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A computational and structural 
analysis of germline and somatic 
variants affecting the DDR 
mechanism, and their impact 
on human diseases
Lorena Magraner‑Pardo  1,2, Roman A. Laskowski  2, Tirso Pons  3 & Janet M. Thornton  2*

DNA-Damage Response (DDR) proteins are crucial for maintaining the integrity of the genome 
by identifying and repairing errors in DNA. Variants affecting their function can have severe 
consequences since failure to repair damaged DNA can result in cells turning cancerous. Here, we 
compare germline and somatic variants in DDR genes, specifically looking at their locations in the 
corresponding three-dimensional (3D) structures, Pfam domains, and protein–protein interaction 
interfaces. We show that somatic variants in metastatic cases are more likely to be found in Pfam 
domains and protein interaction interfaces than are pathogenic germline variants or variants of 
unknown significance (VUS). We also show that there are hotspots in the structures of ATM and BRCA2 
proteins where pathogenic germline, and recurrent somatic variants from primary and metastatic 
tumours, cluster together in 3D. Moreover, in the ATM, BRCA1 and BRCA2 genes from prostate cancer 
patients, the distributions of germline benign, pathogenic, VUS, and recurrent somatic variants differ 
across Pfam domains. Together, these results provide a better characterisation of the most recurrent 
affected regions in DDRs and could help in the understanding of individual susceptibility to tumour 
development.

DNA is subject to continuous damage-causing alterations in both somatic and germline tissues. Cells rely on 
their DNA-Damage Response (DDR) systems to repair the damage before it leads to serious harm, such as the 
cell turning cancerous. Different pathways are involved, depending on whether the DNA sequence damage is a 
mutated base, a single-strand break (SSB), or a double-strand break (DSB). These pathways include: Base Exci-
sion Repair (BER), Nucleotide Excision Repair (NER), Mismatch Repair (MMR), Homologous Recombination 
(HR) and Non-Homologous End Joining (NHEJ). Each pathway has its own set of DNA-repair proteins, encoded 
by the DDR genes1,2. A proper coordination between the repair machinery, damage tolerance, and checkpoint 
pathways is required for preserving DNA integrity and proper cell function3.

A list of 276 DDR genes was recently identified by The Cancer Genome Atlas (TCGA) DNA Damage Repair 
Analysis Working Group, which systematically analysed potential causes of loss of DDR function across 33 differ-
ent cancer types and their consequences in human cancer2. This set of genes provides the basis for the mechanistic 
and therapeutic analysis of the role of DDR in cancer. In addition, pan-cancer studies provide evidence for factors 
affecting predisposition to different cancer types, highlighting rare germline cancer susceptibility variants that 
affect tumour suppressor genes including ATM, BRCA1, BRCA2, BRIP1, and PALB24. These and other studies 
looked at somatic and germline variants and their clinical associations to help understand individual suscep-
tibility to tumour development5,6. However, a large structural analysis of candidate DDR genes accumulating 
pathogenic germline and recurrent somatic variants is not yet available.

Concerning prostate cancer (PCa), it has been reported that genetic variations in some DDR genes not only 
increase the risk of the disease, but are also associated with poor prognosis and clinical outcomes at different 
PCa stages7. Previous studies found that 22.7% (34/150) of metastatic castration-resistant PCa (mCRPC) patients 
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harbour biallelic somatic/germline variants in DDR genes, and specifically 8% had germline variants8. Other 
studies found that 11.8% (82/692) of patients with mCRPC had at least one germline variant in a gene involved 
in DNA repair9. These and other mCRPC-based studies8–14 highlighted BRCA2 as the most frequently involved, 
and also found that a high proportion of those patients presented a second “hit” somatic aberration in either of 
two forms: loss-of-function mutation or a gene-copy-loss9,15,16. The same authors suggested that only half of the 
patients could be detected by germline variants in DDR genes. Based on these studies, there is an evident need to 
test or examine routinely all patients with mCRPC for the presence of germline/somatic variants in DDR genes.

In this article, we study the different distributions of the following types of variants: germline benign, patho-
genic, variants of unknown significance (VUS), and somatic recurrent variants. We analyse them in three dif-
ferent contexts. The first is Pfam domains, defined as commonly-recurring regions of protein sequence, as 
identified in the Pfam database17. These domains tend to have a functional role, and hence any disruption may 
affect the protein’s biological function. The second context is within the three-dimensional (3D) structures of 
the proteins, where available, as obtained from the Protein Data Bank (PDB)18. Finally, we look at the variants 
in protein interaction interfaces.

We find that the percentage of somatic variants accumulated in functional domains and protein interactions 
interfaces, is higher than for germline pathogenic variants and VUS, providing a synergistic effect to damage the 
protein function. In addition, for the ATM and BRCA2 proteins, we identified 3D clusters and hotspot regions 
that accumulate pathogenic germline and recurrent somatic variants from primary and metastatic tumours, 
showing the synergistic effect of a few mutations located in specific regions and contributing to oncogenesis. 
With this analysis, we provide a better characterisation of the most recurrent affected functional regions in DDRs, 
which can help the understanding of an individual’s susceptibility to tumour development.

Results
DDR genes accumulate more germline variants than their non‑DDR interactors in the NetDDR 
network.  The DDR protein–protein interaction annotations were retrieved from the BioGRID19, InWeb_
IM20 and OmniPath21 databases using the Metascape tool22. This search resulted in a DDR interaction network 
(NetDDR) with 229 DDR-hits and 1,182 non-DDR-hits, joined by 38,494 edges, which corresponded to the 
more connected network according to Metascape22 (for a detailed description of NetDDR see “Materials and 
methods”).

We first used the NetDDR interaction network to investigate the importance of the DDR protein-coding 
genes in terms of their protein interactions and accumulation of genetic variants. We found that recurrent 
somatic variants (i.e. occurring in more than one sample) annotated in COSMIC are found in more than 93% 
of both DDR and non-DDR interacting proteins in the NetDDR network (Fig. 1, panel a). However, germline 
variants annotated in ClinVar were identified in DDR (40%) more frequently than in non-DDR (21%) genes 
(Fig. 1, panel b). This finding suggests there is some bias towards the most studied genes, human variations, and 
phenotypes with supporting evidence annotated in the ClinVar database, whose primary source of information 
are published studies. In contrast, the COSMIC database documents somatic mutations in human cancers not 
only from published studies, but also from whole genome and exome sequencing experiments, that identify 
variants more homogeneously across all human genes.

In addition, the largest set of ClinVar annotations are VUS variants, followed by pathogenic and benign, thus 
showing another example of bias in the dataset. Other authors have observed some of the biases associated with 
ClinVar, in particular, the inflated pathogenic variants profiles that make it difficult to study variant penetrance 
and disease prevalence in endocrine tumour syndromes23. In the COSMIC database we found fewer variants 
identified in metastatic tumours than in a primary state (Fig. 1, panel a), probably due to the low number of 
individuals studied with advanced cancer.

