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Background. Oridonin is a powerful anticancer compound found in Rabdosia rubescens. However, its potential impact on bladder
cancer remains uninvestigated. In this work, we aimed to detect the anticancer effect of oridonin on bladder cancer and explore the
molecular mechanisms involved.Methods. The anticancer activity of oridonin was assessed in vitro with a CCK8 assay, an annexin
V-FITC apoptosis analysis, and colony formation and Transwell migration assays which were performed with the human bladder
cancer cell line T24. Levels of apoptosis-related proteins, melastatin transient receptor potential channel 7 (TRPM7), and signaling
molecules were examined in oridonin-treated T24 cells by western blotting or RT-PCR. Oridonin anticancer efficacy was further
validated in vivo with a T24 xenograft mouse model. Results. Oridonin repressed the proliferative, colony-forming, and
migratory capacities of T24 cells, triggered extensive apoptosis in vitro, and retarded tumor growth in vivo. Moreover, oridonin
treatment significantly increased expression levels of p53 and cleaved caspase-3 and reduced expression of TRPM7, p-AKT, and
p-ERK. Conclusion. Oridonin exhibited outstanding antiproliferative and antimigratory effects on bladder cancer, and these
effects were at least partially associated with targeting of TRPM7 through inactivation of the ERK and AKT signaling pathways.
These findings provide insight for the clinical application of oridonin in bladder cancer prevention.

1. Introduction

Bladder cancer (BC) is reported to be the most frequent
genitourinary malignant neoplasm in the three urological
systems, and an estimated 81,400 new cases and 17,980
deaths are expected to occur in the United States in 2020
[1]. Non-muscle-invasive bladder cancer (NMIBC) is one
of the common subtypes of BC and accounts for 75% of clin-
ically diagnosed cases [2]. Although NMIBC is rarely fatal, its
recurrence rate is higher than that of other types of BC [3].
The preferred approach for NMIBC therapy is surgical exci-
sion [4]. Currently, the instillation of chemotherapy or
vaccine-based therapy after telescopic removal is performed
to eradicate residual microtumors and diminish the risks of
tumor recurrence and mortality [5–7]. However, the current
method of chemotherapy or vaccine-based therapy instilla-

tion in BC has not been documented to be universally effec-
tive and fails to effectively treat 30-45% of NMIBC patients
[8]. In addition, subsequent severe local or systemic compli-
cations inevitably arise [9]. Hence, more efficient therapeutic
strategies for overcoming the bottleneck in the treatment of
BC are strongly needed.

Transient receptor potential (TRP) channels are cation-
selective ion channels on the cell membrane that serve as
multifunctional sensors that respond to various stimuli, and
they have been implicated in the pathological initiation and
processes of cancer [10]. Melastatin transient receptor poten-
tial channel 7 (TRPM7), which is a TRP channel, contains an
ion channel and a serine/threonine protein kinase and func-
tionally controls Mg2+ and Ca2+ homeostasis [11]. Abnor-
mal expression of TRPM7 is frequently observed in various
cancers, including BC [12, 13]. These chanzymes, or channel
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kinases, can assist in epithelial-mesenchymal transition acti-
vation, facilitate cell migration and invasion, and promote
cell survival during tumor transformation [14–16]. Further-
more, TRPM7 expression is positively correlated with several
clinicopathological factors associated with the poor progno-
sis of several cancers [17, 18]; hence, this protein may repre-
sent a viable therapeutic target or biomarker for tumors.

More specifically, silencing TRPM7 enhances sensitivity
to oxidative stress, increases the apoptosis-inducer
BAX/BCL2 ratio, and contributes to the accumulation of
cleaved caspase-3 [19]. It is also reported to influence cell
motility and invasion by activating ERK1/2 [20], and
previous reports have demonstrated that TRPM7 positively
controls oncogenic AKT events to orchestrate the tumori-
genesis, invasion, and metastasis of various cancers [14].
Therefore, targeted inhibition of TRPM7 expression might
impede the initiation and progression of BC by downregulat-
ing ERK or AKT signaling pathway activity.

Currently, multiple pharmacological compounds and
herbal remedies have been shown to effectively attenuate
the proliferative and invasive capacities of tumor cells and
thereby prevent malignancy via the blockade of TRPM7
channels [21]. One such example is waixenicin A, which is
widely recognized as a potent inhibitor of TRPM7 and an
efficient antitumor agent [22]. It is a natural terpenoid-
related compound extracted from the soft coral Sarcothelia
edmondsoni. Oridonin, a structurally analogous product of
waixenicin A isolated from Rabdosia rubescens, has been
documented to have a remarkable cancer-fighting and che-
mosensitization abilities for a broad spectrum of cancers
mediated by regulating canonical oncogenic events [23, 24].
It can impact crucial intercellular functions, such as cell pro-
liferation, migration, invasion, apoptosis, and autophagy,
and thus produces deleterious effects on tumorigenic proper-
ties in cancers [25, 26]. However, its effects on BC have not
been reported to date.

