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Global soil moisture data derived 
through machine learning trained 
with in-situ measurements
Sungmin O. ✉ & Rene Orth   

While soil moisture information is essential for a wide range of hydrologic and climate applications, 
spatially-continuous soil moisture data is only available from satellite observations or model 
simulations. Here we present a global, long-term dataset of soil moisture derived through machine 
learning trained with in-situ measurements, SoMo.ml. We train a Long Short-Term Memory (LSTM) 
model to extrapolate daily soil moisture dynamics in space and in time, based on in-situ data collected 
from more than 1,000 stations across the globe. SoMo.ml provides multi-layer soil moisture data 
(0–10 cm, 10–30 cm, and 30–50 cm) at 0.25° spatial and daily temporal resolution over the period 
2000–2019. The performance of the resulting dataset is evaluated through cross validation and inter-
comparison with existing soil moisture datasets. SoMo.ml performs especially well in terms of temporal 
dynamics, making it particularly useful for applications requiring time-varying soil moisture, such 
as anomaly detection and memory analyses. SoMo.ml complements the existing suite of modelled 
and satellite-based datasets given its distinct derivation, to support large-scale hydrological, 
meteorological, and ecological analyses.

Background & Summary
Soil moisture plays a key role in land-atmosphere interactions through its control on water, energy, and carbon 
cycles1,2. Weather and climate variations are mediated by the soil moisture status3–6. Therefore, the spatiotemporal 
variations of soil moisture can influence the development and the persistence of extreme weather events such as 
heat waves, droughts, floods, and fires7–11. For these reasons, soil moisture information is required to support a 
wide range of research and applications, e.g. agricultural monitoring, flood and drought prediction, climate pro-
jections, and carbon cycle modelling12. Consequently, soil moisture is recognised as an Essential Climate Variable 
by the Global Climate Observing System13.

Despite its scientific and societal importance, large-scale long-term observations of soil moisture are scarce. 
There is a significant number of in-situ soil moisture measurement networks14, but they are not uniformly dis-
tributed. Satellite observations allow the derivation of global-scale soil moisture estimates; however, they rep-
resent only the top few centimetres of the soil. Moreover, satellite retrievals in areas with complex topography, 
dense vegetation, and frozen or snow-covered soils are challenging, leading to data gaps15. On the other hand, 
physically-based models can provide seamless soil moisture data at the global scale, but large differences exist 
across the models due to different and uncertain parameterisations of e.g. the spatial heterogeneity of soils and 
vegetation, and the non-linear relationship between soil moisture and evapotranspiration16,17. In summary, each 
source of soil moisture data has characteristic strengths and weaknesses.

Meanwhile, machine-learning (ML) presents an alternative opportunity to produce seamless soil moisture 
data. The usefulness of ML algorithms for soil moisture estimation or forecasting has been demonstrated in 
previous studies. For instance, ML is used to merge soil moisture information from different data sources18, to 
retrieve soil moisture from satellite observations like brightness temperature or backscatter19–21, or to simulate soil 
moisture using meteorological forcing22–24. In the last case, ML algorithms are able to ‘learn’ the complex relation-
ship between soil moisture (target) and meteorological variables (predictors) from training data. In this way, soil 
moisture information can be inferred from readily observed predictor data in an empirical way without explicit 
knowledge of the physical behaviour of the system (e.g. land surface processes). In general, physically-based mod-
els include a range of mechanisms which are considered important and leave out others. By learning soil moisture 
dynamics directly from training data, ML algorithms may or may not find the same mechanisms, and hence yield 
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different results. Consequently, the resulting soil moisture data is independent from, and can complement exist-
ing satellite-based or model-derived datasets. Similar data-driven approaches to derive gridded datasets using ML 
algorithms have been successfully employed in the cases of land-atmosphere fluxes25 and runoff 26.

Here we present a novel global-scale gridded soil moisture dataset generated through a data-driven approach 
(Fig. 1). Namely, we employ a Long Short-Term Memory neural network (LSTM)27 to build a soil moisture sim-
ulation model. Daily meteorological time series and static features obtained from both reanalysis and remote 
sensing datasets are used as predictor variables. As a target variable, we use adjusted in-situ soil moisture measure-
ments from different depths obtained from the International Soil Moisture Network (ISMN)14 and the National 
Center for Monitoring and Early Warning of Natural Disasters of Brazil (CEMADEN)28.

