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Abstract

Motivation: Bacteriophages (aka phages), which mainly infect bacteria, play key roles in the biology of microbes. As
the most abundant biological entities on the planet, the number of discovered phages is only the tip of the iceberg.
Recently, many new phages have been revealed using high-throughput sequencing, particularly metagenomic
sequencing. Compared to the fast accumulation of phage-like sequences, there is a serious lag in taxonomic classifi-
cation of phages. High diversity, abundance and limited known phages pose great challenges for taxonomic ana-
lysis. In particular, alignment-based tools have difficulty in classifying fast accumulating contigs assembled from
metagenomic data.

Results: In this work, we present a novel semi-supervised learning model, named PhaGCN, to conduct taxonomic
classification for phage contigs. In this learning model, we construct a knowledge graph by combining the DNA se-
quence features learned by convolutional neural network and protein sequence similarity gained from gene-sharing
network. Then we apply graph convolutional network to utilize both the labeled and unlabeled samples in training to
enhance the learning ability. We tested PhaGCN on both simulated and real sequencing data. The results clearly
show that our method competes favorably against available phage classification tools.

Availability and implementation: The source code of PhaGCN is available via: https://github.com/KennthShang/
PhaGCN.

Contact: yannisun@cityu.edu.hk

1 Introduction

Bacteriophages (or phages), which mainly infect bacteria, are among
the most common and diverse biological entities in the biosphere
(McGrath et al., 2007). They regulate the actions of the ecosystem
through killing, metabolic reprogramming or gene transfer
(Fernández et al., 2018; Hurwitz and U’Ren, 2016). As a major
agent of horizontal gene transfer between bacteria, phages can
change the virulence of bacteria and indirectly cause human dis-
eases. There are active studies that use phages for applications such
as phage therapy (Loc-Carrillo and Abedon, 2011), disease diagnos-
tics (Bazan et al., 2012; Wang and Yu, 2004) and antimicrobial
drug discovery (Liu et al., 2004).

Despite important functions of phages, our understanding of
them is still very limited. Metagenomic sequencing, which allows us
to obtain total genomic DNA directly from host-associated and en-
vironmental samples, has contributed significantly to new phage dis-
covery (Dutilh et al., 2014; Moon et al., 2018, 2020a,b). In
particular, metagenomic sequencing allows sequencing of uncul-
tured dark matter of the microbial biosphere, which can contain a
large amount of phages (Perez Sepulveda et al., 2016). The advance-
ments of high-throughput sequencing, assembly and contig

scaffolding have led to phage-like contigs or genomes from different
types of samples. According to the RefSeq database supported by
the National Center for Biotechnology information (NCBI), the
number of identified phages changed from 1468 in 2015 to 3852 in
2020 in the RefSeq database, which is more than twice of increase.
Despite the increase, known phages is just the tip of the iceberg of
the virome on the planet (Santiago-Rodriguez and Hollister, 2019).
How to automatically and accurately mine phages and assign their
taxonomic groups from vast amount of sequencing data remains a
challenging problem.

There are two specific challenges for phage classification. First,
the phages with known taxa are very limited. The International
Committee on Taxonomy of Viruses (ICTV) is responsible for the
official virus taxonomy and organizes viruses in order, family, sub-
family, genera and species. Current ICTV classification procedures
cannot catch up with new phage discovery. For example, one of the
phage order named Caudovirales has 3691 reference genomes.
However, there are more than 1800 new Caudovirales sequences
found in 2020 that are unclassified into families. Limited labeled
genomes pose challenges for both alignment-based and learning-
based classification. Second, many phages in different taxa can share
protein homologs, which adds ambiguity for alignment-based
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taxonomic classification. For example, more than 7616 (�10%)
proteins in all annotated phage proteins are shared by phages in dif-
ferent families under Caudovirales. In addition, more than 18 970
(�27%) pairs of highly similar proteins (E-value of BLASTP result
< 10�50) are encoded by phages in different families. Therefore,
using homology search alone can return ambiguous classification.

In this work, we present a method that automates taxonomic
classification for contigs, which are the outputs of assembly.
Although taxonomic classification can be conducted on both reads
and contigs (Keegan et al., 2016), recombination in viruses can
make read-level taxonomic classification difficult. In addition, more
distinctive features can be derived from contigs and thus can lead to
improved classification accuracy. Current metagenomic assembly
tools, such as MEGAHIT (Li et al., 2015), have been extensively
tested and can produce quality contigs from complex datasets. Thus,
our tool accepts contigs as input. In order to address the aforemen-
tioned challenges, we developed a semi-supervised learning frame-
work that incorporated the automatically learned features for each
contig via a convolutional neural network (CNN), the protein se-
quence similarity, and the gene-sharing features between contigs/
genomes. Both the unlabeled and labeled sequences were utilized for
training in a graph convolutional neural network (GCN). We will
demonstrate that the features from the unlabeled sequences (contigs)
improve the learning ability and accuracy for phage classification.
Below we summarize related work for phage classification.