In this study, suppression of TRPM7 was hypothesized to
promote the antitumor activity of oridonin via the AKT and
ERK signaling pathways. Cell culture and animal studies
were employed to test this hypothesis.

2. Materials and Methods

2.1. Chemicals and Reagents. Oridonin (99.85%) was
obtained from MedChemExpress (Shanghai, China) and dis-
solved in a solution of 1% dimethyl sulfoxide (DMSO). Rab-
bit monoclonal antibodies against TRPM7, GAPDH, p-AKT,
p-ERK, p53, and cleaved caspase-3 and horseradish peroxi-
dase- (HRP-) conjugated secondary antibodies were pur-
chased from Proteintech Group (Wuhan, China).

2.2. Cell Culture. Human T24 BC cells were obtained from
the Shanghai Cell Bank of the Chinese Academy of Sciences
and grown in DMEM supplemented with 10% FBS and 1%
penicillin/streptomycin at 37°C with 5% CO2.

2.3. CCK8 Proliferation Assay. A commercial CCK8 assay kit
(Dojindo, Shanghai, China) was used to measure the growth
of T24 cells in different groups. In total, 2 × 103 T24 cells

were implanted in a 96-well plate and cultured until the cell
confluence reached 75%. Then, the cells were treated with
various concentrations of oridonin (0, 2, 4, 6, 10, 15, 20,
and 30μM). After another 24 h incubation, the CCK8 assay
solution (10μL) was added to every well and incubated for
4 h. The absorbance (OD value) of each well at 450 nm was
examined with a microplate reader. The calculated mean
values were utilized to construct a cell growth curve.

2.4. Migration Assay. The migratory capacities of different
groups were appraised with Transwell migration assays.
Briefly, 800μL of complete medium was placed into the
lower chambers. Pretreated cells (2:5 × 103) were seeded in
the upper chambers with 200μL of serum-free medium con-
taining 0, 1, 2, or 3μM oridonin. After culturing at 37°C for
24 h, the medium in the upper chambers was discarded and
the cells were fixed with 4% formaldehyde, permeabilized
with 100% methanol, and stained with crystal violet. Then,
the stained cells were quantified under a light microscope.

2.5. Colony Formation Assay. To estimate the clonogenic
activity in different treated groups, we performed a colony
formation assay. Cells were grown in a 12-well plate
(0:5 × 103/well). After the cells had stably attached, the
medium was discarded and the cells were continuously cul-
tured in medium containing 0, 1, 2, or 3μM oridonin for 2
weeks. Next, images were acquired, and the number of visible
colonies with ≥50 cells was recorded.

2.6. Apoptosis Assay. T24 cells (3 × 103 cells/well) were grown
in 6-well plates overnight and then incubated for 48h with 0,
1, 2, or 3μM oridonin at 37°C. A total of 2 × 103 cells were
dispersed with trypsin and incubated with 2μL of annexin
and 2μL of propidium iodide. After staining in the dark for
15min, the samples were analyzed by flow cytometry and
the apoptotic cell percentage was determined.

2.7. RT-qPCR. Total RNA was isolated from T24 cells treated
with 0, 1, 2, or 3μM oridonin using TRI Reagent Solution
(Ambion, Inc.). cDNA synthesis from 2μg of RNA was car-
ried out with a RevertAid first-strand cDNA synthesis kit.
The mRNA levels in T24 cells were quantified with SYBR
Select Master Mix (2X) (ABI, USA). The relative mRNA
levels of BAX and FOXO3 were analyzed by the 2−ΔΔCt
method.

The following primers were used: GAPDH: forward, 5′
-CATGGCACCGTCAAGGCTGA-3′, and reverse, 5′-ACGT
ACTCAGCGCCAGCATC-3′, and FOXO3: forward, 5′
-CCGCTGTGTCTGCCCAGAAT-3′, and reverse, 5′-GTGC
TGGTGGTGGAGCAAGT-3′.

