supervised learning when there is both localization and labeling uncertainty 

[23]. The ROI-level feature representation proposed here also uses weighted aggregation of 

patch-level feature vectors. Both the feature vectors and the weights are extracted from the 

patch-level deep network described earlier.

The input is an ROI R that is modeled as a set of M patches {r1,r2, …, rM}. We assume that 

each patch is initially mapped to a d-dimensional feature vector as in Section III-B where 

ϕ rm ∈ ℝd denotes the vector for patch rm. One of the most widely used representations that 

are based on aggregation of local features is the bag-of-words (BoW) model [33], where the 

local instances are quantized into discrete words in a codebook, and average pooling of these 

words is performed by counting their occurrences into a normalized histogram. In this 

model, the final representation for a patch becomes a one-hot vector that encodes the 

codeword assignment for the deep feature representation, ϕ, for that patch. The ROI-level 

feature representation that aggregates all patch encodings is obtained by average pooling that 

results in a vector whose length is equal to the size of the codebook used.

Another popular approach that can be viewed as a generalization of the BoW model is the 

Fisher vector framework [34]. By using a Gaussian mixture model that estimates the 

distribution of the local descriptors, the Fisher vector encoding captures the first and second 

order differences between the individual descriptors and the mixture components. In this 

framework, the final representation for a patch is obtained as the concatenation of the 

gradients computed with respect to the mixture model parameters, and the ROI-level feature 

representation is also obtained via average pooling that results in a vector whose length is 

twice the length, d, of the initial patch-level deep feature representation, ϕ, times the number 

of mixture components.

Our proposed representation is based on soft assignments where the patches are associated 

with the diagnostic classes of interest by using probability estimates that correspond to the 

confidences in these assignments. Given the K class probabilities sm1 , sm2 , . . . , smK

estimated for the patch rm by the softmax layer of the deep network with ∑k = 1
K smk = 1, a 

new representation for the patch is obtained by concatenating the weighted instances of the 

original deep feature ϕ rm  as

ϕ rm = sm1 ϕ rm
T , sm2 ϕ rm

T , . . . smKϕ rm
T T , (4)

resulting in a patch-level feature representation with length Kd. Here, weighting is 

influenced by our past work [23] and concatenation can be related to the Fisher vector 

framework [34]. Then, the final ROI-level feature representation is obtained by average 

pooling as
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ϕ R = 1
M ∑

m = 1

M
sm1 ϕ rm

T , . . . , 1
M ∑

m = 1

M
smKϕ rm

T
T

. (5)

In the representation in (4), the feature vector ϕ that is computed from the deep network 

activations contributes differently for each class in ϕ according to the class probabilities that 

act like relevance scores that quantify the significance of that patch for the ROI-level 

diagnosis. This weighted aggregation illustrated in Figures 5 and 6 results in the class 

probabilities and the feature activations supporting each other in the learning of class-

specific feature vectors.

IV. CLASSIFICATION

The deep feature representations for the ROIs in the training set are used to train a multi-

layer perceptron (MLP) to perform multi-class classification on unseen ROIs in the test set 

whose feature representations are also extracted with the same procedure. We use the 

consensus ROIs that were manually identified by the experienced pathologists as described 

in Section II. Alternative approaches that involve classifiers explicitly trained for ROI 

detection can also be used when no such ROIs are available [21], [22].

V. EXPERIMENTS

A. Experimental Setup

The deep feature extraction process proposed in this paper is not specific to any network and 

can be applied to any convolutional architecture. The experiments described here are 

realized by using the VGG16 and ResNet-50 networks. The patches were sampled as 

224×224 pixel windows, particularly due to the input requirement of the VGG16 network. 

We used 10× magnification, which was empirically decided based on the experiments 

presented in Section V-C.