Also shown in Fig. 1 are the numbers of somatic and germline variants in the cancer-predisposition genes 
ATM, BRCA1, BRCA2, MLH1, MSH2, and MSH6 (Fig. 1, panels c and d). These DDR genes are among the most 
affected in the COSMIC and ClinVar datasets (Supplementary Fig. S5). The majority of recurrent somatic vari-
ants, observed in more than two samples, were from primary tumours. In addition, most germline variants in 
these cancer-predisposition and DDR genes correspond to pathogenic and VUS, although their ratios varied 
depending on the gene analysed. Besides, DDR cancer-predisposition genes are highly connected and central 
in the NetDDR interaction network. Indeed, the average node degree (AvrNodDeg) for these six genes is 166, 
while in the complete DDR-hits AvrNodDeg = 87. As expected, closeness centrality (ClossCentl), which indicates 
how close a node is to all other nodes in the network, is higher on average for the DDR-hits (ClossCentl = 0.46) 
compared to the complete NetDDR interaction network (ClossCentl = 0.43) (for more details see Supplementary 
Table S1). It has been suggested that mutations in regulatory regions of highly connected protein-coding genes 
in protein–protein interaction and regulatory networks, have a higher functional impact than those targeting 
peripheral genes in the network24.

In the sections below we also investigated the effects of protein length, domain composition, and protein 3D 
structure on the accumulation of germline and somatic variants in DDR protein-coding genes.

DDR genes show a different pattern of accumulation of germline and somatic variants as a 
function of protein length.  First, we studied the distribution of the protein length in the DDR and non-
DDR groups (Fig. 2, panel a). Although the average protein lengths for DDR (745 a.a.) and non-DDR (675 a.a.) 
are very similar, we compared the accumulation of somatic and germline variants in the most affected cancer-
predisposition genes ATM, BRCA1, BRCA2, MLH1, MSH2, and MSH6 as a function of protein length (Sup-
plementary Fig. S6). These cancer-predisposition genes show a similar pattern of accumulation of somatic and 
germline variants with and without normalization by protein length.
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We also analysed the distribution of germline and somatic variants, normalized by protein length, using the 
complete dataset of DDR and non-DDR proteins (Fig. 2 and Fig. 3, respectively). The proteins in our dataset 
range in length from 44 a.a. (TMSB4X) to 7,968 a.a. (OBSCN). The boxplot in Fig. 2, panel b, shows that the mean 
number of germline variants per protein length in the DDR proteins, according to ClinVar database, is 0.287, 
which is significantly higher than the mean of 0.106 for the non-DDR (P-value = 5.0 × 10–4) proteins.

Panel c shows the differences when the variants are grouped by the different categories (i.e., benign/likely 
benign, pathogenic/likely pathogenic, and VUS). A few DDR proteins appear above the 75th percentile, indicat-
ing accumulation of a high number of germline variants per protein length (i.e. BRCA1, BRCA2, MLH1, MSH2, 
MSH6) (Supplementary Fig. S5). So, we hypothesize that the accumulation of a large number of ClinVar anno-
tations in these DDRs could bias research findings or limit the generalizability of the results. Moreover, Fig. 2, 
panel c, shows a greater variability in the DDR distributions and also shows that the medians (at 95% confidence 
interval) tend to be larger than for the non-DDR group, with P-values being 3.0 × 10–2 for benign, 9.3 × 10–3 for 
pathogenic, and 6.6 × 10–6 for VUS germline variants.

In addition, we analysed the accumulation of germline and somatic variants in the different pathways where 
DDRs are involved. We found that the Homology Recombination, Fanconi Anaemia, and Mismatch Repair 
pathways are the most affected by germline mutations (Fig. 2, panel d). The analysis of recurrent somatic variants 
annotated in COSMIC, also indicated the same affected pathways (Fig. 3, panel c).

The boxplots in Fig. 3 (panels a and b) show similar medians and dispersion of the somatic variants, accord-
ing to the COSMIC database, per protein length in DDR and non-DDR groups (P-value = 0.36; metastatic: 
P-value = 0.35, primary: P-value = 0.35). However, this pattern of variability is different to the one previously 
observed in the germline variants annotated in ClinVar. In this case, ATM, ATRX, CHEK2, ERCC2, MLH1, MSH6, 
and SMARCA4, among other genes, are representative DDRs above the 75th percentile that indicate accumulation 
of somatic variants from the COSMIC database. Moreover, according to panel c in Fig. 3, only the Nucleotide 
Excision Repair (NER) pathway appears to be more affected by somatic variants in primary tumours than by 
germline pathogenic variants (Fig. 2, panel d). Therefore, our analyses of accumulation of somatic variants in the 
NER pathway coincide with the results by other authors in that this pathway shows an increased contribution of 
a somatic mutational pattern (COSMIC mutational signature 8) recurrently observed in various cancer types25. 
So, the disruption of this pathway could potentially drive carcinogenesis and accelerate aging.

DDR germline and somatic variants occur differently within Pfam domains and protein inter‑
action interfaces.  We also investigated the occurrence of DDR germline and somatic variants according 
to the ClinVar and COSMIC databases, respectively, in Pfam domains and protein interaction interfaces. The 

Figure 1.   Accumulation of germline and recurrent somatic variants in DDR and non-DDR interactors in the 
NetDDR network. Percentages of protein-coding genes with variant annotations in COSMIC and ClinVar are 
shown in panels (a,b), respectively. Patterns of recurrent somatic (≥ 2 samples) and germline variants in the 
highly mutated DDR genes are illustrated in panels (c,d), respectively. An additional analysis of the variant 
distributions, normalized by protein length, is shown in Supplementary Fig. S6.
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curated list of germline and recurrent (≥ 2 samples) somatic variants were annotated using the Structure-PPi 
system26 and the results are summarized in Fig. 4 and in Supplementary File 2 and Supplementary Table S2. 
The number of variants annotated in the different classes were: for germline variants (1) 10,301 pathogenic 
and likely pathogenic, (2) 1,117 benign and likely benign, and (3) 28,248 VUS, whereas for somatic variants 
(1) 5,795 variants in primary tumours and (2) 2,030 variants in metastasis. These results indicate that germline 
variants in the pathogenic and VUS classes have a similar distribution across Pfam domains (P-value = 0.13) 
(Fig. 4, panel a). In particular, they possess a very similar percentage of variants mapped onto protein interaction 
interfaces (12.9% and 11.4%, respectively), and higher than in the case of benign variants (7.2%). Interestingly, 
the percentage of somatic variants in metastatic tumours found in both Pfam domains and protein interaction 
interfaces (Fig. 4, panel b), is significantly higher than in germline pathogenic (P-value < 0.0001) and VUS vari-
ants (P-value < 0.0001) (Fig. 4, panel a). The 47.6% metastatic variants affecting Pfam domains are double the 
value of 25% for germline pathogenic and VUS variants (Fig. 4, panel a and b). Otherwise, the percentage of 
metastatic variants affecting protein interaction interfaces (36.4%) is threefold higher than the value of 13% to 
11% in pathogenic and VUS germline variants, respectively.