In-situ soil moisture measurements have widely used as target variables for ML model training, often directly 
at a point-scale18,20,23. To use in-situ data for soil moisture modeling at a grid-scale, the limited spatial represent-
ativeness of in-situ data should be carefully considered. A recent study applied the extended triple collocation 
technique and selected only in-situ measurements that well represent soil moisture dynamics at the spatial scale 
similar to satellite footprints21. On the other hand, in our study, the raw point-level data are scaled to match means 
and variabilities of the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 gridded soil 
moisture at the corresponding grid cells in order to allow seamless merging of measurements across different 
stations and time periods, and to estimate soil moisture at a target grid-scale. This allows training the ML model 
using in-situ data collected from a large number of stations around the globe.

Our new global soil moisture dataset, SoMo.ml, provides soil moisture at three different depths: 0–10 cm, 
10–30 cm, and 30–50 cm, corresponding to Layer 1, Layer 2, and Layer 3, respectively. The data has a spatiotem-
poral resolution of 0.25° and daily, covering the period of 2000 to 2019. See Table 1 for more details.

Methods
Target soil moisture data preparation.  Target soil moisture data at 0.25° and daily resolution for 
model training is constructed using the in-situ measurements. From the ISMN data only ‘good’ observations are 
selected, based on the quality flag29. The full list of ISMN networks involved in this study can be found in Table 2. 
CEMADEN provides only useful-quality data30. Both datasets provide sub-daily data and daily averages are com-
puted for the days with at least six available sub-daily estimates. Stations or sensors with less than 2 months of 
data are discarded.

In-situ measurements across the different sites are collected with various sensor types, which have different 
calibrations. Therefore, the means and variances of the obtained time series are not necessarily comparable, which 
could introduce artifacts during the LSTM training. For this reason, we adjust the mean and standard deviation of 
the daily in-situ time series to those of the respective ERA5 grid-cell soil moisture within the overlapping period. 
As ERA5 soil moisture is available at 0–7 cm, 7–28 cm, and 28–100 cm depths, it is vertically interpolated into the 
target layer depths with a depth-weighted averaging. If more than one in-situ measurement time series is available 

Fig. 1  Schematic of data-driven approach to generate global-scale gridded soil moisture from in-situ 
measurements. The LSTM model is trained with meteorological data over days t-364 to t and static features to 
simulate target soil moisture at day t. As in-situ measurements are point level data, they are adjusted using long-
term mean and standard deviation of ERA5 gridded soil moisture to represent soil moisture at a 0.25 degree 
resolution. The model maps input-output relationships at a single grid pixel, but is trained using a combination 
of training data from grid pixels where in-situ soil moisture measurements are available.

https://doi.org/10.1038/s41597-021-00964-1


3Scientific Data |           (2021) 8:170  | https://doi.org/10.1038/s41597-021-00964-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

at the same depth within the same grid cell (0.25°), their average is taken (Fig. 1). As a result, the adjusted in-situ 
target data resembles ERA5 soil moisture in terms of mean and standard deviation, while its daily temporal 
variations follow the ground observations. Our approach is also based on the fact that temporal variations from 
point-level data have a greater areal representation compared to absolute soil moisture values31,32. We can there-
fore assume that point-level data contains sufficient information to infer soil moisture dynamics at the grid scale.

For each soil layer, we preferentially select the adjusted in-situ measurement taken at the mid-depth of the 
layer; i.e. 5 cm, 20 cm, and 40 cm, respectively. If no data is available at the mid-depth, the measurement taken 
closest to the mid-depth, and within the layer, is chosen, leading to a total of 1114, 1064, and 683 grid pixels for 
the three layers, respectively. The location of the grid cells with available target soil moisture is shown in Fig. 2a. 
Selected depths and data lengths of target soil moisture data employed for each layer are depicted in Fig. 2b. A 
considerable fraction of the target data is obtained from North America across diverse hydro-climatic regions (see 
Fig. 3). While training data from South America represents warm and semiarid regions, those from Asia mostly 
cover relatively cold regions.

Model training.  LSTM is a special kind of recurrent neural networks that is capable of learning long-term 
dependencies across time steps in sequential data27. It has been widely used in land surface modelling such as 
runoff or soil moisture simulations23,24,33,34. An adapted version of the LSTM architecture, Entity-Aware LSTM33, 
that can ingest time-varying forcing and static inputs separately is used in this study, thereby allowing the algo-
rithm to explicitly differentiate the two different types of information.