During patch-level training described in Section III-A, we applied random rotation, random 

horizontal/vertical flipping, and random perturbations on the hue channel in the HSV 

domain as part of the data augmentation routine. We also oversampled Benign and INV 

patches to reduce the imbalance resulting from intentional oversampling of the ADH and 

DCIS cases in the data set to study the preinvasive lesions in more detail [1]. We fine-tuned 

the networks on the same augmented training set using cross-entropy loss. We used batches 

of 32 patches, and employed Adam optimizer with a learning rate set to 10−4. During patch-

level feature extraction in Section III-B, the penultimate layer activations for the VGG16 

network are taken from the layer labeled as fc2, resulting in initial feature vectors of length d 
=4,096. The hypercolumn features are computed from the convolutional activations in the 

layers labeled as conv 33, 43, 53 , resulting in initial feature vectors of length d = 4,116 (after 

vectorization of 56×56, 28×28, and 14×14 pixel maps as shown in Figures 3 and 4). For the 

ResNet-50 network, the penultimate layer feature representation has length d = 2,048, and 

the hypercolumn feature vector is obtained from the convolutional activations in the last 

layers of the conv3_x, conv4_x, and conv5_x blocks, resulting in initial feature vectors of 
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length d = 1,029 (after vectorization of 28×28, 14×14, and 7×7 pixel maps). The final ROI-

level features in Section III-C are obtained by average pooling of weighted concatenations of 

patch-level features, resulting in vectors of length Kd where K = 4. We also evaluated equal 

representation of all three layers in the hypercolumn vector by upsampling the smaller layers 

via bilinear interpolation. However, the accuracy decreased by 25% due to the increased 

dimensionality of the representation.

We use the same training data for all stages of both the proposed methodology and the 

baseline methods described in Section V-B. For hyperparameter optimization and 

quantitative evaluation, we further split the test data shown in Table I into two subsets. These 

subsets correspond to two groups of 60 slides each, that belong to different patients and are 

randomly selected according to the same class frequency distribution by using stratified 

sampling. We interchangeably use these two sets, corresponding to 116 and 101 ROIs, 

respectively, as validation and test data, and report the average accuracy on the test subsets 

for all experiments in Section V-C. We use normalized accuracy as the performance metric 

where the per-class accuracy rates are averaged to avoid biases towards classes with larger 

number of examples.

B. Baselines

The ROI-level feature representations, named Penultimate-Weighted and Hypercolumn-

Weighted for the approaches described in Sections III-B1 and III-B2, respectively, are used 

with a 4-class MLP classifier trained according to the setup in Section V-A. We also 

evaluated the performances of the following commonly used feature aggregation methods.

• Penultimate-Baseline: The initial patch-level feature vectors from the 

penultimate layer are combined by average pooling (without weighting) for ROI-

level features.

• Hypercolumn-Baseline: Similarly, the initial hypercolumn features are combined 

by average pooling.

• Majority-Voting: We use the patch-level class probabilities to assign each patch 

to the most likely class, and apply majority voting to obtain the label of the ROI.

• Learned-Fusion [15]: The patch-level class probabilities from the final softmax 

layer of the network are summed up to create class frequency histograms as ROI 

features.

• Bag-of-Words: We use the initial patch-level feature vectors to compute a 

codebook for the bag-of-words model. The codebook sizes are selected as 16, 32, 

and 64 based on our earlier experience on the same data set [21].

• Fisher-Vector: We compute the Fisher vector encoding for the initial patch-level 

vectors using Gaussian mixtures with 16, 32, and 64 components. We apply 

principal components analysis to improve the accuracy and reduce the memory 

footprint of the representation [35].

• Y-Net [19]: This approach extends the U-Net [36] model for joint training for 

segmentation and classification using a multi-task loss with 8-class tissue 

Mercan et al. Page 10

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2022 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



segmentation masks and ROI-level labels. The network produces a tissue-level 

discriminative segmentation mask after applying a threshold to the local patch 

probabilities. Histograms of patch class assignments are used as ROI features.

All of these ROI-level feature representations are used with a final MLP classifier for 

predicting the ROI-level diagnoses (except Majority-Voting that directly outputs the class 

label).