The most affected Pfam domains by germline pathogenic variants were: MutS_III (Pfam code: PF05192, 371 
variants), MutS domain V (Pfam code: PF00488, 323 variants), and BRCA2 (Pfam code: PF00634, 224 vari-
ants). MutS domains are found in human MSH2/MSH6 proteins implicated in non-polyposis colorectal carci-
noma (HNPCC), while BRCA2 is a known tumour suppressor gene. For the BRCA2 or FANCD1 proteins, their 
association with the Fanconi anaemia (FANC) protein complex is well known27. Other Pfam domains affected 
with germline pathogenic variants are: BRCA2-helical (Pfam code: PF09169, 159 variants), BRCA2-OB1 (Pfam 

Figure 2.   Distributions of germline variants in DDR and non-DDR interactors. Panel (a) shows the distribution 
of protein lengths for DDR and non-DDR proteins. Their average lengths are similar, being 745 a.a and 675 a.a, 
respectively. Boxplots show the contrasting patterns of germline variants as a function of protein length in the 
DDR and non-DDR proteins (panel b), and as categorized into benign, pathogenic, and VUS (panel c). Outliers 
in panel b and c were removed here for clarity, but included in the T-test statistical analysis. Some genes occur 
in two or three of the categories in panel (c), hence the sum of the N values shown is higher than the N in the 
corresponding plot in panel b which is the number of unique DDR genes. All boxplots depict the first and third 
quartiles as the lower and upper bounds of the box, with a thicker band inside the box showing the median 
value, and whiskers representing 1.5 × the interquartile range. Panel d shows the accumulation of germline 
variants in biological pathways related to the 229 DDR genes.
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code: PF09103, 116 variants), PTEN-C2 (Pfam code: PF10409, 110 variants), BRCA1 C-terminus (Pfam code: 
PF00533, 108 variants), P53 (Pfam code: PF00870, 107 variants) and MutS domain IV (Pfam code: PF05190, 105 
variants). It is very interesting that the DDR pathogenic germline variants in functional domains tend to occur 
in the known tumour suppressors genes P53, BRCA2 and PTEN. But as we commented before, this observation 
would suggest some bias towards the most studied genes and phenotypes with supporting evidence annotated 
in the ClinVar database.

Figure 3.   Distributions of somatic variants in DDR and non-DDR interactors. Boxplots showing the 
contrasting patterns in somatic variants as a function of protein length in DDR and non-DDR (panel a), and as 
categorized into metastasis and primary tumours (panel b). Outliers in panels (a,b) were removed for clarity, 
but retained for the T-test statistical analysis. Some genes occur in one or two of the categories in panel b, hence 
the sum of the N values is higher than in the corresponding plot in panel (a). The N in panel (a) indicates the 
number of unique DDR genes. All box plots depict the first and third quartiles as the lower and upper bounds 
of the box, with a thicker band inside the box showing the median value and whiskers representing 1.5 × the 
interquartile range. Panel (c) shows the accumulation of somatic variants in different biological pathways 
associated with the 229 DDR genes. For better visualization of the barplot we excluded TP53, which has a large 
number of recorded variants.

Figure 4.   Accumulation of germline and somatic variants in Pfam domains and protein interaction interfaces. 
Panel (a) shows the percentage of pathogenic, VUS and benign germline variants extracted from the ClinVar 
database across interfaces and Pfam domains. Panel (b) shows the percentage of metastatic and primary somatic 
variants extracted from COSMIC across interfaces and Pfam domains.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14268  | https://doi.org/10.1038/s41598-021-93715-6

www.nature.com/scientificreports/

On the other hand, Pfam domains affected by somatic variants identified in metastatic tumours also included 
the known tumour suppressor genes P53 and PTEN: P53 DNA-binding (Pfam code: PF00870, 408 variants), 
PTEN-C2 (Pfam code: PF10409, 44 variants) and P53 tetramer (Pfam code: PF07710, 27 variants). A descrip-
tion of the affected Pfam domains discussed in this article and the associated functions is presented in Table 1.

Overall, these observations agree with the hypothesis of two-hit events: first a germline variant produces a 
predisposition to develop a tumour, while a second somatic event increases this probability in a specific organ 
and triggers tumour development.

Co‑localization of pathogenic germline and somatic variants in protein sequence and 3D 
structure in DDR genes ATM, BRCA1, BRCA2, and MUTYH.  In a previous work, we described ATM, 
BRCA1, BRCA2, and MUTYH as recurring genes with mutations in the PROREPAIR-B PCa cohort14. Here, as 
use cases in the DDR research, we studied these genes and analysed more pathogenic germline variants identi-
fied in different cohorts of advanced PCa reported in the literature (Table 2), recurrent somatic and germline 
variants in PCa, as well as hotspot positions in different tumour types collected from cBioPortal (https://​www.​
cbiop​ortal.​org) (Supplementary File 1), and also, the TCGA-PanCancer study of pathogenic germline variants 
in 10,389 adult cancers28.

Figure 5 shows the distribution of these different types of variants across each protein sequence. We observe 
that the vast majority of variants in ATM, BRCA1, and BRCA2 are localized in flexible and/or intrinsically 
disordered regions (IDRs), outside Pfam domainss (Fig. 5, panel a). The IDRs are common in protein interac-
tion interfaces. In fact, the NetDDR interaction network revealed a high number of interactions involving these 
specific DDRs: ATM (AvrNodDeg = 228), BRCA1 (AvrNodDeg = 299), BRCA2 (AvrNodDeg = 94), and MUTYH 
(AvrNodDeg = 17). Interestingly, the high number of interactions in ATM and BRCA1, in comparison with the 
moderate number in BRCA2 and MUTYH, coincide with a higher predicted consensus disorder content in ATM 
and BRCA1 (16.4% and 82.3%, respectively) than in BRCA2 and MUTYH (3.2% and 7.5%, respectively). The 
percentages of disordered regions are as given in the MobiDB database (https://​mobidb.​bio.​unipd.​it).

Moreover, we observed a few cases where PCa germline and recurrent somatic variants either co-localize at 
the same amino acid position, or are close neighbours (e.g., red and cyan dots in Fig. 5). Based on this finding, 
we expanded the analysis and compared the distribution of germline and somatic variants from different datasets 
as shown in Fig. 6 (i.e., germline variants identified in different cohorts of mCRPC collected from the literature 
(PubMed), germline variants from TCGA, germline variants from ClinVar, and somatic variants from COSMIC). 
Germline and somatic variants are distributed along the full length of the protein sequence, although the shape 

Table 1.   List of Pfam domains affected by germline and somatic mutations in the DDR family.