We model soil moisture using the Entity-Aware LSTM architecture (hereafter referred to as ‘LSTM model’); 
the model consists of 1) 128 of hidden units, 2) one LSTM layer with one dense layer, and 3) 0.5 of dropout rate. 
These model hyperparameters are selected through a grid search (searching the optimal hyperparameters over 
the pre-defined hyperparameter space) with 5-fold cross validation. The entire dataset is split into five folds, each 
containing approximately 20% of the data. While the dataset is randomly split into the folds, neighbouring grid 
pixels are grouped into the same fold to account for spatial auto-correlation. The training of the model is per-
formed using data from four folds, while the model validation is made with the remaining fold. This operation is 
repeated five times so that each fold is used once as an independent validation set, and finally the performance is 
averaged across the repetitions to obtain a representative estimate.

The LSTM model is trained to learn the relationship between the multiple predictor variables and the target 
soil moisture. The model is trained separately for each soil layer. The predictor data used for the LSTM-based 
soil moisture modelling is listed in Table 3. The meteorological inputs during days t-364 to t are used to simulate 
soil moisture at day t; i.e. the model can establish the relationship of present soil moisture with present and past 
meteorological forcing over a full annual cycle. All input data are normalised using their mean and standard 
deviation to enhance the training efficiency35. We use the mean squared error divided by the standard deviation 
of soil moisture at each individual grid cell as a loss function. This scaling ensures comparative values of the loss 
function across wet and dry regions with potentially different temporal variabilities33.

Meteorological forcing variables are prepared from new global atmospheric reanalysis ERA5 produced by 
ECMWF36. There are several reasons why ERA5 is chosen. First, ERA5 uses large amounts and diverse kinds of 
observations such as synoptic station data, satellite radiance, and ground-based radar precipitation information 
via the 4D-Var data assimilation. Its enhanced quality as meteorological forcing, compared to its predecessor 
ERA-Interim, has been demonstrated through an experiment with land surface models37. Second, ERA5 allows 
the generation of long-term global-scale soil moisture data. The direct use of observations such as satellite data 
introduces the problem of gaps in space and time, and different or limited time periods covered by the respective 
variables. In this sense, the current version of SoMo.ml can also serve as a baseline data to evaluate performance 
of updated data versions in the future, e.g., by comparing with data generated from machine learning trained 
with purely observational data for selected variables. Finally, ERA5 is available with only a few months latency, 
allowing corresponding future updates of the SoMo.ml dataset.

For the deeper layers, soil moisture simulated from the upper layer(s) is additionally used as input data. 
Although the model performance of different combinations of input variables could be exhaustively compared 
to find ‘best’ predictors, we select meteorological forcing variables that are commonly used in physically-based 

Data type Gridded

Spatial Extent Quasi-global (90° N–60° S)

Temporal coverage 2000 to 2019

Spatial Resolution 0.25° × 0.25°

Temporal Resolution daily

Variables Soil moisture at three layers (0–10 cm, 10–30 cm, and 30–50 cm)

Unit Volumetric soil moisture [m3m−3]

File format NetCDF

Key strengths 1) Global scale, long-term data. 2) Distinct data derivation compared to existing gridded soil moisture products. 
3) Better agreement with in-situ measurements in terms of temporal soil moisture dynamics.

Limitations

1) Performance depends on in-situ data availability, which is low in tropical regions including Africa.

2) Uncertainty and errors in measurements may affect the model performance.

3) ERA5-based scaling is necessary, making long-term means and variabilities of SoMo.ml similar to ERA5 data.