1.1 Related work
Many attempts have been made for phage taxonomic classification.
They can be roughly divided into two groups: alignment-based
(Aiewsakun et al., 2018; Chibani et al., 2019; Kristensen et al.,
2013) and learning-based (Bolduc et al., 2017; Jang et al., 2013;
2019; Rohwer and Edwards, 2002). Alignment-based methods util-
ize either nucleotide-level or protein-level homology search between
query contigs and reference genomes for assigning the taxon for the
query. ClassiPhage (Chibani et al., 2019) and Phage Orthologous
Groups (POGs) (Kristensen et al., 2013) are two representative
alignment-based phage classification tools. POGs extract taxon-spe-
cific marker genes and align query sequences against the marker
genes using BLASTP. If there are statistical significant alignment for
the contigs, the label of the best-aligned marker gene will be
assigned to the contigs. ClassiPhage builds a profile Hidden Markov
Model (pHMM) for each phage taxonomic group and apply HMM-
based alignment for classification. There are two limitations with
alignment-based method. First, as genes or proteins can be shared
by different taxa, alignment-based method may lead to ambiguous
label assignment or return a label with a higher rank using the low-
est common ancestor in the phylogenetic tree. Second, as phages are
highly abundant and diverse, alignment-based methods are not able
to assign taxa for new species that harbor novel proteins or lack
quality alignments with the references. For example, under the
Caudovirales order, 187 006 proteins are named as hypothetical
proteins without known family labels. A total of 13 382 proteins
from phages released in 2020 do not have BLASTP results with the
phages released before 2020. Thus, using only sequence similarity
cannot provide ideal resolution.

There are a number of learning-based tools for microbe classifi-
cation such as the Naı̈ve Bayes classifier (Wang et al., 2007) and
CNN (Shang and Sun, 2020). They use either manually derived or
automatically learned features to predict taxonomic labels for bac-
teria or RNA viruses. The most relevant learning-based tool to
phage classification is vConTACT 2.0 (Jang et al., 2019), which
applies a graph clustering algorithm to assign labels for unknown
contigs. In order to leverage gene organization conservation for
phage classification, vConTACT utilizes a clustering algorithm to
construct a gene-sharing network (Bolduc et al., 2017; Jang et al.,
2019). If the reference genomes and contigs are in the same cluster,
the labels of the reference genomes will be assigned to those contigs.
While these gene-sharing network methods present satisfactory per-
formance on classification of complete genomes, the classification
accuracy decreases as the length of the contigs becomes shorter. The
decreased performance stems from the fact that short contigs do not

contain many proteins and thus do not lead to valid edges in the
gene-sharing network. As a result, the clustering algorithms fail to
group contigs and reference genomes in the same cluster. Then, no
labels will be assigned to these contigs.

Given the enormous diversity of phages and the sheer amount of
unlabeled phages, we formulate the phage classification problem as
a semi-supervised learning problem. We choose the GCN as our
learning model and combine the strength of both the alignment-
based and the learning-based methods. First, we utilize DIAMOND-
derived sequence similarities between contigs and references
(Buchfink et al., 2015) to improve the edge construction process in
the gene-sharing network. Second, to handle the situation that short
contigs lack gene organization-related features, a CNN-based model
is adopted to encode nucleotide information from the sequence. The
GCN model allows us to utilize features from both labeled and un-
labeled samples in training and thus lead to more accurate and sensi-
tive phage classification. We compared our tool (named PhaGCN)
with three state-of-the-art models specifically designed for phage
classification: POGs (Kristensen et al., 2013), vConTACT 2.0 (Jang
et al., 2019) and ClassiPhage (Chibani et al., 2019). The experimen-
tal results demonstrated that PhaGCN outperforms other popular
methods.

2 Materials and methods

Semi-supervised learning is a machine learning approach that com-
bines a small amount of labeled data with a large amount of un-
labeled data during training. The main purpose of using the
unlabeled data is to utilize their conjunction information with the
labeled data to improve the classification accuracy. Because the
number of reference (labeled) phage genomes is small and new (un-
labeled) phage contigs are increasing quickly, we formulate the
phage classification problem as a semi-supervised learning problem.

One of the semi-supervised learning approaches, named GCN, is
based on deep learning. The basic idea of GCN is to apply a convo-
lutional layer on a graph to utilize the features on non-Euclidean
structure (Kipf and Welling, 2016). The purpose of the graph convo-
lutional layer is to automatically learn the topological features from
the knowledge graph. Then, unlabeled samples/nodes can be repre-
sented as the weighted sum of their neighbor samples/nodes features.
In biological data analyses, there exist many non-Euclidean struc-
tures such as protein topology graph on the supersecondary struc-
ture, gene-sharing network and diseases-gene relationship graph.
GCN is expected to render high classification performance by
employing the structural data. For example, GCN has shown prom-
ising results in finding the relationship between long non-coding
RNAs and diseases (Alam et al., 2020; Zhao et al., 2020). In phage
classification, different phage genomes and contigs can share genes
or proteins, which can be encoded in the graph of GCN. In addition,
the nodes in GCN can embed automatically learned feature from nu-
cleotide sequences. During the training, convolution is conducted
for each node and its neighbors defined by the graph. The learned
topological features will then be applied for classifying samples
without labels.