2.8. Western Blotting. A western blot analysis was performed
according to a traditional method. In brief, total protein was
isolated from T24 cells treated with different oridonin con-
centrations using the alkaline lysis method. The protein con-
centration was measured with a bicinchoninic acid (BCA)
protein assay kit. Twenty micrograms of protein was loaded
on 10% SDS-PAGE gels, electrophoresed at a constant volt-
age of 80 volts, and electrotransferred to PVDF membranes.
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Nonfat milk (5%) was used to prevent nonspecific binding on
the membranes. Subsequently, the membranes were incu-
bated with primary antibodies and then secondary antibod-
ies. The bands were visualized with chemiluminescence,
scanned with a phosphor imager, and then quantified with
ImageJ. The primary antibodies employed in this study were
rabbit monoclonal antibodies against TRPM7, GAPDH, p-
AKT, p-ERK, P53, and cleaved caspase-3.

2.9. Construction of a TRPM7 Overexpression Vector and
Infection. TRPM7 cDNA was amplified from T24 cells and
inserted into the pCMVp-NEO-X vector using TRPM7-
specific primers. Subconfluent HEK293T cells were trans-
fected with the produced plasmid pCMVp-NEO-TRPM7
using the calcium-phosphate method. After 48 h, the lenti-
viral particles were collected and filtered and used to transfect
the subconfluent T24 cells for 72 h. Stably transfected cells
were subjected to 8 days of selection with 400μg/mL of
G418. After confirmation by western blotting, the surviving
cells were treated with or without 3μM oridonin for 24 h
and prepared for subsequent experiments.

2.10. In Vivo Antitumor Effect of Oridonin on Bladder
Cancer. The animal studies were authorized by the Ethics
Committee of the Second Affiliated Hospital of Hainan Med-
ical College (China) and performed in line with the principles
of the NIH Guide for the Care and Use of Laboratory
Animals.

Fifteen C57BL/6 female mice (SPF, 7 weeks old) were
purchased from the Experimental Animal Center of Three
Gorges University (Yichang, China) and housed in a sterile
environment. Subcutaneous injection of 5 × 106 T24 cells
was performed to establish xenograft models of BC. When
the tumor volumes reached 200mm3, the animals were sepa-
rated into 3 groups (n = 5) and injected with 1% normal
saline (control group), 5mg/kg/d oridonin, or 10mg/kg/d
oridonin. Tumor size (length × width2/2) and body weight
were measured every other day until posttreatment day 21.
At the end of the experiments, all animals were euthanized
under urethane anesthesia and tumor tissues were obtained
from each mouse.

2.11. Statistical Analysis. Statistical comparisons between
the control group and treatment groups were performed
via unpaired Student’s t-test or ANOVA. Statistical signif-
icance was set at P < 0:05. The analyses were performed
using Prism 8.

3. Results

Oridonin inhibited T24 cell proliferation, migration, and col-
ony formation in vitro.

CCK8 assays were first adopted to clarify the effect of ori-
donin on BC in vitro. As shown in Figure 1(a), the prolifera-
tion rate of T24 cells was significantly attenuated after 24 h of
exposure to different doses of oridonin. The proliferative
capacity was impaired to 62.70% and 0.99% when the cells
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Figure 1: Oridonin limited T24 cell proliferation, colony formation, and migration. (a) Proliferation of T24 cells treated with oridonin
(0, 2, 4, 6, 10, 15, 20, or 30μM). (b, c) Migratory ability of T24 cells treated with oridonin (0, 1, 2, or 3 μM) and vs. the untreated
control (0 μM). Magnification ×200. (d, e) Colony formation capacity of T24 cells treated with oridonin (0, 1, 2, or 3 μM).
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were treated with 10μM or 30μM oridonin, respectively.
Compared with the oridonin treatment group, however, the
control group showed no impairment in the proliferation
rate. Transwell migration assays were performed to evaluate
the effects of oridonin on the migratory activity of T24 cells.
At 24h posttreatment with oridonin, the migrated cell num-
ber was reduced in a dose-dependent manner (Figures 1(b)
and 1(c)). Unsurprisingly, a significant decrease in the colony
formation rate of T24 cells was also observed after oridonin
treatment. All findings are suggestive of the antitumor poten-
tial of oridonin.