We also implemented the commonly used operations of cropping, resizing, and pooling. 

First, we identified the largest square image size that could be fit into the GPU memory for a 

batch size of 10 as 1120×1120 pixels. Then, for each ROI, we cropped the largest square 

region that could fit into that ROI’s mask and resized it to 1120×1120 pixels. We used the 

resulting regions to fine-tune a ResNet-50 network for ROI-level prediction. This procedure 

is denoted as Crop/resize in the results. We also evaluated replacing the average pooling 

layer with spatial pyramid pooling [18] using three scales.

Finally, we present the average accuracy from the independent interpretations of all slides by 

45 other pathologists that practice breast pathology in their daily routines [1], [19].

C. Results

The first step was the selection of image magnification. We evaluated the proposed 

representations with patches sampled from 2.5×, 5×, 10×, and 20× magnifications. The 

results for ResNet-50 are presented in Table III. We determined that 10× magnification 

provides a good tradeoff for capturing sufficient local context without including irrelevant 

details.

The next step was the evaluation of the patch sampling strategy for training the networks 

used as the patch-level feature extractors. All patches sampled from the same ROI are 

assigned the label of that ROI. This is considered weak supervision because the relevance of 

each individual patch to the ROI is not truly known. The accuracies of the VGG16 and 

ResNet-50 networks trained using the patches sampled with the proposed strategy were 

51.22% and 51.11%, respectively. These accuracies could not be improved further with 

additional data augmentation and hyperparameter optimization because of the uncertainty in 

the patch-level weak labels used for both training and evaluation. We also investigated 

uniform sampling of patches over a grid on the foreground tissue sections within the ROIs 

after eliminating the slide background via thresholding of luminosity [9]. The resulting 

accuracy for the VGG16-based patch classifier was 43.51%. This result shows the 

effectiveness of sampling of informative patches from the nuclei-dense regions for modeling 

ductal proliferations.

The final step was the evaluation of the ROI-level classification methods whose 

performances are summarized in Table IV. The proposed representations, Penultimate-

Weighted and Hypercolumn-Weighted, achieved the best performances for both deep 

networks, with the latter obtaining the top spot while also being above the pathologists’ 

average performance. When we consider the performances of the baseline representations, 

Penultimate-Baseline and Hypercolumn-Baseline, we observe that the hypercolumn 

representation benefits more from the proposed weighted aggregation that learns class-
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specific features. This result is consistent with the observation in [31] that the further the 

target classification task (i.e., cancer diagnosis) moves from the original source task of the 

pre-trained network (i.e., ImageNet), more effective the earlier layers become. The reason 

could be due to the penultimate layer and the final softmax layer being located close to each 

other in the network so that their combination results in limited improvement because they 

encode similar information. Thus, if one has to choose a single layer from the network for 

feature extraction, the penultimate layer, as commonly used in the literature, is a good choice 

that provides an effective and compact summary of the image content. On the other hand, 

the hypercolumn features are obtained from the convolutional units that encode different 

local characteristics of the input data at different scales, and get a more dramatic boost in 

performance when fused with the complementary information encoded by the softmax layer. 

When we consider the remaining baseline methods, we observe that there is no consistent 

pattern with respect to the commonly used bag-of-words and Fisher vector encoding 

methods and their parameters (codebook size and number of mixture components, 

respectively) even after hyperparameter tuning using the validation data. We also observe 

that simpler aggregation methods, Majority-Voting and Learned-Fusion, behave better than 

these feature encodings. Another important observation is that all representation-based 

baselines perform as good as and often better than the transformation-based baselines of 

cropping, resizing, and pooling.