The input to our GCN model is a knowledge graph. There are
two key components in the knowledge graph: node encoding and
edge construction. The node is a numerical vector learned from con-
tigs using a CNN. The edge encodes features from both the sequence
similarity and the organization of genes. Figure 1 contains the major
components for node and edge construction. To encode a sequence
using a node, a pre-trained CNN is adopted to capture features from
the input DNA sequence (A1–A3). The CNN model is trained to
convert proximate substrings into vectors of high similarity. The
edge construction consists of several steps. We employ a greedy
search algorithm to find the best BLASTP results (E-value less than
1e-5) between the 6-frame translations of the contigs and the data-
base (B1–B4). Then the Markov clustering algorithm (MCL) is
applied to generate protein clusters from the BLASTP result (B5)
(Jang et al., 2019). Based on the results of BLASTP (sequence simi-
larity) and MCL (shared proteins), we define the edges between
sequences (contigs and reference genomes) using two metrics: Pweight
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and Eweight (B6–B7). By combining the node’s features and edges
(C1), we construct the knowledge graph and feed it to the GCN to
classify new phage contigs.

2.1 Using CNN to encode input sequences in the

knowledge graph
CNN can automatically learn motif-related features for sequence
classification (Alipanahi et al., 2015; Seo et al., 2018). Although
CNN can be directly applied to phage classification, our experi-
ments will show that using CNN alone cannot render the best classi-
fication performance. Thus, we only train the CNN for encoding
input contigs.

As shown in Figure 2, there are two slightly different network
structures in the CNN for ‘train mode’ and ‘encoding mode’, re-
spectively. In the train mode (Fig. 2A), we use the reference database
to train the CNN model. In the encoding mode (Fig. 2B), the output
of the first dense layer in the pre-trained CNN will be used to encode
sequences into numerical vectors.

Train mode: Because the CNN model can only handle fixed
length input, all the inputs will be cut into 2 kbp segments with
user-specified stride value (default 50). The segment has the same
label as the underlying genome according to the ICTV taxonomic
classification.

The CNN model contains three different parts: embedding layer,
convolutional layer, and dense layer. The embedding layer is used to
convert the DNA sequence into numerical inputs for convolution.
There are two major methods for the embedding layer: one-hot
embedding and skip-gram embedding (Mikolov et al., 2013). As
shown in our previous work of using CNN for classifying RNA
viruses (Shang and Sun, 2020), the skip-gram-based embedding can
improve CNN’s learning ability. Thus, in this work, we imple-
mented a skip-gram embedding layer that can map proximate k-
mers into highly similar vectors. We trained the embedding layer
using k-mers and their neighboring (proximate) k-mers so that the

embedding layer can learn their adjacent relationship. Specifically,
in order to train the embedding layer, we use a 3-mer at position i as
input and 3-mers located at iþ j as output, where �m � j � m. m
is the hyperparameter that can be specified for the skip-gram model.
We employ 100 hidden units in the embedding layer to encode the
3-mers and the output of the embedded vector has 100 dimensions.
Thus, each 2 kbp segment is converted into embedded matrix
M 2 R

2;000�100.

ZiðM;wconvÞ ¼ ReLUð
Xnconv

j¼1

wj
conv �M½i : iþ d1 � 1�½1 : d2� þ bÞ (1)

Hð0Þ ¼MaxpoolðZðM;wconvÞÞ (2)

Hðlþ1Þ ¼ ReLUðHðlÞ;wðlÞÞ (3)

output of train mode ¼ SoftMaxðHð2Þ;wð2ÞÞ (4)

Then, the embedded matrix M will be fed into the convolutional
layer. Equation 1 is the convolution function. b is the bias term; d1

and d2 are the filter sizes. Since the embedded vector has 100 dimen-
sions, d2 ¼ 100. M½i : iþ d1 � 1�½1 : d2� defines a 2D window size of
d1 � d2 of the embedded matrix M. ReLU is the activation function.
The convolutional filters wconv contain nconv 2D matrices and wj

conv

is the j-th filter. We applied filters repeatedly to each possible win-
dow of the input embedded matrix to produce a feature map. Then
the dense layer is applied to compress the features captured by the
convolutional layer as shown in Equations 2 and 3. First, max-pool-
ing (Equation 2) is applied to the feature map to capture the most
useful information from the convolutional layer. Second, we use
two dense layers with ReLU activation function (Equation 3) to
learn and compress the feature map. HðlÞ is the feature map in hid-
den layer l and wðlÞ is the weight parameters in the l-th hidden layer.
Since we only has two dense layers, l 2 f0;1g. Finally, the SoftMax
function (Equation 4) is adopted to generate the prediction. As

Fig. 1. The pipeline of PhaGCN. A1: cut the contigs into 2 kbp segments. A2: feature learning from the inputs using CNN. A3: construct nodes using encoded vectors. B1: con-

tig translation using 6 reading frames. B2: filter short translations (12 amino acids). B3: align contigs against reference database using the DIAMOND BLASTP command. B4:

choose the best translated frame for the BLASTP result. B5: use the BLASTP result to construct protein clusters. B6 and B7: define edges based on the sum of the Eweight and

Pweight. C1: construct the knowledge graph for GCN
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shown in Figure 2, in the train mode, we employ CrossEntropyLoss
to calculate the error between prediction and real label and backpro-
pagate the loss to update the parameters in the model. The detailed
parameters are listed in our Github repository.