3.1. Oridonin Induces Apoptosis in T24 Cells. Oridonin-acti-
vated proapoptotic activity is well characterized in several
cancer cell lines; therefore, annexin V/PI staining was imple-
mented to verify whether oridonin treatment can induce
apoptosis in T24 cells. The results demonstrated that apopto-
tic events were successfully triggered in a dose-dependent
manner via the oridonin treatment (Figures 2(a) and 2(b)).
In particular, oridonin administration considerably
increased late apoptosis but showed a marginal impact on
early apoptosis (Figure 2(a)). Further characterization was
performed to examine the expression levels of apoptosis-
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Figure 2: Dose-dependent induction of apoptosis in T24 cells by oridonin. (a, b) Annexin V-FITC- and PI-stained cells were quantified by
flow cytometry after the T24 cells were incubated with oridonin (0, 1, 2, or 3μM). (c–e) p53 and cleaved caspase-3 protein levels in T24 cells
were assessed after the cells were incubated with oridonin (0, 1, 2, or 3 μM). (f) BAXmRNA levels in T24 cells incubated with oridonin (0, 1, 2,
or 3μM) were determined. ∗∗∗P < 0:001 and ∗∗∗∗P < 0:0001 vs. the untreated control (0 μM).
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related factors in T24 cells after oridonin treatment. The p53
and cleaved caspase-3 protein levels and BAX mRNA level
were higher in the T24 cells exposed to oridonin than in
the control cells, and expression of these molecules increased
in a concentration-dependent manner (Figures 2(c)–2(f)).
These results indicated that oridonin potently triggered apo-
ptosis in T24 cells.

3.2. Oridonin Inactivates AKT and ERK Signaling Pathways
by Inhibiting TRPM7 Expression. Since TRPM7 is a key
checkpoint and regulator of the activity of some terpenoids

against cancer [22, 27], we also examined the TRPM7 expres-
sion level upon oridonin treatment. Figures 3(a) and 3(b)
demonstrate that the TRPM7 protein level progressively
decreased with increases in the oridonin dose. TRPM7
inhibits the AKT and ERK pathways to promote malignancy
in cancers [28, 29]. Therefore, the critical propagators p-AKT
and p-ERK in the aforementioned two signaling pathways
were assessed upon oridonin treatment. An immunoblot
assay demonstrated that compared with the control T24 cells,
the oridonin-treated T24 cells displayed a considerable
decrease in the protein levels of p-AKT and p-ERK as the
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Figure 3: Oridonin inactivates the AKT and ERK signaling pathways by inhibiting TRPM7 expression. (a–d) Western blotting was
performed to determine the expression of TRPM7, p-AKT, and p-ERK after the T24 cells were treated with 0, 2, and 3 μM oridonin. (b–e)
RT-PCR was performed to determine the mRNA expression of FOXO3 after T24 cells were treated with 0, 2, and 3μM oridonin. (f) T24
cells were infected with TRPM7-overexpressing plasmids, and then, TRPM7, p-AKT, and p-ERK expression was examined after treatment
with and without 3μM oridonin. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001 vs. the untreated control (0 μM).
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concentration of oridonin increased (Figures 3(c) and 3(d)).
We also evaluated the FOXO3 mRNA level since FOXO3 is
reported to be a critical downstream molecule that negatively
impacts oncogenic PI3K/Akt events. As expected, the
FOXO3 mRNA level increased as the concentration of orido-
nin increased (Figure 3(e)).

To further elucidate the role of TRPM7/AKT and ERK
in oridonin antitumor activity, western blot assays were
performed to detect p-AKT and p-ERK expression after
TRPM7-overexpressing T24 cells were treated with 3μM
oridonin. The results showed that the oridonin treatment
could offset the increased p-AKT and p-ERK expression
levels induced by highly expressed TRPM7 in T24 cells
(Figure 3(f)). These findings suggest that oridonin inhibits

the AKT and ERK signaling pathways by inhibiting TRPM7
expression, which results in the suppression of the malignant
behavior of T24 cells.

3.3. Oridonin Suppresses Tumor Growth in a T24 Xenograft
Tumor Model. Considering the antineoplastic activity of ori-
donin observed in vitro, we further investigated its curative
potential in a successfully established T24 xenograft tumor
model (Figure 4(a)). Our data demonstrated that intraperito-
neal injection of oridonin significantly restrained tumor
growth as evidenced by the obviously decreased tumor vol-
umes in the treated groups compared with those in the con-
trol group (Figure 4(b)). The 10mg/kg/d group showed
enhanced suppression of tumor growth (Figure 4(c));
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Figure 4: In vivo effect of oridonin on tumorigenicity in T24 xenograft tumor model mice. (a) Representative images of T24 tumor-bearing
mice given different treatments for 23 days. (b) Flank tumors resected from mice bearing T24 xenograft tumors. (c) Tumor volume curves of
T24 xenograft model mice under different treatments (n = 5). (d) Tumor weight curve of T24 xenograft model mice under different
treatments (n = 5).
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however, no statistically significant changes in body weight
were observed among these three groups (Figure 4(d)). These
findings reveal that oridonin has inhibitory potential against
BC in vivo.