Table 1.  Specifications of SoMo.ml v1.
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Network Country
Number of sensors used 
(Layer1/Layer2/Layer3)

AMMA-CATCH64 Benin, Niger, Mali 10/6/4

ARM65 USA 61/42/44

BIEBRZA-S-166 Poland 20/10/5

BNZ-LTER67 Alaska 15/13/10

CALABRIA Italy 0/4/0

CAMPANIA68 Italy 0/2/0

CARBOAFRICA69 Sudan 1/1/0

COSMOS70 USA 6/36/1

CTP-SMTMN71 China 72/73/73

DAHRA72 Senegal 1/1/1

FLUXNET-AMERIFLUX73 USA 0/2/0

FMI74 Finland 24/13/8

FR-Aqui75 France 4/2/2

GROW76 UK 149/0/0

GTK Finland 7/7/7

HiWATER-EHWSN77 China 166/46/46

HOBE78 Denmark 70/54/0

HSC-SELMACHEON Korea 1/0/0

HYDROL-NET-PERUGIA79 Italy 2/0/0

ICN80 USA 1/1/1

IIT-KANPUR India 1/1/1

IMA-CAN181 Italy 12/0/0

IPE Spain 2/1/0

iRON82 USA 11/18/0

LAB-net83 Chile 3/1/0

MAQU84 China 19/0/0

METEROBS Italy 1/1/0

MOL-RAO85 Germany 2/2/1

MySMNet Malaysia 7/0/7

OZNET86 Australia 35/38/38

PTSMN87 New Zealand 0/20/20

REMEDHUS88 Spain 24/0/0

RISMA89 Canada 58/43/44

RSMN Romania 20/0/0

SASMAS90 Australia 14/14/0

SCAN91 USA 293/288/287

SKKU Korea 5/5/5

SMOSMANIA92 France 29/30/0

SNOTEL93 USA 404/415/399

SOILSCAPE94 USA 135/145/33

SW-WHU95 China 3/0/0

SWEX-POLAND96 Poland 16/4/16

TERENO97 Germany 14/14/14

UDC-SMOS98 Germany 28/8/5

UMBRIA68 Italy 0/13/13

UMSUOL Italy 1/1/1

USCRN99 USA 109/88/ 88

USDA-ARS100 USA 2/0/0

VAS Spain 7/0/0

WEGENERNET101 Austria 0/12/0

WSMN102 UK 7/0/0

Table 2.  List of ISMN14 participating networks and the number of sensors per depth considered in this study. In 
total, we collect in-situ measurements from 51 ISMN networks across the globe. More detailed information can 
be found from https://ismn.geo.tuwien.ac.at/en/networks/.
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modeling; the usefulness of such variables in land surface hydrologic modeling has been proven over many dec-
ades38,39. In addition, we assess the relative importance of predictors for the soil moisture simulations and find 
that land surface temperature has the greatest effect on the model performance for the top layer, while soil mois-
ture in the upper layers(s) is the most important variable for the deeper layers. Further details are given in the 
following section.

For the static data, long-term mean precipitation and aridity over the period of 2000–2019 is computed using 
the ERA5 data36. Aridity is defined as the ratio of net radiation (converted into mm) divided by precipitation40. We 
characterise topography through mean and standard deviation of sub-grid scale elevation, as obtained from the 
ETOPO1 digital elevation model41. In addition, we use soil type and land cover information from the Global Land 
Data Assimilation System (GLDAS) data archive42. GLDAS resampled soil porosity and fractions of sand, silt, and clay 
from FAO datasets43 into 0.25° spatial resolution. The land cover is based on MODIS-derived 20-category vegetation 
data that uses a modified International Geosphere–Biosphere Programme classification scheme44. We use GLDAS 
Dominant Vegetation Type Data Version 2 which assigned the predominant vegetation type to each 0.25° grid cell.

Importance of predictors.  The relative importance of predictor variables for the soil moisture simulation is quan-
tified using a permutation approach. The importance is defined as the decrease in model accuracy when the time 
series of a particular variable is randomly permuted to remove the information contained in its temporal dynam-
ics45,46. In the case of the static features, we permute all variables at the same time; each variable is randomly 
shuffled in space. As shown in Fig. 4, for the top layer, land surface temperature is the most significant explanatory 
variable among the considered meteorological forcings, followed by precipitation and 2m-temperature, in terms 
of both normalised root-mean-square error (NRMSE) and correlation coefficient. Land surface temperature and 

Fig. 2  (a) Spatial distribution of the target soil moisture data; 1114, 1064, and 683 grid cells are available for the 
layers of 0–10 cm, 10–30 cm, and 30–50 cm, respectively. (b) Data length and measurement depths of the target 
soil moisture over the period of 2000–2019.