Encoding mode: After training the CNN model, we utilize the
pre-trained parameters to convert contigs into numerical vectors.
The main difference in the encoding mode is that we only use the
output of the first dense layer as the learned feature rather than
using the SoftMax function for prediction. Equation 5 shows the
equation to convert x (an input 2 kbp segment) into the output of
the first dense layer. If a contig is cut into multiple segments of
length 2 kbp, we will conduct vector addition for all the segments’
outputs and divide it by the number of segments. Thus, contigs of
different lengths are always converted into vectors of the same size
(determined by the units of the dense layer, default 512).

OutðxÞ ¼ ReLUðpoolðZðM;wconvÞ;wð0ÞÞ (5)

2.2 Construction of the edge in GCN
The edges connect nodes that are likely in the same taxonomic
group. We define the edge by incorporating both the number of
shared protein clusters and also the average protein similarity be-
tween two sequences. Intuitively, if two sequences share a large
number of common protein clusters with high similarity, they tend
to belong to the same taxa. In order to quantify the significance of
two sequences sharing c common proteins, we first define protein
clusters. A pair of proteins from two sequences is called a shared
protein if they are in the same protein cluster.

2.2.1 Construction of the protein cluster

We follow the idea in Bolduc et al. (2017) and Jang et al. (2019) to
construct protein clusters. We start by extracting proteins from all
sequences. For the genomes in the reference database, proteins are
downloaded from NCBI RefSeq. For the input contigs, DNA
sequences are translated into amino acid sequences using six reading
frames. We employ DIAMOND to conduct all-against-all pairwise

alignment between contigs’ 6-frame translations and proteins
encoded by the genomes. If there are multiple alignments for differ-
ent reading frames of a contig, only the best frame is kept. Then we
create a weighted graph where the node is a protein sequence in the
contig or genome and the edge represents an alignment with E-value
less than a threshold. The edge weight is the E-value. Then protein
clusters are subsequently identified using the MCL. Finally, clusters
that contain at least two proteins will be kept.

2.2.2 Definition of the edges

The edge is defined by computing two metrics: Pweight and Eweight.
Pweight is adopted to calculate the expected number of sequences
sharing at least an observed number of common proteins (i.e. c pro-
teins). Following vConTACT (Bolduc et al., 2017), by assuming that
each of the n protein clusters has the same chance to be chosen, we
compute the probability that any two sequences containing a and b
protein clusters share at least c clusters in Equation 6. Equation 7
then computes the expected number of sequence pairs with at least c
common proteins out of

N
2

� �
sequence pairs, where N is the num-

ber of sequences (contigs and reference genomes). With increase of
c, P in Equation 6 becomes small enough to return a positive Pweight.

Pðy � cÞ ¼
Xminða;bÞ

i¼c

a
i

� �
n� a
b� i

� �

n
b

� � (6)

Pweight ¼ �log Pðy � cÞ � N
2

� �� �
(7)

While Pweight is used to evaluate whether two sequences share a
significant number of common proteins, Eweight is adopted to calcu-
late the sequence similarity using alignments’ E-values. For two
sequences A and B with Nc shared proteins, we first define S(A, B)
in Equation 8, which is the arithmetic mean of the E-values of Nc

alignments. S(A, B) has a small value only when all the shared pro-
teins have significant E-values, which helps reduce false edge

Fig. 2. The structures of the CNN model in PhaGCN for training (A) and encoding (B). R1, R2, R3 are the reference genomes used for training. C1, C2, C3 are the contigs that

need to be encoded. In train mode, sequences will be fed to CNN to update parameters during back propagation. In encoding mode. The pre-trained CNN will be used to en-

code the sequences into numerical vectors. Then these vectors will be adopted as node features in the knowledge graph
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construction for short contigs. For each genome A, SðA;A0Þ is
ranked for all A’s adjacent nodes A0. Users can decide how many
edges to keep by specifying a threshold. By default, we only keep the
top five edges for each genome A. For all the kept edges,
Eweight ¼ SðA;BÞ.

SðA;BÞ ¼

0; if no alignment result

�log

XNc

i¼0

evalueðiÞ

Nc

0
B@

1
CA
; otherwise

8>>><
>>>:

(8)

Edges in the knowledge graph: The final edge in the knowledge
graph is defined based on the sum of Pweight and Eweight. An edge is
defined when the sum is above a threshold s, which is 1 by default
(Equation 9). It connects two sequences with enough common pro-
teins of high similarity. Usually, as long contigs share more proteins
with the reference genome database, Pweight tends to big enough for
creating edges between the long contigs and the knowledge graph.
However, short contigs have fewer shared proteins and thus we use
Eweight to examine whether the shared proteins have significant simi-
larities with references for creating an edge. If a contig has no edge
connecting to the knowledge graph, PhaGCN will not output a pre-
diction. Only contigs in the knowledge graph will be fed to the GCN
for training and prediction.