Pfam ID Description Cellular functions of domain

PF05192 MutS_III DNA mismatch repair and recombination

PF05190 MutS domain IV Involved in mismatch repair

PF00488 MutS domain V Involved in mismatch repair and DNA binding

PF00634 BRCA2 repeat Involved in the repair of chromosomal damage with an important role in the error-free 
repair of DNA double strand breaks. Breast cancer susceptibility protein

PF09169 BRCA-2_helical Binds DSS1 protein

PF09103 BRCA-2_OB1 (BRCA2 oligonucleotide/oligosaccharide-binding domain 1) Binds DSS1 protein

PF09121 Tower domain Essential for appropriate binding of BRCA2 to DNA. Has an important role in the 
tumour suppressor function of BRCA2

PF09104 BRCA-2_OB3 (BRCA2, oligonucleotide/oligosaccharide-binding domain 3) Binds DSS1 protein

PF10409 PTEN-C2 Plays a central role in membrane binding, productively positions the catalytic part of the 
protein onto the membrane

PF00870 P53 DNA-binding domain

PF07710 P53 tetramer

PF00097 zf-C3HC4 (Zinc finger RING type) Zinc fingers bind DNA, RNA, protein and/or lipid substrates. RING fingers play a key 
role in the ubiquitination pathway

PF12820 BRCT_assoc (serine-rich associated with BRCT) No specified function

PF00533 BRCT (BRCA1 C-terminus) Involved in cell cycle checkpoint functions responsive to DNA damage. A marker of 
breast cancer susceptibility

PF11640 TAN (Telomere-length maintenance and DNA damage repair) Regulates responses to DNA double-strand breaks (EC:2.7.11.1)

PF02259 FAT (A novel domain in PIK-related proteins; i.e. FRAP, ATM, and TRRAP) Still need to be elucidated experimentally. Usually involved in protein–protein interac-
tions

PF00454 PI3_PI4_kinase (Phosphatidylinositol 3- and 4-kinase) Involved in cell growth, proliferation, differentiation, motility, survival and intracellular 
trafficking, which in turn are involved in cancer

PF02260 FATC (A novel motif at the extreme C-terminus of PIK-related proteins) Still need to be elucidated experimentally. Usually involved in protein–protein interac-
tions

PF00730 HhH-GPD (HHH-GPD superfamily base excision DNA repair protein) Involved in DNA repair functions (i.e. endonuclease III, DNA glycosylase, and methyl-
CPG binding protein)

PF00633 HHH (Helix-hairpin-helix motif) DNA-binding domain

PF14815 NUDIX_4 (NUDIX domain) A/G‐specific adenine glycosylases. Involved in DNA base‐pair mismatch repair

https://www.cbioportal.org
https://www.cbioportal.org
https://mobidb.bio.unipd.it
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of histograms and density plots is not symmetrical and shows different peaks, which indicate accumulation of 
variants in defined regions of the protein. Table 3 shows significant differences (P-value < 0.05) between the patho-
genic germline variants versus their benign and VUS counterparts in BRCA2. The same significant tendency 
was observed in BRCA2 for the distribution of VUS versus benign, both in the ClinVar dataset. No significant 
differences were observed in the distribution of somatic variants between primary and metastatic tumours.

In ATM (Fig. 6, panel a), the pathogenic germline variants from different mCRPC cohorts, TCGA, and Clin-
Var datasets show a tendency to accumulate in the interaction region with the NF-κ B essential modulator IKBKG 
(NEMO) (a.a. 1960–2565; IntAct accessions: EBI-495465 and EBI-81279), that overlaps a flexible region flanking 

Table 2.   Pathogenic germline variants identified in mCRPC cohorts and affecting the PCa relevant genes 
ATM, BRCA1, BRCA2 and MUTYH. (*) Numbers indicate the total variants identified in each study and in 
parenthesis the non-identical germline variants. (a) From 11 PCa studies in the non-redundant dataset at 
cBioPortal. (b) From 176 different studies in the non-redundant dataset at cBioPortal. Details about the PCa 
populations in cBioPortal are provided in Supplementary File 1.

Publication ATM* BRCA1* BRCA2* MUTYH* Population (n) %BRCA2 mutated

Robinson et al.8 8 4 11 – 150 7.3

Pritchard et al.9 11 6 (3) 37 (24) – 692 5.35

Na et al.10 6 2 11 – 313 3.51

Mijuskovic et al.11 3 0 4 – 139 2.88

Annala et al.12 1 1 16 (13) – 202 7.92

Antonarakis et al.13 3 1 5 (3) – 172 2.91

PROREPAIR-B14 8 (5) 4 14 (13) 13 (3) 419 3.34

cBioPortal (recurrent) 10 2 16 1 1,556 (a) 8.0

cBioPortal (hotspots) 3 3 6 3 44,284 (b) 4.0

Figure 5.   Lollipop diagrams of germline and somatic variants in ATM, BRCA1, BRCA2 and MUTYH. The 
locations of different types of variants along the protein sequences are indicated by the coloured “lollipops”. The 
variants are coloured: red for pathogenic germline variants identified in different cohorts of advanced PCa, cyan 
for recurrent germline and somatic variants in PCa, and green for hotspot positions in different tumour types.
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the FATC domain (Pfam code: PF02260). The density of benign variants in this interaction region is different 
from pathogenic and VUS. Somatic variants from COSMIC in primary and metastatic tumours also tend to accu-
mulate in the same interaction region. A different scenario is observed in BRCA1 (Fig. 6, panel b) and BRCA2 
(Fig. 6, panel c). In BRCA1, the pathogenic germline variants from ClinVar show a uniform distribution, but in 
different cohorts of PCa they accumulate over a flexible region connecting a RING type Zinc finger (zf-C3HC4; 
Pfam code: PF00097) and the serine-rich region associated with BRCT (BRCT_assoc; Pfam code: PF12820) 
N-terminal domains. By contrast, pathogenic variants from TCGA accumulate in the C-terminus, which is the 
interaction region with FANCJ (IntAct accessions: EBI-3509650 and EBI-349905). In BRCA2, pathogenic vari-
ants in different PCa cohorts, TCGA, and ClinVar datasets show a peak over the central flexible region including 
BRCA2 repeats (Pfam code: PF00634), that constitute the interaction region with RAD51 (IntAct accessions: 
EBI-79792 and EBI-15557721). Somatic variants in metastatic tumours accumulate in the linker and flexible 
region between central BRCA2 repeats and the C-terminus of the protein. These findings reinforce the idea of a 
synergistic effect between germline and somatic variants, and that somatic events tend to accumulate in protein 
interaction regions such as IDRs. Also, according to the mutational data available, for some DDR members it is 
possible to identify protein regions that accumulate pathogenic variants versus benign and VUS. Remarkably, 
disrupting or impairing these protein interactions is likely to have a marked impact on their function, since these 
cancer-predisposition genes are highly connected and central in the NetDDR interaction network.

Figure 6.   Co-localization of germline and somatic variants in ATM, BRCA1, BRCA2 and MUTYH. Panel (a): 
Histograms and density distributions for different types of variants in ATM. The histograms in the left-hand 
column show the counts of each variant type in bins of 75 residues along the sequence. They show: germline 
variants identified in different cohorts of mCRPC collected from the literature (PubMed), germline variants 
from TCGA, germline variants from ClinVar, and somatic variants from COSMIC. Where more than one type 
of variant is plotted the widths of the bars in each bin are reduced accordingly. To the right of each histogram are 
the equivalent density distributions, as computed by smoothing the histogram bars. A small version of the Pfam 
domain layout is also shown beneath the histograms and density distributions. Panels (b–d) show the data for 
BRCA1, BRCA2, and MUTYH, respectively.