Fig. 3  Distribution of target soil moisture across hydro-climatic regimes for each layer. The total number of 
target data grid cells is given for each continent. Global grid pixels are randomly sampled (5%) from all land 
pixels for brevity.

https://doi.org/10.1038/s41597-021-00964-1
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its diurnal amplitude has been recognised previously as a proxy for soil wetness47–49, confirming the LSTM results. 
The static data is relevant for the soil moisture performance only in terms of NRMSE. This is in line with previous 
findings showing that e.g. soil and vegetation types influence the spatial variability of soil moisture, but not so 
much the temporal dynamics31. While a wide range of predictor variables, including static variables, makes a sig-
nificant contribution to the model performance for the first layer, (simulated) soil moisture in the upper layer(s) 
has the greatest effect on the model performance for the deeper layers.

Global data generation.  The LSTM model is trained using the entire training dataset which consists of the 
available target soil moisture data and corresponding predictor data. After establishing the internal relationships 
(‘learning’), the model is applied using the predictor data over a quasi-global area of 90° N–60° S at 0.25° spatial 
resolution. In order to account for the random initialisation of LSTM’s trainable parameters, five simulations are 
performed and final soil moisture values are computed as an average of the five simulations.

Variable Source Description

Dynamic

Air temperature

ERA536 Daily meteorological forcing obtained from ECMWF reanalysis

Precipitation

Specific humidity

Net surface radiation

Downward surface solar radiation

Land surface temperature

Soil moisture from upper layer(s) for 
second and third layers SoMo.ml50 ML-based soil moisture produced in this study

Static

Mean precipitation ERA536 Long-term mean precipitation

Aridity ERA536 Ratio of net radiation to precipitation

Topography ETOPO141 Mean and standard deviation of sub-grid scale elevation values at each 
grid cell

Vegetation type GLDAS42 Predominant vegetation type (MODIS-derived) at each grid cell

Soil type GLDAS42 Clay, sand and silt fractions based on FAO Soil Map of the World43

Soil porosity GLDAS42 Soil porosity across layers, based on FAO Soil Map of the World44

Table 3.  Predictor data used for the LSTM model.

Fig. 4  Relative importance of predictor variables for the simulated soil moisture data. We permute each 
predictor variable separately and compare the respective decreases in model performance; NRMSE and 
correlation coefficient are considered. For the static features, we permute all variables together at the same time.

https://doi.org/10.1038/s41597-021-00964-1


7Scientific Data |           (2021) 8:170  | https://doi.org/10.1038/s41597-021-00964-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

Data Records
The SoMo.ml dataset can be accessed at figshare50. Three compressed files (.zip) contain data in NetCDF format 
for the three respective layers. An example file name is ‘SoMo.ml_v1_<LAYER>_<YYYY>.nc’, with LAYER and 
YYYY standing for soil moisture layer depth and year, respectively.

Technical Validation
Model validation.  The validity of the LSTM model in soil moisture modeling is tested through 5-fold 
cross-validation. The simulated soil moisture for the validation is hereafter referred to as SoMo.ml*, as this simu-
lation data differs somewhat from the actual SoMo.ml because it is not based on training with all available target 
data, but only with 80% of the data according to the 5-fold cross validation approach.

Figure 5a shows that the mean of SoMo.ml* at each pixel generally agrees well with that of the target data 
(Pearson’s r ranges between 0.92 to 0.98), indicating that the model captures spatial variations of soil moisture. 
The model shows somewhat better performance towards deeper layers. In Fig. 5b,frequency distributions of the 
entire time series of SoMo.ml* and target soil moisture are compared. Again, reasonable agreement is observed, 
although the simulated soil moisture exhibits smaller variability with larger minimum and smaller maximum 
values, as can also be seen from the slightly higher peaks of SoMo.ml*. The entire soil moisture time series are fur-
ther compared for particular (sub-)continents in Fig. 5c. In terms of both distributions and medians, the model 
shows a satisfactory performance overall. However, relatively less agreement is observed in Africa, Australia, and 
South America. This is probably because the model has difficulties learning the soil moisture dynamics there as 
most grid cells from these regions are characterised by extreme hydro-climatic conditions (e.g. very warm or arid, 
see Fig. 3) for which only few in-situ observations are available. The (hydro-climatic) diversity of training data 
can significantly affect the performance of data-driven modelling; when given more diverse training data, models 
can acquire more complete knowledge of input-output relationships and therefore perform better across various 
regimes34. Overall, the LSTM model successfully learns soil moisture dynamics from the training data and can 
reproduce them at unseen locations.

