Table 2.
Comparison of validation results of machine learning models.
| Models | Accuracy | AUC | Recall | Precision | F1 value |
|---|---|---|---|---|---|
| CatBoost | 0.89 | 0.87 | 0.33 | 0.78 | 0.44 |
| RF | 0.89 | 0.88 | 0.26 | 0.82 | 0.38 |
| XGBoost | 0.90 | 0.83 | 0.41 | 0.81 | 0.51 |
| LR | 0.89 | 0.82 | 0.38 | 0.63 | 0.46 |
| KNN | 0.88 | 0.75 | 0.21 | 0.61 | 0.31 |
| Model with oversampling (SMOTEENN) | |||||
| CatBoost | 0.96 | 0.99 | 0.98 | 0.95 | 0.97 |
| RF | 0.95 | 0.99 | 0.98 | 0.94 | 0.96 |
| XGBoost | 0.94 | 0.98 | 0.98 | 0.92 | 0.95 |
| LR | 0.91 | 0.95 | 0.92 | 0.92 | 0.92 |
| KNN | 0.92 | 0.96 | 0.98 | 0.88 | 0.93 |
| Tradition risk score model | |||||
| GRACE score | 0.84 | 0.80 | 0.46 | 0.59 | 0.51 |
AUC and F1 score: the higher, the better. XGBoost: Extreme Gradient Boosting; RF: random forest; LR: logistic regression; KNN: K-nearest neighbors.