Table 3.   Statistical analysis of the distribution of the variants across the protein sequence. Statistical 
significance of the differences between the density distributions in Fig. 6, as calculated using the GLDEX 
package (https://​CRAN.R-​proje​ct.​org/​packa​ge=​GLDEX). Statistically significant differences (shown in bold) 
are indicated where the P-value is less than 0.05.

ATM BRCA1 BRCA2 MUTYH

COSMIC Metastatic/Primary
D 0.078415 0.25953 0.15202 0.25

P-value 0.3615 0.1195 0.1309 0.9853

ClinVar Pathogenic/VUS
D 0.029031 0.033094 0.052161 0.089771

P-value 0.6966 0.1733 0.000167 0.5426

ClinVar Pathogenic/Benign
D 0.19303 0.076781 0.15275 0.36809

P-value 0.1771 0.4802 0.0004421 0.1726

ClinVar VUS/Benign
D 0.19993 0.054376 0.11721 0.39808

P-value 0.1361 0.8739 0.01295 0.08924

https://CRAN.R-project.org/package=GLDEX
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We also studied the co-localization of variants that are discontinuous along the sequence but proximal in the 
protein 3D structure. The pathogenic germline variants in mCRPC, recurrent germline and somatic variants, 
and hotspot positions in different tumour types were mapped onto ATM, BRCA1, BRCA2, and MUTYH avail-
able structures (Fig. 7), in order to find 3D-clusters of variants. We identified different clusters containing at 
least three individual positions within spheres with a 15-30 Å diameter that accommodate germline and somatic 
variants (Fig. 7 and Table 4). Variants included in the same 3D-cluster can be considered part of a continuum of 
cancer-promoting variants, each with a relatively small but additive effect.

In the ATM protein (Fig. 7, panel a), according to the low-resolution Cryo-EM structures (PDB ID: 5np0, 
5np1 at 5.70 Å resolution; a.a. 1–3056) (Table 5), we identified four 3D-clusters which are listed in Table 4. We 
found other pairs of pathogenic and recurrent variants that were close to each, but without having a significant 
P-value (P-value ≥ 0.05) as computed by the mutation3D method29. The mutation3D program computes sig-
nificance by using an iterative bootstrapping algorithm to calculate a background distribution of cluster sizes 
arising from a random placement of an equivalent number of substitutions in the selected protein structure. For 
each cluster in the input data, P-values are computed empirically as the percentile rank of its “maximum cluster 
diameter or CL” among all for randomized clusters containing the same number of amino acid substitutions (see 
“Materials and methods”). As an example, the PCa pathogenic germline variant p.R3047*, recurrent somatic 
variants p.N2875K and p.N2875S, and the hotspot position R3008 in different tumour types, are within a sphere 
of diameter = 25.6 Å in the ATM protein 3D-structure (Fig. 7, panel a).

In the BRCA1 protein model (Modbase: a.a. 401–1458; template PDB 1w36, chain B; sequence identity 13%) 
we found only one 3D-cluster as listed in Table 4. Other two variants outside this cluster, the pathogenic germline 
variant p.S1298* is in close proximity to p.L1252fs but using a different 3D model (Modbase: a.a. 884–1786; 
template PDB 1jqn, chain A; sequence identity 11%) (diameter = 23.3 Å) (Fig. 7, panel b).

In the BRCA2 protein, we identified five 3D-clusters (see Table 4) in two 3D models from ModBase (a.a. 
1895–2260; template PDB 4k6j, chain A; sequence identity 10%, and a.a. 2479–3191; template PDB 1mje, chain 
A; sequence identity 78%). Other variants in BRCA2 are also in close proximity but outside clusters: pathogenic 

Figure 7.   Mapping of germline and somatic variants onto protein 3D structures. The spatial 3D clusters 
in ATM (panel a), BRCA1 (panel b), BRCA2 (panel c), and MUTYH (panel d) are highlighted. Pathogenic 
germline variants are represented in red, recurrent somatic and germline in PCa in cyan, and hotspot positions 
in different tumour types in green. The spatial 3D clusters were calculated using the Mutation3D program 
(http://​mutat​ion3d.​org)29.

http://mutation3d.org
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germline p.2133_2134del and p.L2155fs (diameter = 15.5 Å); recurrent somatic p.T3085Nfs*26 and pathogenic 
germline p.K3083fs (diameter = 6.5 Å); and pathogenic germline p.D3095E, p.E3167* (diameter = 12.9 Å) (Fig. 7, 
panel c).

In the MUTYH protein, no 3D-clusters of somatic and germline variants were identified. However, accord-
ing to the MUTYH crystal structure (PDB ID: 3n5n at 2.30 Å resolution; a.a. 76–362) and the solution NMR 
structure (PDB ID: 1x51; a.a. 356–497), pairs of variants are located in the same spatial region (Fig. 7, panel d).

In the MUTYH crystal structure (PDB ID: 3n5n at 2.30 Å resolution; a.a. 76–362) the pathogenic germline 
variant p.Y176C is located in the same spatial region as recurrent somatic variant p.S252T in PCa (diame-
ter = 26.4 Å). The solution NMR structure (PDB ID: 1x51; a.a. 356–497) indicated that germline variant p.G393D 
is located in the same surface region as hotspot positions in different tumour types G393 and R423 (diam-
eter = 24.5 Å) (see Fig. 7, panel d).

These findings suggest that the accumulation of variants in these spatial regions impairs protein interaction 
interfaces, and hence the biological function of the protein. The co-localization and 3D-clustering of germline 
and somatic variants onto the protein 3D-structure have also been applied by other authors to link rare predis-
position variants to functional consequence30.

Table 4.   List of 3D clusters identified in the protein structure of ATM, BRCA1, BRCA2 and MUTYH.

Gene Cluster-ID Variant Description

ATM

cluster 1
(diameter = 16.1 Å; P-value = 4 × 10–4)

p.D211E PCa recurrent somatic variant

p.R248* Pathogenic germline variants

p.E277* Pathogenic germline variants

cluster 2
(diameter = 15.4 Å; P-value = 3 × 10–4)

p.S421* Pathogenic germline variants

p.Q446* Pathogenic germline variants

p.L481* Pathogenic germline variants

cluster 3
(diameter = 18.7 Å; P-value = 9.9 × 10–5)

p.F1236L PCa germline variants

p.L1255* PCa germline variants

p.V1268* PCa germline variants

p.V1268fs PCa germline variants

p.F1236L Recurrent somatic variant

cluster 4
(diameter = 12.1 Å; P-value = 1 × 10–5)

p.K2700* PCa pathogenic germline variants

p.W2769* PCa pathogenic germline variants

p.G2695S Recurrent somatic variant

BRCA1 cluster 1
(diameter = 23.1 Å; P-value = 1 × 10–4)

p.L1252fs Pathogenic germline variant

p.D856D PCa variant

p.E809G Recurrent somatic variant

p.P871 Hotspot position

BRCA2

cluster 1
(diameter = 24.2 Å; P-value = 1 × 10–4)

p.S1907fs Pathogenic germline variants

p.L1908Rfs*2 Pathogenic germline variants

p.S1955* Pathogenic germline variants

p.S1982fs Pathogenic germline variants

p.Q1994* PCa recurrent somatic variant

cluster 2
(diameter = 22.9 Å; P-value = 9.9 × 10–5)