Fig. 5  Comparison between SoMo.ml* (blue) and target soil moisture (grey) at each layer: comparison of (a) 
pixel-averaged soil moisture, (b) frequency distributions of daily soil moisture from all training grid cells, and 
(c) daily soil moisture from grid cells for each continent.

https://doi.org/10.1038/s41597-021-00964-1
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Comparison with independent in-situ measurements.  Cross-validation (5-fold) is made through a 
direct grid-to-point comparison between the SoMo.ml* and the in-situ measurements as done in many previous 
studies51–55. This validation also enables a comparative assessment of modelled soil moisture from the LSTM 
with that of state-of-the-art global gridded datasets such as ERA5, GLEAM52, and the satellite-based ESA-CCI15 
datasets. Established skill scores such as NRMSE, relative bias, and correlation coefficient are used to quantify the 
agreement with the ground truth data.

Figure 6 shows the distribution of the NRMSE of SoMo.ml* across climate regimes (left) and a compari-
son of these results with the respective performances of the reference datasets (right). NRMSE is defined as the 
RMSE divided by the means of ground truth. Although SoMo.ml* shows slightly higher biases at some stations 
over warm and arid regions, there is no clear overall climate dependency of the NRMSE. In Layer 1, while the 
median NRMSE of SoMo.ml* is similar to that of ESA-CCI, which shows lowest NRMSE, a wider spread of 
errors is observed. ERA5 and GLEAM tend to overestimate in-situ measurements (see Fig. S1 in Supplementary 
Information for relative biases), leading to slightly higher NRMSE values. In the deeper layers, where ESA-CCI is 
not available, NRMSE values of SoMo.ml* are slightly lower but overall similar to those of the ERA5 and GLEAM 
references. As a result, this comparison highlights similar deviations of absolute soil moisture values from in-situ 
measurements across the considered datasets.

Fig. 6  Comparison of absolute soil moisture between SoMo.ml* and in-situ data for each layer (top to bottom): 
(left) NRMSE values of SoMo.ml* at each measurement station and (right) comparison with other global 
gridded datasets. Triangles show mean and box plot whiskers show the 0.2 to 0.8 quantiles of the NRMSE across 
all measurement stations. The boxes are ranked according to the median NRMSE so that the best performing 
data is positioned at the top.

https://doi.org/10.1038/s41597-021-00964-1
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Figure 7 shows results from a similar comparison, but focusing on the time-variability of the soil moisture 
dataset as expressed by the correlation of soil moisture anomalies with in-situ measurements. To exclude the 
impact of the seasonal cycle, we consider short-term anomalies56,57. For each soil moisture at day d, a period P 
is defined as P = [d-17, d + 17] (corresponding to a 5-week window). If at least 10 data are available within the 
period, the average soil moisture and corresponding anomaly are computed. Equations are applied to each sta-
tion and a grid pixel it lies on. No pronounced climate dependency of the correlations is observed for SoMo.ml* 
(Fig. 7, left). Comparing with the reference datasets, SoMo.ml* outperforms them for the top layer. While overall 
anomaly correlations decrease in the deeper layers, also for these layers SoMo.ml* shows closer agreement with 
the observations than the reference datasets. The results underline the particular strength of SoMo.ml*, and likely 
also the actual SoMo.ml, to represent the temporal variability of soil moisture. This is somewhat expected; while 
this comparison is done against independent in-situ measurements, the temporal dynamics of SoMo.ml* are 
directly learned from (remaining) in-situ measurements. Similar results are obtained when using the correlations 
of long-term absolute soil moisture, and of anomalies derived by removing the mean daily averages (Figs. S2 and 
S3, respectively). We also compute the triple collocation error58–60, which is widely used to estimate random error 
variance of soil moisture data in the absence of reliable ground reference data, confirming the results from Figs. 6 
and 7 and underlining the usefulness of SoMo.ml (Fig. S4).

Note that ESA-CCI has missing values in space and time and GLEAM is available only until 2018, such that 
partly different spatiotemporal data are used among datasets in the comparison. We repeat the analysis above 
using only data where all datasets are available and find very similar results (not shown). In summary, compared 

Fig. 7  Same as in Fig. 6, but for correlation coefficient of anomalies where anomalies are determined by 
removing the mean of a surrounding 35-day window for each value.

https://doi.org/10.1038/s41597-021-00964-1
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with state-of-the-art references, SoMo.ml* shows a comparable performance in terms of biases, while outper-
forming the other datasets in terms of temporal correlations, which highlights the benefits of using in-situ obser-
vation more directly in the derivation of soil moisture dataset.