Edge ¼ 1; if Pweight þ Eweight > s
0; otherwise

�
(9)

2.3 The GCN model
After constructing the knowledge graph, we train a GCN to assign
labels for all unlabeled contigs.

Hðlþ1Þ ¼ ReLUð ~D
�1

2 ~G ~D
1
2HðlÞWðlÞÞ (10)

Out ¼ SoftMaxðHð2ÞWð2ÞÞ (11)

The basic concept of graph convolutional layer is shown in
Equation 10. Suppose we have N sequences (nodes) in the know-
ledge graph. G is the R

N�N adjacency matrix of the knowledge
graph and IN is an R

N�N identity matrix. ~G is calculated with
~G ¼ Gþ IN. ~D is the R

N�N diagonal matrix calculated with
ðTex translation failedÞ. HðlÞ is the feature map in the l-th hidden
layer; Hð0Þ is the node feature matrix; and WðlÞ is a matrix of weight
parameters. After the graph convolutional layer, we apply a dense
layer and use the SoftMax function to calculate the output matrix
Out 2 R

N�nlabel (Equation 11). Because we have two graph convolu-
tional layers and one dense layer in our model, l 2 f0; 1g. The out-
put dimension nlabel is decided by the number of classes in the

database. As shown in Figure 3, only the labeled samples will be
used to calculate the loss in the training process. We adopt L2 loss
to calculate the error between prediction and the labeled samples
and back propagate the loss to update the weight parameters. After
training the GCN model, we freeze the parameters and use the
SoftMax value of the unlabeled samples to assign their labels in the
test mode. The detailed parameters are listed in our Github
repository.

3 Result

3.1 Data and performance metrics
We demonstrate the performance of PhaGCN on classifying contigs
in families under Caudovirales, which is an order containing the ma-
jority of known phages from RefSeq (95.8% of total phage reference
genomes). We downloaded the Caudovirales reference genomes
from the NCBI RefSeq database. As shown in Table 1, there are
3639 genomes from eight different families. As the lower ranks con-
tain few genomes in each group, we focus on family-level classifica-
tion in the experiment.

3.1.1 Data and experiment design

PhaGCN was tested on both simulated and real sequencing data.
For the simulated data, we applied two different methods to gener-
ate contigs with known labels: (1) randomly sample contigs from
the reference genome; (2) simulate reads with ART-Illumina (Huang
et al., 2012) and run MEGAHIT (Li et al., 2015) to assemble con-
tigs. After validating PhaGCN on simulated data with known
ground truth, we downloaded two real sequencing datasets from
NCBI SRA and evaluated PhaGCN on assembled contigs. As phages
are highly abundant in marine environment samples (Perez
Sepulveda et al., 2016), we tested PhaGCN on virus-like contigs
from 71 metagenomic data sets that are sequenced from oyster. We
recorded macro-accuracy, macro-recall and macro-precision for
each experiment (Equations 12–14) when the ground truth can be
derived. Nclass is the total number of classes. TP is the True positive,
TN is the True negative, and FN is the false negative. Acci is the
accuarcy of class i. Except for CNN, each tool can output either a
family label or no label at all (no prediction). For each class, if its
positive samples have no predictions, they are counted as FN. If its
negative samples have no predictions, they are counted as TN. As
macro-average will compute each metric independently for each
class and then take the average, these metrics treat all classes
equally.

Accmacro ¼
PNclass

i¼0 Acci

Nclass
(12)

Precisionmacro ¼
PNclass

i¼0 Precisioni

Nclass
¼
PNclass

i¼0
TPi

TPiþFPi

Nclass
(13)

Recallmacro ¼
PNclass

i¼0 Recalli
Nclass

¼
PNclass

i¼0
TPi

TPiþFNi

Nclass
(14)

The main purpose of PhaGCN is to classify new phages that do
not have reference genomes in the training data. When the training
and testing data share common genomes, high accuracy may be
attributed to memorization rather than learning. Thus, in all the
experiments conducted using PhaGCN, we use genome-masking,
meaning that the genomes in the testing data will be removed from
the training data so that they do not share any genomes. The test
contigs thus represent novel phages.

We compare our results with three representative and widely
used pipelines: vConTACT 2.0, POGs and ClassiPhage. In addition,
as CNN itself can conduct classification, we also compared with the
CNN model we trained for PhaGCN.