p.E2198Nfs*4 Pathogenic germline variants

p.L2217fs Pathogenic germline variants

p.L2253Ffs*7 Pathogenic germline variants

p.E2229* Pathogenic germline variants

cluster 3
(diameter = 22.8 Å; P-value = 9.9 × 10–5)

p.L2092fs Pathogenic germline variants

p.H2093fs Pathogenic germline variants

p.K2013* Pathogenic germline variants

cluster 4
(diameter = 25.5 Å; P-value = 9.9 × 10–5)

p.V2969Cfs*7 Pathogenic germline variants

p.R3128* Pathogenic germline variants

p.R3052W PCa recurrent somatic variant

p.R2842 Hotspot position

cluster 5
(diameter = 16.8 Å; P-value = 9.9 × 10–5)

p.T3033Lfs*29 PCa recurrent germline

p.T3033Nfs*11 Recurrent somatic

p.Y3006* Pathogenic germline variants

p.Y3009fs Pathogenic germline variants

p.Y3009fs Pathogenic germline variants

p.Q3026* Pathogenic germline variants
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Classification of DDR and non‑DDR as cancer drivers across 33 tumour types.  Here, we also 
compare the distribution of germline and somatic variants in 229 DDR and 1182 non-DDR components of the 
NetDDR network across mutation data in 33 different cancer types available from TCGA. First, we retrieved 
TCGA data in MAF format, generated by the MuTect2 workflow through the NCI Genomic Data Commons 
data portal (https://​portal.​gdc.​cancer.​gov/). Then, we applied the DiffMut method31, which compares the muta-
tional profiles of genes across cancer genomes with their natural germline variation across healthy individuals. 
DiffMut31 uses the 1000 Genomes data as a background mutation rate. Data about DiffMut uEMD score and 
q-value for DDR and non-DDR is provided as Supplementary Files S3 and S4, respectively.

Figure 8 shows the DiffMut results for DDR and non-DDR genes in 33 different cancer types. The non-DDR 
genes have significantly higher uEMD scores than DDR genes in most cancer types according to a Wilcoxon 
rank-sum test (Fig. 8, panels a and b). This could either mean that non-DDR genes have more cancer somatic 
mutations compared to the background rates of mutation in healthy individuals or that they have fewer back-
ground variants. As we said before, non-DDR genes accumulate fewer germline variants than DDR genes, which 
is in agreement with the DiffMut data.

We also show a heatmap with DiffMut uEMD scores for the cancer-predisposition genes ATM, BRCA1, 
BRCA2, MLH1, MSH2, and MSH6 (Fig. 8, panel c). For comparison, we included the TP53 gene that has an 
uEMD score greater than 1 in 25 out of 33 tumour types. It is important to mention that TP53 was excluded 
from the study of the selected somatic variants identified in DDR genes extracted from COSMIC database (Sup-
plementary Fig. S5), and their accumulation in different biological pathways (Fig. 3, panel c) due to the high 
number of variants, and for better visualization. Genes that score 0 are either those that were never observed to 
have a somatic mutation across the tumour samples or those that had higher background mutation rates than 
somatic mutation rates.

Overall, DiffMut data is in agreement with our previous results for DDR and non-DDR genes, and with the 
assumption that genic regions with a high ratio of rare variants to common ones are more intolerant to functional 
variation, so changes in these regions are more likely to be responsible for diseases.

Discussion
DNA repair pathways protect cells against genomic damage; disruption of these pathways can contribute to 
the development of cancer. In this study we show that an integrative structural analysis of affected regions in 
the DDR protein-coding genes can help identify susceptibility to tumour development. Based on a combined 
analysis of the NetDDR interaction network and the curated list of germline and somatic variants mapped onto 
1,411 nodes, we first observed that the percentage of DDR and non-DDR hits with annotations in COSMIC are 
very similar, while in ClinVar the percentage of DDR-hits with annotations is twofold higher than in non-DDR. 
This first observation suggested some bias in the ClinVar annotations towards the most studied genes reported 
in the literature, which may bias research findings or limit generalizability of the results.

A second observation from this analysis was the importance of the highly connected DDR genes associated 
with cancer-predisposition: ATM, BRCA1, BRCA2, MLH1, MSH2, and MSH6. These DDR genes are among the 
most affected in the COSMIC and ClinVar datasets, and their encoded proteins are central in the interaction 
network.

Proteins in the NetDDR network range in length from 44 to 7,968 amino acid residues, therefore we analysed 
the accumulation of germline and somatic variants as a function of protein length. We found that DDR hits accu-
mulate a statistically higher number of germline variants per protein length than non-DDR (P-value = 5.0 × 10–4). 
Indeed, accumulation of variants is not uniform along the complete list of DDR proteins, showing a high num-
ber of germline variants accumulated in a few DDR hits. These DDR hits (BRCA1, BRCA2, MSH2, MLH1, 
and MSH6) coincide with highly connected and central proteins in the NetDDR interaction network. On the 
other hand, the numbers of somatic variants per protein length are similar in the DDR and non-DDR groups 

Table 5.   List of the 3D structures of the key DDR proteins available from the PDB database.

Region Method PDB id Resolution Chains

ATM

1–3056 Cryo-EM 5np0 5.70 Å A/B

1–3056 Cryo-EM 5np1 5.70 Å A

3024–3030 NMR 6hka – A

BRCA1

1–110 NMR 1jm7 – A

1646–1859 X-ray 1jnx 2.50 Å X

1646–1859 X-ray 1n5o 2.80 Å X

1755–1863 NMR 1oqa – A

1646–1859 X-ray 1t15 1.85 Å A

1646–1859 X-ray 1t29 2.30 Å A

BRCA2
1517–1551 X-ray 1n0w 1.70 Å B

21–39 X-ray 3eu7 2.20 Å A

MUTYH
76–362 X-ray 3n5n 2.30 Å X/Y

356–497 NMR 1x51 – A

https://portal.gdc.cancer.gov/
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Figure 8.   Study of DDR and non-DDR as cancer drivers across 33 tumour types. Panel (a) shows the DiffMut 
uEMD scores for the DDR and non-DDR genes across 33 tumour types studied in TCGA. BoxPlots indicate the 
25th and 75th percentiles (box extent) and the median (centre line of each box). The whiskers extend from the 
hinge to the largest value no further than 1.5 × interquartile range from the hinge. Dots represent uEMD scores. 
The uEMD scores higher than 3 were excluded from the representation for clarity. Panel (b) shows P-values 
comparing DDR versus non-DDR genes based on the Wilcoxon rank-sum test. Panel (c) shows a heatmap 
of uEMD scores obtained by the different studies for the cancer-predisposition genes ATM, BRCA1, BRCA2, 
MLH1, MSH2, MSH6, and TP53.
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(P-value = 0.36). However, genes ATM, ATRX, CHEK2, ERCC2, MLH1, MSH6, and SMARCA4 accumulate 
somatic variants above the 75th percentile of the distribution.