Global-scale comparison with existing gridded datasets.  Next, we examine the spatial patterns of 
SoMo.ml at the global scale. Figure 8a presents the median soil moisture values over the entire period. Low values 
in arid regions such as southwest North America, North Africa, central Asia, and Australia and high values in 
more humid regions such as the northern latitudes and Southeast Asia are well captured. Figure 8b compares 
latitudinal profile of SoMo.ml against that of the reference datasets (Fig. 8b). Overall, we find a satisfactory con-
sistency between global patterns of SoMo.ml and the reference datasets. For instance, the highest average soil 
moisture occurs near the equator in the tropics, while driest soil moisture is found near 20° N. These patterns are 
overall well reproduced in SoMo.ml. This is expected to some extent because we rescale the target soil moisture 
using ERA5 means and standard deviations, such that the LSTM algorithm will pick up these ERA5 characteris-
tics in locations and at time steps with available in-situ measurements. Nonetheless, SoMo.ml between 15° N and 
25° N tends to be wetter than the reference datasets (over the eastern part of the Sahara desert), especially in the 
deeper layers. More generally, SoMo.ml might not properly describe soil moisture in very-arid regions, which can 
be related to a lack of training data from such regions (see Fig. 3). Different patterns found in ESA-CCI along the 
equator are mostly due to the missing data. Over very high latitudes over 60° N, we can observe relatively large 
differences across datasets, probably due to different freezing and thawing patterns. Meanwhile, in-situ measure-
ments (not adjusted) do not show a meaningful pattern of latitudinal averages but large variability across stations 
and sensors, whereby it is not clear to which extent this is due to different sensor types and calibrations or due to 
actual moisture differences caused by heterogeneous land surface characteristics. Additional comparison among 
the global soil moisture datasets can be found from Figs. S5–S7 in Supplementary Information.

Usage Notes
We present a global, multi-layer, long-term soil moisture dataset generated through a data-driven approach, and 
with comprehensive ground truth data. For model training, we preprocess the in-situ measurements to obtain 
more spatiotemporally consistent, grid-scale target soil moisture data by adopting mean and standard devia-
tion from ERA5 data while preserving the observed temporal variations from the in-situ measurements. Any 
gridded soil moisture can possibly be used as a scaling reference, but the selection of reference will not affect the 
main characteristic of SoMo.ml, i.e. resembling temporal patterns of the in-situ measurements. Our newly gener-
ated soil moisture data outperforms other existing gridded datasets, including ERA5, in terms of daily temporal 
dynamics as indicated by highest temporal (anomaly) correlation with the ground observations. Nonetheless, the 

Fig. 8  (a) Global maps of 20-year long-term medians of SoMo.ml. (b) Comparison of latitudinal profiles among 
the considered datasets. In the case of GLEAM, root-zone soil moisture is used for both Layer 2 and Layer 3.
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data quality in conditions outside the spatiotemporal range sampled within the observations is potentially uncer-
tain. LSTM performance can be significantly affected by the (lack of) hydro-climatic diversity in the training 
data, even more than by the quantity of data34. As shown in Fig. 3, while the in-situ soil moisture measurements 
are obtained from networks worldwide, the data does not cover all globally occurring hydro-climatic conditions. 
Therefore, relatively high uncertainty outside the training conditions such as at high latitudes and in arid regions 
is expected. However, this lack of observations in particular conditions also presents a challenge to other datasets/
models57,61. Therefore, for instance, using SoMo.ml within an ensemble of differently derived datasets could be a 
promising solution to obtain more reliable soil moisture information in these data-sparse regions62,63. As a result, 
our new soil moisture dataset is a valuable addition to the existing suite of soil moisture datasets, and can enhance 
future large-scale hydrologic and ecologic analyses, and also benchmark studies to evaluate land surface models 
and remote sensing data.

Code availability
The LSTM model implemented in this study and figure scripts are available from https://github.com/osungmin/
SciData2021_SoMo_v1. Note that the LSTM model is built by adopting python modules obtained from https://
github.com/kratzert/ealstm_regional_modeling.
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