4. Discussion

Although rational therapy for BC has produced encouraging
prognoses in BC patients, postoperative metastasis and
recurrence continue to be the main challenges in BC treat-
ment [30]. Hence, alternative therapeutic interventions are
strongly needed to treat BC progression. Here, we evaluate
the antineoplastic activity of oridonin in BC in vitro and
in vivo and explore the underlying mechanism. The results
showed that oridonin significantly impaired T24 cell prolifer-
ation, colony formation, and migration and induced apopto-
sis by suppressing TRPM7 expression, which regulated the
ERK and AKT signaling cascades.

Recently, a myriad of investigations have shown that ori-
donin can effectively retard tumor growth in various kinds of
cancers [31]. However, previous investigations have not
focused on the impact of oridonin on BC. Our work is
the first report to address the antiproliferative activity of
oridonin in the BC cell line T24, and the results revealed
that oridonin administration can significantly constrain the
proliferative capacity of this BC cell line. The antiproliferative
effects of oridonin on cancer cells were associated with apo-
ptosis induction, which is a critical indication of one of the
therapeutic effects of antitumor agents. Therefore, the apo-
ptotic rates of T24 cells upon oridonin exposure were
assayed. Oridonin-treated T24 cells displayed strong apopto-
sis, and at concentrations up to 1μM, the percentage of apo-
ptotic T24 cells was increased to 68:62 ± 2:306%. p53 is a
well-established apoptosis inducer, and its activation can
result in increased expression of proapoptotic factors and
reduced expression of antiapoptotic genes [32]. Cleaved
caspase-3 protein upregulation has a critical function in
intracellular protein lysis and the characteristic alterations
in morphology indicative of apoptosis [33]. Therefore, west-
ern blotting was performed to detect apoptosis-related pro-
tein expression, and p53 and cleaved caspase-3 expression
levels increased as the concentration of oridonin increased,
revealing that oridonin triggers apoptosis in T24 BC cells.
These results suggest that oridonin exerts antiproliferative
effects on T24 cells to retard tumor growth by inducing apo-
ptosis. The findings were confirmed by the fact that oridonin
constrained T24 tumor growth in nude mice.

TRPM7 was previously discovered to be a potent driver
of oncogenic transformation through collaboration with
MMP2 and cyclin D1 and is closely associated with the hall-
mark capabilities of cancers, such as sustained chronic prolif-
eration, evasion of growth suppressors, and activation of
invasion and metastasis [34–36]. TRPM7 is constitutively
activated in various kinds of tumors, including BC [37].
Moreover, upregulation of TRPM7 expression serves as a
powerful indicator of clinicopathological features related to
relatively poor clinical outcomes for individuals with various
types of cancers [37]. TRPM7 silencing can potentially limit
the proliferative, invasive, and migratory capacities of BC.

Thus, inactivation of this ion channel is considered a poten-
tial therapeutic modality for cancer treatment and has gar-
nered substantial interest. Waixenicin A, a natural
terpenoid, has been identified as an efficient suppresser of
TRPM7 and shows deleterious effects on the malignant
behaviors of human gastric and breast adenocarcinoma cells
[34]. Oridonin has been reported as a terpenoid that shares a
similar functional structure with waixenicin A [38]. Therefore,
TRPM7 expression was examined in T24 cells treated with
oridonin. As expected, we found that oridonin effectively
reduced expression of TRPM7, which is related to the anti-
apoptotic, proliferative, adhesive, and invasive potential of
BC. Previous studies have demonstrated that the inhibition
of TRPM7 inactivates ERK or AKT signaling events and
thereby influences various cancer cellular fates [14, 20].
Moreover, reports have shown that oridonin lessens the
malignant phenotypes of transformed cells by inactivating
ERK and AKT signaling events in lung cancer [39]. Hence,
we further measured the phosphorylation level of ERK to
elucidate the potential regulatory mechanisms of oridonin.
After treatment with oridonin, T24 cells had reduced levels
of phosphorylated ERK and AKT. These findings demon-
strated that oridonin might inhibit T24 cell viability and
migration by weakening TRPM7 expression via regulation
of the ERK and AKT signaling cascades.

In conclusion, oridonin has therapeutic anticancer
potential and functions by targeting TRPM7 via inactivation
of ERK and AKT signaling. Thus, oridonin may be a safe
pharmacological intervention for preventing BC.
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