For more detailed evaluation, confusion matrices and class-specific performances of the 

proposed representations obtained by using the VGG16 network are given in Tables V and 

VI, respectively. The numbers in the confusion matrices are accumulated from the two test 

subsets. The classifier that used the Penultimate-Weighted representation predicted DCIS 

and ADH better than Benign and INV. For example, the highest recall was achieved for 

DCIS, where only 11 out of 80 ROIs were misclassified. The highest precision was obtained 

for ADH, where only 11 of the 61 ROIs predicted as ADH were false positives. The 

precision for DCIS was relatively lower than that for ADH where the classifier had the 

tendency to choose DCIS more frequently than any other class. The majority of the Benign 

ROIs that were misclassified were incorrectly labeled as ADH. ROIs with a consensus 

diagnosis as INV were correctly classified in 12 cases compared to 7 cases that were 

wrongly predicted as DCIS, which makes sense given that a large number of cases with INV 

as the consensus label also had DCIS in their pathology reports. The classifier that used the 

Hypercolumn-Weighted representation was able to classify more cases of INV and Benign 

correctly. We observed that inclusion of pixel-level information in the patch-level 

representation extracted by the hypercolumn features led to an improvement where the 

classifier learned the characteristics of Benign and INV better, with a small cost of 

misclassifying more ADH cases as Benign.

Overall, the classifiers trained using the proposed feature representations outperformed the 

other approaches in comparison. The challenges regarding the categorization of the 

preinvasive lesions such as ADH and DCIS are mostly consistent with the difficulties faced 

by the pathologists in comparative studies [1], [25]. However, the automated methods’ 

accuracies for Benign and INV classes were lower than the typical pathologist’s 

performance where human observers usually agree in their diagnoses for the cases that are at 

the extremes of the histologic spectrum. Many recent work in the literature also report 
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higher accuracies for the Benign versus INV classification, but with a major difference in 

their experimental setup in which samples from atypia classes are not used [9]. Given the 

original motivation for the preparation of the data set by oversampling the ADH and DCIS 

cases to study the preinvasive lesions in more detail [1], and in spite of our efforts to 

decrease the class imbalance by oversampling during the fine-tuning of the patch-level 

network, the diversity of the extracted patches varied greatly from one class to another due 

to limited number of ROIs from the minority classes INV and Benign, and resulted in 

relatively poor performance for these classes. A possible solution in future work is to use 

classifiers specifically trained for identifying extreme categories such as INV [5] in a 

hierarchical classification framework [20].

Qualitative results on the local predictions by the fine-tuned VGG16 network are presented 

in Figure 7. Both the predicted labels of the patches and the class-specific scores are shown 

for example ROIs. The CNN predictions for the ROI in the first row mostly involved DCIS 

as almost all patches within the ROI showed the strongest response to that class. The 

methods involving the proposed feature representations, Penultimate-Weighted and 

Hypercolumn-Weighted, and the methods we used for comparison, Majority-Voting and 

Learned-Fusion, were able to correctly classify the ROI as DCIS. Similarly, the patch-level 

predictions mostly matched the ROI-level consensus diagnoses in the second and third rows. 

Consequently, the proposed and compared methods all correctly assigned those ROIs to the 

consensus diagnoses ADH and Benign, respectively. However, when the patch-level 

predictions of the CNN did not fully represent the consensus diagnosis of the ROI, the 

comparison methods performed poorly. For example, among all methods, only the proposed 

representations Penultimate-Weighted and Hypercolumn-Weighted were able to classify the 

ROI in the fourth row as ADH, whereas only the Hypercolumn-Weighted representation 

could correctly predict the class label of the fifth ROI as DCIS. Slide-level visualizations are 

provided in Figure 8. Thresholding on the haematoxylin estimates and connected 

components analysis were used to obtain ROI proposals on the input slides. Patches were 

sampled from each region to construct the Hypercolumn-Weighted representation of that 

region. The ROI-level classifier was used to make predictions for the individual regions. 

These predictions matched the diagnoses of the consensus ROIs in these slides. Both the 

quantitative and the qualitative results showed that CNN predictions for individual fixed-

sized patches may not be representative enough to perform ROI-level classifications, but the 

proposed approaches that used weighted aggregations of patch-level image features and 

score predictions within variable-sized ROIs were able to successfully identify the correct 

diagnoses.