Fig. 3. The structure of the GCN model in PhaGCN. Both feature from labeled

(green, red and blue color) and unlabled samples (gray color) will be used in training

and prediction. In train mode, only labeled samples will be utilize to calculate the

loss and update the parameters. In test mode, the SoftMax function will be applied

to generate prediction for unlabeled samples
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3.2 Experiments using simulated contigs
In this experiment, we randomly chose 20 genomes from each family
as the testing species. The remaining genomes were used as the train-
ing set. Thus the testing data contain 160 genomes from all 8 fami-
lies under Caudovirales. Then, we sampled contigs from each test
genome by generating random starting positions. To estimate the
impact of contig length on PhaGCN, we generated contigs in three
length ranges: [4 kbp, 8 kbp], [8 kbp, 12 kbp] and [12 kbp, 16 kbp].
Each contig is generated using a random start position and a random
length within each range. For each of the length range, we generated
10 contigs. Thus we have 1600 contigs for testing. Finally, we
repeated this experiment for three times and recorded the average
performance of the three experiments. In total, for each length
range, 4800 contigs from 480 genomes were tested. We also
recorded the results of using complete genomes as the test data. To
have a fair comparison, we applied the same method to construct
the training set (or reference database) and the test set for
vConTACT 2.0, POGs and ClassiPhage.

Figure 4 shows that PhaGCN outperforms other state-of-the-art
tools across different length range. With the increase of contig
length, the performance of all pipelines increases. This is expected
because longer contigs contain more proteins, which can lead to bet-
ter classification performance. We also evaluated the classification
performance of only using the CNN model in PhaGCN. Both the re-
call and precision of using GCN is better than using only CNN,
showing that the knowledge graph enhances the learning ability of
the model. In addition, the classification performance of PhaGCN is
stable with the change of the contig length, making it useful for clas-
sifying short contigs.

Figure 5 shows the classification accuracy of all tools on ran-
domly sampled contigs. The bar height shows the percentage of pre-
dicted contigs. In addition, each bar is divided into two parts. The
top part (solid) is the misclassification rate while the bottom part
with patterns corresponds to the macro-accuracy for the classified
contigs. The result shows that PhaGCN always has the largest num-
ber of predicted contigs with the highest classification accuracy.

Although vConTACT 2.0 can assign the correct labels to most of
the predicted contigs as shown in Figure 5, it only generated predic-
tions for a small number of the contigs in two families (Podoviridae
and Siphoviridae). For families without any prediction, the precision
is 0. Thus, the macro-precision of vConTACT is small.

3.3 Experiments using simulated reads
In this experiment, we downloaded all newly released Escherichia
coli phages under Caudovirales in 2020 from NCBI RefSeq and used
them as the testing species (a total of 99 species are downloaded).
And we downloaded all Caudovirales phages released in 2019 from
NCBI RefSeq and used them as the training set. Consequently, these
newly released E.coli phages can be treated as unknown phages for
our model. Then we applied ART-Illumina to simulate reads from
the testing sequences. The parameters used for generating reads are -
p, -l 150, -ss HS25, -f 20, -m 200 and -s 10. The output contains
150 bp paired-end reads simulated under HiSeq 2500. We mixed all
the simulated reads in one dataset and run MEGAHIT to assemble
them. In order to quantify the performance of different tools, we de-
termine the correct label of contigs by aligning them against the test

genomes using BLAST in glocal mode. Only contigs of length above
2 kbp with taxon-specific alignment results and query coverage
>85% will be kept. As a result, a total of 301 contigs were used as
input for comparison.

As shown in Figures 6 and 7, PhaGCN outperforms other tools
across different length, which is consistent with the conclusion in
Section 3.2. We also find that when the length of the contigs
becomes shorter ([2 kbp, 4 kbp]), PhaGCN can still achieve over
80% accuracy. Although the reads simulated by ART-Illumina con-
tain sequencing error, the performance of PhaGCN still achieves
high accuracy (100% for contigs over 8 kbp). Because we only
tested newly released E.coli phages in 2020, the classification per-
formance of all methods were slightly better than the results in
Section 3.2.

Table 1. Eight families under Caudovirales

Name Number of genomes

Ackermannviridae 63

Autographiviridae 378

Demerecviridae 87

Drexlerviridae 112

Herelleviridae 136

Myoviridae 775

Podoviridae 337

Siphoviridae 1805

Fig. 4. The precision and recall (Equations 13 and 14) of PhaGCN, vConTACT2.0,

ClassiPhage, POGs and the CNN model in PhaGCN on simulated contigs, which

are randomly sampled from phage genomes. X-axis: the length range of contigs. For

each length range, there are 1600 randomly sampled contigs from 20 genomes of 8

families. The reported performance is averaged on three such sets of contigs for each

length range

Fig. 5. The percentage of classified contigs and classification accuracy (Equation 12)

of each model on simulated contigs, which are randomly sampled from phage

genomes. Each bar shows the percentage of classified contigs. The solid part shows

the misclassification rate and the bottom part with patterns represents the macro-

accuracy
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3.4 Running time comparison
The most resource demanding component in PhaGCN is the se-
quence alignment. We used it to produce the protein clusters by con-
ducting pairwise alignments between contigs and reference
sequences. PhaGCN produces protein clusters for each set of input
contigs by assuming that they may contain novel proteins. In add-
ition, alignment is also conducted for defining the edge in the know-
ledge graph. Table 2 shows the average elapsed time of classifying
100 contigs for each tool. PhaGCN is not the fastest program.
Optimization can be applied to reduce the number of pairwise align-
ments. For example, we can produce a database of protein clusters
and reduce the number of pairwise alignments.