Our analysis of germline and somatic variants in the different pathways where DDRs are involved showed 
that the Homology Recombination, Fanconi Anemia, and Mismatch Repair pathways are the most affected by 
both types of mutations, whereas the Nucleotide Excision Repair pathway appears to be more affected by somatic 
variants in primary tumours than by germline pathogenic variants. The latter finding is in agreement with the 
results of other authors in that it shows an increased contribution of a somatic mutational pattern25.

Relatively few articles have investigated the structural and co-localization relationships between germline 
and somatic variants, and none have focused on a specific protein family5. Hence, in this article, we analysed 
different structural features: Pfam domains, 3D protein interfaces, protein flexible and/or intrinsically disordered 
regions (IDRs), and 3D clustering of variants. Interestingly, we discovered that 47.6% of somatic variants in 
metastatic tumours occur within Pfam domains, which is nearly double the value of 25% for germline variants. 
The percentage of somatic variants in metastatic tumours affecting 3D protein interfaces (36.4%) is threefold 
higher than the value of 11% to 13% in germline variants. Furthermore, it appears that accumulation of both 
germline and somatic variants within Pfam domains and 3D protein interfaces results in a synergistic effect that 
damages protein function.

In this article, as use cases in the DDR study, we investigated ATM, BRCA1, BRCA2 and MUTYH genes, previ-
ously characterized in the mCRPC PROREPAIR-B cohort14. We analysed pathogenic germline variants identi-
fied in different cohorts of advanced PCa reported in the literature, recurrent somatic and germline variants in 
PCa, as well as hotspot positions in different tumour types collected from cBioPortal and the TCGA-PanCancer 
study of pathogenic germline variants in 10,389 adult cancers28. Using this large dataset, we observed that the 
vast majority of variants in ATM, BRCA1 and BRCA2 are located in flexible and/or IDRs, which are common 
in protein interaction interfaces. Moreover, it is possible to identify protein regions where germline pathogenic 
variants accumulate more than benign and VUS variants. These results together reinforce the hypothesis that 
there is a synergistic effect between germline and somatic variants affecting protein function and interactions32.

It is worth noting that a recent study into aggressive PCa, not limited to DDR genes, proposed 90 (out of 266, 
34%) functionally related genes containing both germline and somatic variants33. The analysis used germline 
variants from genome-wide association studies (GWAS) and somatic variants identified in a cohort of 305 
patients with aggressive tumours downloaded from The Cancer Genome Atlas (TCGA). Only 11 genes (i.e., 
ATM, BRCA1, CCNH, CHEK2, FANCC, GADD45A, HERC2, NSMCE2, PARG​, RAD23B, RAD51B) are common 
to both our and their analyses. Note that ATM was not in the list of 266 genes with germline variants but in the 
differentially expressed genes associated with aggressive PCa and having somatic variants (see Supplementary 
Tables SA and S1A by Mamidi et al.33). These authors also identified different signalling pathways enriched for 
germline and somatic variants in which ATM is involved (i.e., PCa (P < 5.81 × 10–6), MSP-RON (P < 1.54 × 10–5), 
and P53 (P < 1.24 × 10–4)). Interestingly, these authors claim that genes containing germline variation did not 
have a high frequency of somatic variants, which is opposite to the findings we present here for the DDR genes. 
In our NetDDR network study, 118 (out of 229, 52%) protein-coding genes, including ATM, contain germline 
and somatic variants (see Supplementary File 1). The contradictory results are explained, in part, by the large 
number of non-DDR genes considered in the analysis done by Mamidi et al.33.

Co-localization and 3D-clustering of germline and somatic variants on the protein 3D-structure have previ-
ously been used to link rare predisposition variants to functional consequences30. Here we identified different 
clusters of variants within spheres with a 15-30 Å diameter that accommodate germline and somatic variants 
in ATM, BRCA1 and BRCA2, and propose that variants in the same 3D-cluster are part of a continuum of 
cancer-promoting changes, each with a relatively small but additive effect. The integrative structural analysis 
discussed in this article provides a comprehensive characterisation of affected regions in DDRs and can help in 
the understanding of an individual’s susceptibility to tumour development. One limitation of this approach is 
that some proteins may have incomplete, or no, structural coverage in the PDB, even when considering structures 
of homologous proteins, so no 3D cluster information can be obtained.

Overall, our findings indicated a synergistic effect between germline and somatic variants affecting protein 
domains and interactions in the DDR family genes. In particular, Pfam domains and protein interactions inter-
faces are more likely to be affected by somatic variants than pathogenic germline or VUS, suggesting that the 
emergence of a second somatic “hit” damages the protein’s function. On the other hand, we documented 3D 
clusters of pathogenic germline, recurrent somatic variants from primary and metastatic tumours, and hotspots 
positions in ATM and BRCA2. Proper structural characterization of germline and somatic variants is needed to 
better stratify cancer patients with affected driver genes.

Materials and methods
Protein–protein interaction network of DDRs.  The aggregated protein–protein interaction (PPI) 
network for the 276 DDRs (DDR-hits) was constructed based on data from the BioGRID19, InWeb_IM20 and 
OmniPath21 databases. These databases were searched using the Metascape tool22. The initial PPI-Network gen-
erated in the first phase comprised 1,466 nodes (276 DDR-hits and 1,191 non-DDR-hits) and 38,494 edges. 
However, applying a filtering implementation from Metascape22 only 268 of the 276 DDR proteins have at least 
one interaction among themselves, and 229 of these 268 were considered to have enriched interactions or be 
“over-connected”. According to Metascape, an “over-connected” protein means that it has more than two inter-
actions with other DDR-hits and possesses an over-connection p-value < 0.0122. In brief, Metascape produces an 
initial interaction map which is then pruned in a filtering step to detect. Later, for each connected component, 
the MCODE algorithm us iteratively applied to identify densely connected elements, excluding less connected 
proteins to identify the more relevant DDR hits, reduce false positives and prevent needles expansion and ran-
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dom associations. The final and more connected network, hereafter referred to as the ‘NetDDR’, contains 1,411 
nodes (229 DDR-hits and 1,182 non-DDR-hits) and 36,522 edges. The NetworkAnalyzer plugin (http://​apps.​
cytos​cape.​org/​apps/​netwo​rkana​lyzer), was used to compute topology parameters for each node in the NetDDR 
undirected network (Supplementary Table S1).

Functional enrichment and pathway analysis.  A pathway and biological function enrichment analy-
sis was done for the 268 over-connected proteins using the Metascape web tool (https://​metas​cape.​org). For 
the enrichment analysis we selected diverse ontologies such as: KEGG Functional Sets, Pathways, and Struc-
tural Complexes; GO Molecular Functions, Biological Processes, and Cellular Components, Oncogenic Signa-
tures, Reactome Gene Sets, Canonical Pathways, BioCarta Gene Sets, CORUM and DisGeNET (Supplementary 
Fig. S1).

Detection of densely connected regions in the NetDDR network.  We used the MCODE algo-
rithm, implemented in Metascape, to identify the highly interconnected proteins (or clusters) in the NetDDR 
network. The Metascape implementation of MCODE, can also make a GO enrichment analysis for each cluster 
identified by MCODE to assign “meanings” to the subnetwork or cluster components (Supplementary Fig. S2), 
where the top three best p-value terms were retained.

