Skip to main content
. 2021 Jul 5;2021:7252280. doi: 10.1155/2021/7252280

Table 2.

Comparison of validation results of machine learning models.

Models Accuracy AUC Recall Precision F1 value
CatBoost 0.89 0.87 0.33 0.78 0.44
RF 0.89 0.88 0.26 0.82 0.38
XGBoost 0.90 0.83 0.41 0.81 0.51
LR 0.89 0.82 0.38 0.63 0.46
KNN 0.88 0.75 0.21 0.61 0.31
Model with oversampling (SMOTEENN)
 CatBoost 0.96 0.99 0.98 0.95 0.97
 RF 0.95 0.99 0.98 0.94 0.96
 XGBoost 0.94 0.98 0.98 0.92 0.95
 LR 0.91 0.95 0.92 0.92 0.92
 KNN 0.92 0.96 0.98 0.88 0.93
Tradition risk score model
 GRACE score 0.84 0.80 0.46 0.59 0.51

AUC and F1 score: the higher, the better. XGBoost: Extreme Gradient Boosting; RF: random forest; LR: logistic regression; KNN: K-nearest neighbors.