VI. CONCLUSIONS

Convolutional networks typically operate on fixed-sized inputs and make class predictions 

on unseen images with the same size. However, ROIs in whole slide images can be 

drastically different from each other in size, shape, and structure, and it is not 

straightforward to analyze these ROIs using convolutional networks. We presented an 

effective generic framework to obtain feature representations for variable-sized ROIs. The 

proposed method operated on the automatically extracted potentially informative and diverse 

ROI patches. The local structural information within the patches as well as the class 
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probability distributions of the patches as obtained from the predictions of the deep 

convolutional network were preserved in the feature representation of the ROI.

We investigated two methods to extract deep feature vectors for a patch. The first approach 

involved patch-level penultimate layer activations of the network, and the second one used 

pixel-level features obtained from the convolutional hypercolumn activations. In both 

approaches, the initial feature vector of the patch was weighted separately by each class 

probability score from the same network, and concatenation of the weighted vectors formed 

the final feature representation of the patch. Then, the feature representation of an ROI was 

obtained by the aggregation of the feature representations of its patches by average pooling. 

We demonstrated the representational power of the proposed approaches, illustrated using 

two separate deep network architectures, as they outperformed competing methods in 

extensive quantitative experiments for ROI-level breast histopathology image classification. 

Developing an end-to-end framework involving deep architectures for both feature 

extraction and classification will be studied in future work.
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Fig. 1. 
Modeling of a WSI in terms of ROIs and patches.
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Fig. 2. 
Patch selection for an example ROI. (a) RGB image. (b) Haematoxylin estimate. (c) Nuclei 

mask. (d) Selected RGB patches. (e) Example patches.
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Fig. 3. 
VGG16 network used for patch-level feature representation. This particular network has 13 

convolutional and three fully-connected layers where the last layer outputs predictions for 

each of the K = 4 classes through a softmax activation function. The convolutional layers are 

denoted as conv{11,12,21,22,31,32,33,41,42,43,51,52,53} and the fully-connected layers are 

denoted as fc{1,2,3}. The penultimate layer activations correspond to fc2.
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Fig. 4. 
Hypercolumn representation from pixel-level convolutional activations at a particular layer. 

Given the activation maps for all channels A1, …, Cl  of the layer, the procedure selects the 

pixels with the maximum activation in each channel A1, …, Cl , combines these activations in 

an aggregate activation map by keeping only the selected pixels while suppressing the others 

Aagg
l , and vectorizes the resulting map as the final representation vec Aagg

l .
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Fig. 5. 
Final patch-level deep feature representation computed from the aggregation of initial deep 

feature vectors with class-specific network output.
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Fig. 6. 
ROI-level deep feature representation computed by pooling the final patch-level deep feature 

representations.
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Fig. 7. 
Patch-level outputs by the VGG16 network used for feature extraction. (a) Consensus 

diagnoses and RGB images for example ROIs with boundaries shown in black. (b) Classes 

predicted for patches as benign (green), ADH (yellow), DCIS (purple), INV (gray). Scores 

for individual classes (brighter values indicate higher probability): (c) Benign, (d) ADH, (e) 

DCIS, (f) INV. These scores are used in (4) as weights for the proposed feature 

representation.
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Fig. 8. 
ROI-level outputs for example slides. (a) Consensus diagnoses and RGB images. (b) 

Regions used as ROI proposals. (c) Classes predicted for these regions as benign (green), 

ADH (yellow), DCIS (purple), INV (gray). (d) Consensus ROIs and their diagnoses with the 

same color coding.

Mercan et al. Page 24

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2022 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mercan et al. Page 25

TABLE I

CLASS DISTRIBUTION OF SLIDES AND ROIS IN THE DATA SET.

Benign ADH DCIS INV Total

Slide
Training set 34 35 41 10 120

Test set 22 48 38 12 120

ROI
Training set 60 58 85 17 220

Test set 37 81 80 19 217
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TABLE II

STATISTICS OF ROI BOUNDING BOX SIZES (NUMBER OF PIXELS AT 40×).