3.5 Experiments on real sequencing data
In this experiment, we searched for real sequencing data that contain
Caudovirales at NCBI SRA and downloaded two datasets,
SRR12949983 and SRR13132427. Then we used MEGAHIT to as-
semble reads into contigs on these two datasets separately. To quan-
tify the performance of phage classification on these two datasets,
we used the provided read-level taxonomic analysis by NCBI SRA
as the ground truth. The phages in the two datasets provided by
NCBI SRA are listed in Table 3. We used the same method intro-
duced in Section 3.3 to label the contigs and removed all these
genomes in Table 3 from the reference database before training
PhaGCN. The contigs in the test data are listed in Table 4.

We compared the phage labels assigned by PhaGCN,
vConTACT, POGs and ClassiPhage on the assembled contigs.
Because the real sequencing data might contain bacteria sequences,
we run DeepVirFinder (Ren et al., 2020) to reject the contigs that
belong to bacteria. As shown in Figure 8, there is only one bacterial
contig in each dataset. All other contigs (43 contigs) were fed into
the four tools for classification.

Figure 8 reveals that PhaGCN achieves better classification per-
formance than vConTACT, POGs and ClassiPhage. PhaGCN has
100% accuracy in both datasets. Many contigs could not be classi-
fied by vConTACT 2.0 (unlabeled in Figure 8). POGs and

ClassiPhage are able to assign labels for all contigs but a number of
them have wrong family labels.

In the dataset SRR121949983, there is one contig lacking
ground truth because the contig cannot be aligned to any reference
genome in Table 3. By extending the reference database to the
Nucleotide Collection (nr/nt) database, BLAST shows that this con-
tig belongs to a phage in Siphoviridae. We input this contig to the
four tools and only PhaGCN assigned the correct label. It is worth
noting that the reference genome is not in the training data of
PhaGCN. The performance of alignment-based approaches heavily
relies on the reference database while PhaGCN can learn the fea-
tures for classifying new contigs.

Furthermore, we showed the composition of these two datasets
before and after using PhaGCN in Figure 9. The results revealed
that our model can greatly improve the composition analysis for the
dark matter. Thus, PhaGCN can benefit metagenomic analysis.

3.6 Phage classification in contigs produced from oyster

metagenomic data
After validating PhaGCN on simulated datasets and two real
sequencing datasets, we applied PhaGCN to contigs assembled from

Fig. 6. The precision and recall (Equations 13 and 14) of PhaGCN, vConTACT2.0,

ClassiPhage, POGs and the CNN model in PhaGCN on contigs that are assembled

using MEGAHIT from simulated reads. 301 contigs assembled from simulated

reads of 99 species are used as inputs. The numbers of contigs for each length range

are 101, 107, 51 and 42, respectively

Fig. 7. The percentage of classified contigs and classification accuracy (Equation 12)

of each model on contigs that are assembled using MEGAHIT from simulated reads.

Each bar shows the percentage of classified contigs. The solid part shows the mis-

classification rate and the bottom part with patterns represents the macro-accuracy

Table 2. The average elapsed time to predict labels of 100 contigs

for each method

Program PhaGCN vConTACT 2.0 ClassiPhage POGs

Elapsed time

(min/100 contigs)

12 32 4 7

Note: All the methods are run on Intel
VR

Xeon
VR

Gold 6258 R CPU with 8

cores.

Table 3. Reference species in SRR12949983 and SRR13132427

SRR12949983 SRR13132427

Escherichia phage C5 Escherichia phage V18

Salmonella phage C2 Escherichia virus FV3

Serratia phage Pila Escherichia virus JES2013

Escherichia virus E112 Escherichia phage CEC_Kaz_2018

Escherichia virus ECML134 Escherichia phage SECphi18

Escherichia virus T4 Escherichia phage vB_EcoS_PNS1

Note: These species are shown in the associated taxonomic analysis at

NCBI SRA. We use them as the ground truth to assign labels to the assembled

contigs.
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metagenomic data of oyster samples. The samples were collected by
the co-author Dr. Jiang between April 2016 and July 2019 from
various sites along the coast of South China Sea. Metagenomic
sequencing was conducted from samples in the gill, visceral mass,
and mantle tissues of oyster using viral-like particle enrichment and
protocols in (Jingzhe and Hongying, 2018; Wei et al., 2018). There
are about 2.5 billions of raw reads from 71 libraries.

After applying standard quality control and MEGAHIT with the
default setting, there are about 3 375 091 contigs of length above
500 bp. After removing contigs that can be aligned to bacteria, ar-
chaea, eukaryota, we kept 22 966 contigs with length above 4000
bp as input to PhaGCN. Of them, 17 199 contigs can be assigned to
Caudovirales by PhaGCN.