A curated dataset of germline and somatic variants for the DDR genes and protein interactors 
in the NetDDR network.  A curated dataset of somatic and germline variants was collected for the DDR 
genes involved in the NetDDR network, and also for their protein interactors (229 DDR-hits and 1,182 non-
DDR-hits) from the COSMIC (https://​cancer.​sanger.​ac.​uk/​cosmic) and ClinVar (https://​www.​ncbi.​nlm.​nih.​gov/​
clinv​ar/) databases. Careful manual curation was required to compile a high-quality dataset of variants and to 
end up with an accurate set in each category (i.e. confirmed somatic, primary tumour or metastasis, confirmed 
germline, pathogenic, benign, unknown significance). After analysing the annotations, the selected variants, 
together with variants identified in different cohorts of mCRPC collected from the literature (https://​pubmed.​
ncbi.​nlm.​nih.​gov/) and TCGA (https://​www.​cancer.​gov/​tcga), were used to study the distributions across the 
protein sequences, Pfam domains, and protein 3D structures (see Supplementary File 1). Statistical significance 
tests for percentage comparisons following a successful Kruskal–Wallis test were done using the “N-1” Chi-
squared test with Dunn correction for multiple comparisons.

Somatic variants in COSMIC.  Cancer-associated somatic variants were selected from COSMIC v9034. This 
includes over 32,000 genomes, consisting of peer reviewed large-scale genome screening, and variants reported 
in The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC). Only confirmed 
somatic variants were used when extracting variants associated with the selected DDR genes. Variants with 
undefined annotations (unclear syntax), as well as variants in non-coding regions, and synonymous variants 
were excluded. In order to focus on putative driver variants, only the variants identified in two or more tumour 
samples were considered for further analysis35. The pipeline described in this section is depicted in Supplemen-
tary Fig. S3.

Somatic and germline variants collected from the literature.  Pathogenic germline variants identified in ATM, 
BRCA1, BRCA2, and MUTYH in the PROREPAIR-B Spanish cohorts and other mCRPC published cohorts (see 
Table 2 and Supplementary File 1), were collected for the analysis. In addition, a non-redundant dataset from 
176 different studies containing 46,566 non-overlapping samples from 44,284 patients was explored using cBio-
Portal (https://​www.​cbiop​ortal.​org)36,37. Recurrent somatic and germline variants in PCa (n = 1,556) and hotspot 
positions in different tumour types (n = 44,284) in these genes are documented in Supplementary File 1.

Germline variants in ClinVar.  Variants clearly classified as germline, according to ClinVar (Aug 2019), were 
annotated using VEP38 to check their genomic location and to include only the variants in protein coding 
regions. After discarding the variants with undefined or unclear annotation, we categorized the remaining vari-
ants into three different groups according to the Clinical Significance annotations provided by ClinVar. The 
groups were “pathogenic/likely pathogenic”, “benign/likely benign”, and “variants with unknown significance 
(VUS)”. For more details, see Supplementary Fig. S4.

Germline variants from TCGA​.  Germline variants classified as pathogenic or prioritized VUS were collected 
from TCGA​2. We used ATM, BRCA1, BRCA2, and MUTYH as a proxy for the TCGA dataset (see Table 2 and 
Supplementary File 1).

Structural modelling of proteins.  Before mapping the germline and somatic variants onto the 3D-struc-
tures of PCa predisposition genes ATM, BRCA1, BRCA2, and MUTYH, we reviewed the RCSB PDB database 
(https://​www.​rcsb.​org), which collects experimentally determined 3D-structures, and the ModBase repository 
(http://​modba​se.​compb​io.​ucsf.​edu) which generates homology-built protein 3D models (Tables 5 and 6). In the 
latter, the sequence identity between target proteins and those whose crystal structures were used as a template, 
ranged from 10 to 100% (Table 6).

Human ATM (3,056 a.a. UniProt: Q13315), BRCA1 (1,863 a.a. UniProt: P38398), BRCA2 (3,418 a.a. UniProt: 
P51587) and MUTYH (546 a.a. Unirpot: Q9UIF7) are multi-domain proteins whose complete crystallographic 
structure has not been determined yet. However, X-ray crystal structures (PDB id: 1jnx, 1n5o, 1t15, 1t29, 3eu7, 

http://apps.cytoscape.org/apps/networkanalyzer
http://apps.cytoscape.org/apps/networkanalyzer
https://metascape.org
https://cancer.sanger.ac.uk/cosmic
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/
https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
https://www.cancer.gov/tcga
https://www.cbioportal.org
https://www.rcsb.org
http://modbase.compbio.ucsf.edu
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1n0w, 3n5n, 3n5n) and solution structures (PDB id: 6hka, 1jm7, 1oqa, 1x51, 5dpk) of different regions of these 
proteins are available. Furthermore, low-resolution electron microscopy models (PDB id: 5np0, 5np1) covering 
the complete sequence of ATM have been published. Additional data about the resolution, protein chains, and 
amino acid regions are shown in Table 5.

Identification of affected protein functional domains, key residues, protein interaction inter‑
faces, and 3D‑clusters of germline and somatic variants.  Protein domain annotations and flexible, 
or intrinsically disordered regions (IDRs), were extracted from the Pfam (https://​pfam.​xfam.​org) and MobiDB 
(https://​mobidb.​bio.​unipd.​it) databases, respectively. Information on key functional residues (i.e. catalytic, 
ligand-binding, posttranslational modification) was collected from UniProt (https://​www.​unipr​ot.​org) using the 
Structure-PPi system (https://​rbbt.​bsc.​es/​Struc​tureP​PI/​Prote​omics)26. Residues in protein interaction interfaces 
were identified via the Structure workflow implemented in the PCAWG-Scout online browser (http://​pcawg​
scout.​bsc.​es)39. We also used the mutation3D program (http://​mutat​ion3d.​org)29 to identify clusters of germline 
and somatic variants in the PDB and ModBase models. We ran mutation3D using the command recommended 
by its authors (./mutation3d < pdb_file >  < amino acid substitutions >  < CL-distance >  < protein length >  < num-
ber of bootstrapping iterations >) and parameters were set as follow: diameter or CL-distance = 30.0 Å, and num-
ber of bootstrapping iterations = 10,000.

Comparison of germline and somatic mutational profiles across 33 different cancer types.  We 
retrieved mutational data from TCGA in MAF format, generated by the MuTect2 workflow, through the NCI 
Genomic Data Commons data portal (https://​portal.​gdc.​cancer.​gov/). Then, we ran DiffMut (https://​diffm​ut.​
princ​eton.​edu/)31, with default parameters to compare the germline and somatic mutational profiles across 33 
tumour types annotated in TCGA. The 1000 Genomes data was used as a background mutation rate. All TCGA 
mutations, with DiffMut uEMD score and q-value annotations, were filtered out for the 229 DDR and 1182 non-
DDR genes. A Wilcoxon rank-sum test was used to assess statistical differences between germline and somatic 
mutational profiles in tumour samples.

Data availability
All data analysed during this study are included in this published article and its supporting information files.
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