Benign ADH DCIS INV

Min. 1,400 × 1,200 1,320 × 1,120 1,041 × 1,400 1,708 × 2,987

Max. 41,652 × 39,617 39,585 × 28,975 73,612 × 64,843 72,442 × 55,151

Mean 10,495 × 8,943 7,075 × 6,206 11,063 × 9,812 25,238 × 22,899

Std.dev. 8,877 × 7,081 5,455 × 4,347 11,051 × 8,266 17,514 × 14,994
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TABLE III

IMPACT OF MAGNIFICATION ON ROI-LEVEL CLASSIFICATION (%).

Method 2.5× 5× 10× 20×

Penultimate-Baseline 55.50 59.74 59.79 44.57

Hypercolumn-Baseline 40.04 49.85 47.17 41.98

Penultimate-Weighted 60.71 67.63 67.13 64.27

Hypercolumn-Weighted 65.72 68.69 71.92 62.81
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TABLE IV

COMPARISON OF ROI-LEVEL CLASSIFICATION PERFORMANCE (%).

Method VGG16 ResNet-50

Majority-Voting 67.02 69.03

Learned-Fusion [15] 66.45 67.77

BoW-16 56.00 60.40

BoW-32 66.49 57.90

BoW-64 62.53 64.53

Fisher-16 65.03 62.34

Fisher-32 65.52 60.97

Fisher-64 57.75 66.75

Crop/resize – 58.48

Pyramid-Pooling – 61.93

Penultimate-Baseline 63.10 59.79

Hypercolumn-Baseline 63.86 47.17

Penultimate-Weighted 69.89 67.13

Hypercolumn-Weighted 72.65 71.92

Y-Net [19] 68.20

Pathologists [19] 70.00
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TABLE V

CONFUSION MATRICES FOR ROI-LEVEL CLASSIFICATION.

(a) Penultimate-Weighted (b) Hypercolumn-Weighted

Predicted Predicted

Benign ADH DCIS INV Benign ADH DCIS INV

Ref.

Benign 25 8 4 0

Ref.

Benign 29 5 2 1

ADH 13 50 17 1 ADH 18 44 15 4

DCIS 2 3 69 6 DCIS 3 3 62 12

INV 0 0 7 12 INV 0 0 4 15
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TABLE VI

CLASS-SPECIFIC STATISTICS ON THE PERFORMANCE OF ROI-LEVEL CLASSIFICATION. THE NUMBER OF TRUE POSITIVES (TP), 

FALSE POSITIVES (FP), FALSE NEGATIVES (FN), AND TRUE NEGATIVES (TN) ARE GIVEN. PRECISION, RECALL (ALSO KNOWN 

AS TRUE POSITIVE RATE AND SENSITIVITY), FALSE POSITIVE RATE (FPR), SPECIFICITY (ALSO KNOWN AS TRUE NEGATIVE RATE), 

AND F-MEASURE ARE ALSO SHOWN.

(a) Penultimate-Weighted

Class TP FP FN TN Precision Recall/Sensitivity FPR Specificity F-measure

Benign 25 15 12 165 0.6250 0.6757 0.0833 0.9167 0.6494

ADH 50 11 31 125 0.8197 0.6173 0.0809 0.9191 0.7042

DCIS 69 28 11 109 0.7113 0.8625 0.2044 0.7956 0.7797

INV 12 7 7 191 0.6316 0.6316 0.0354 0.9646 0.6316

(b) Hypercolumn-Weighted

Class TP FP FN TN Precision Recall/Sensitivity FPR Specificity F-measure

Benign 29 21 8 159 0.58 0.7838 0.1167 0.8833 0.6667

ADH 44 8 37 128 0.8462 0.5432 0.0588 0.9412 0.6617

DCIS 62 21 18 116 0.747 0.775 0.1533 0.8467 0.7607

INV 15 17 4 181 0.4688 0.7895 0.0859 0.9141 0.5882
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