When users apply composition analysis for their samples, preci-
sion is important for generating valid hypothesis. Because
vConTACT 2.0 has higher accuracy for what they can predict than
ClassiPhage and POGs based on our experiments, we compared
PhaGCN with vConTACT 2.0 in this experiment and summarized
the results in Table 5. Although we don’t have the ground truth for
this large-scale metagenomic sequencing data, the numbers of pre-
dicted contigs are consistent with the results of experiments on simu-
lated and real sequencing datasets. The contigs vConTACT 2.0 can
classify are significantly less than PhaGCN. �74.8% contigs are pre-
dicted by PhaGCN while �1.1% contigs are predicted by
vConTACT 2.0. The contigs predicted by vConTACT is a subset of
PhaGCN. We found that the clustering algorithm in vConTACT
failed to group contigs and reference genomes in the same cluster.
There exist many clusters containing only unlabeled contigs and
thus, no labels will be assigned to these contigs. Also, PhaGCN can
identify more families from the dataset. Because the classification
accuracy of PhaGCN is more than 92% when the length of contigs
is over 4 kbp, the result can provide useful family-level composition
analysis for the oyster metagenomic data.

3.7 Extension of PhaGCN
As Caudovirales is the order with the most number of sequenced
phages from RefSeq, we validated PhaGCN on classifying families
in this order. But PhaGCN can be conveniently extended to other
taxa. We extended PhaGCN by adding families that contain at least
10 genomes. Using this criterion, three families (Rudiviridae,
Microviridae and Inoviridae) were added. We used the leave-one-
genome-out method to choose testing genomes from these three
families and use the same method introduced in Section 3.2 to gener-
ate contigs. The classification results in Figure 10A show that
PhaGCN can correctly classify almost all of the contigs from the
extended families.

Using knowledge graph enables PhaGCN to detect targeted
phage families, which is useful for applications where only some
phages are of interest. Specifically, phages that are not in the train-
ing families usually won’t form edges with the nodes in the graph
and thus will not be mis-classified into Caudovirales. We validated
the detection ability of PhaGCN by testing whether PhaGCN can re-
ject contigs that do not belong to Caudovirales. We downloaded
4218 phage genomes that do not belong to Caudovirales from
RefSeq according to the ICTV taxonomic affiliation information.
For each genome, we apply the same method introduced in Section
3.2 to generate 10 contigs for each of them. Thus, a total of 42 180
contigs were tested. As shown in Figure 10B, only 3 of them are
accepted (predicted) by PhaGCN. This experiment demonstrates
that PhaGCN can be applied for targeted phage detection.

4 Discussion

As shown in the experiments, the performance of alignment-based
approaches, such as POGs and BLAST, heavily relies on the refer-
ence database. The ambiguous hits or lack of reference genomes for
highly divergent or novel phages can decrease the classification ac-
curacy. Existing learning-based tools like vConTACT 2.0 cannot
achieve good performance on short contigs. In this work, we demon-
strate that PhaGCN can render better performance for novel phage
classification. The major improvement of our method stems from
combined strength of the reference-based model and the learning-

Table 4. Contigs assembled by MEGAHIT and their family labels derived from their alignments against the species in Table 3

SRR12949983 SRR13132427

No. of contigs assembled by MEGAHIT (>2 kbp)

24 (including 1 bacterial and 1 unknown) 20 (including 1 bacterial)

Phage family No. of contigs Phage family No. of contigs

Autographiviridae 5 Myoviridae 14

Myoviridae 17 Siphoviridae 5

Fig. 8. The classification result of PhaGCN, vConTACT 2.0, POGs and ClassiPhage

on SRR12949983 (A) and SRR13132427 (B)

Fig. 9. The composition analysis of SRR12949983 (A) and SRR13132427 (B). Left:

composition analysis published at NCBI SRA. Right: composition analysis pre-

sented by PhaGCN

i32 J.Shang et al.



based model using the knowledge graph: the nodes contain automat-
ically learned features from nucleotide sequences and the edges are
created by protein-based alignment. Then the semi-supervised GCN
is applied on the knowledge graph to utilize both labeled and un-
labeled data for training.

Although PhaGCN has greatly improved phage contig classifica-
tion, we have several goals to optimize or extend PhaGCN in our fu-
ture work. First, we simplified the edge weight computation by
assuming that all protein clusters can be chosen with the same prob-
ability. We will investigate whether incorporating protein cluster
size and the cluster’s entropy in label distribution can render more
accurate edges. Second, PhaGCN can reject non-relevant phages
with high accuracy. Thus we will extend it to phage detection and
compare it with DeepVirFinder. Third, although we have demon-
strated that PhaGCN can be easily extended to more families, it is
still hard to predict classes with only a few training samples (less
than 10). We will incorporate relevant learning methods to improve
the classification accuracy for small families. Finally, we will explore
whether we can incorporate bacteria in our knowledge network for
phage host detection. This can be used to further validate the classi-
fication results on the oyster metagenomic data.
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Table 5. Prediction results of PhaGCN and vConTACT for contigs produced from the oyster metagenomic data

Ackermannviridae Autographiviridae Demerecviridae Drexlerviridae Herelleviridae Myoviridae Podoviridae Siphoviridae unclassified

vConTACT 0 0 0 0 0 50 116 102 22 698

PhaGCN 150 1727 301 74 32 5880 2682 6173 5767

Fig. 10. (A) The classification result of three added families: Rudiviridae,

Microviridae and Inoviridae. (B) PhaGCN can reject non-Caudovirales phages
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