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TSC2 regulates lysosome biogenesis via a
non-canonical RAGC and TFEB-dependent
mechanism
Nicola Alesi1, Elie W. Akl1, Damir Khabibullin1, Heng-Jia Liu 1, Anna S. Nidhiry1, Emma R. Garner2,

Harilaos Filippakis 1, Hilaire C. Lam1, Wei Shi 3, Srinivas R. Viswanathan 2, Manrico Morroni4,5,

Shawn M. Ferguson 6,7 & Elizabeth P. Henske1✉

Tuberous Sclerosis Complex (TSC) is caused by TSC1 or TSC2 mutations, resulting in

hyperactivation of the mechanistic target of rapamycin complex 1 (mTORC1). Transcription

factor EB (TFEB), a master regulator of lysosome biogenesis, is negatively regulated by

mTORC1 through a RAG GTPase-dependent phosphorylation. Here we show that lysosomal

biogenesis is increased in TSC-associated renal tumors, pulmonary lymphangioleiomyoma-

tosis, kidneys from Tsc2+/− mice, and TSC1/2-deficient cells via a TFEB-dependent

mechanism. Interestingly, in TSC1/2-deficient cells, TFEB is hypo-phosphorylated at

mTORC1-dependent sites, indicating that mTORC1 is unable to phosphorylate TFEB in the

absence of the TSC1/2 complex. Importantly, overexpression of folliculin (FLCN), a GTPase

activating protein for RAGC, increases TFEB phosphorylation at the mTORC1 sites in TSC2-

deficient cells. Overexpression of constitutively active RAGC is sufficient to relocalize TFEB to

the cytoplasm. These findings establish the TSC proteins as critical regulators of lysosomal

biogenesis via TFEB and RAGC and identify TFEB as a driver of the proliferation of TSC2-

deficient cells.
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Tuberous sclerosis complex (TSC) is caused by mutational
inactivation of the TSC1 or TSC2 tumor suppressor genes1.
TSC affects multiple organs including the brain, heart,

kidney, lung and skin2. While the majority of tumors in TSC are
benign, malignant tumors also occur, particularly in the kidney3.
TSC1 and TSC2 are part of the protein complex that integrates
signals from the extracellular environment (oxygen, energy,
nutrients, growth factors) to regulate the kinase activity of
mechanistic/mammalian target of rapamycin complex 1
(mTORC1) via the small GTPase Ras homolog enriched in brain
(RHEB)4–8. RHEB-dependent mTORC1 activation takes place on
the surface of the lysosome9. The hallmark of TSC1 and TSC2-
deficient cells (hereafter referred to as TSC-deficient cells) is
therefore hyperactivation of mTORC1, which is believed to be the
primary driver of tumorigenesis in TSC.

TFEB (transcription factor EB) and the other members of the
MiTF family of transcription factors (MITF, TFE3, TFEC) are
master regulators of lysosomal gene expression, lysosomal bio-
genesis, and autophagy10–14. The localization and function of
TFEB are tightly regulated by mTORC1 kinase activity, with
phosphorylation of TFEB resulting in cytoplasmic sequestration
by 14-3-3 proteins13,15–17.

Recruitment of mTORC1 to lysosomes occurs via interactions
with the Ras-related GTP-binding proteins (RAG GTPases),
which are activated when amino acids are abundant18. In order to
be phosphorylated by mTORC1, TFEB needs also to be recruited
to lysosomes by the RAG GTPases19. Folliculin (FLCN) is a
GTPase activating protein for RAGC/D19–22 and thereby reg-
ulates both mTORC1 and TFEB abundance at the lysosomal
surface19,23,24. Germline mutations in FLCN cause the hereditary
cancer syndrome Birt-Hogg-Dube (BHD)25,26, which shares some
clinical phenotypes with TSC including benign skin tumors,
cystic lung disease, and renal cell carcinoma (RCC).

Because mTORC1 is hyperactive in TSC, TFEB should be
predominantly cytoplasmic in TSC-deficient cells. However, prior
studies in TSC-deficient cells have revealed conflicting results in
terms of TFEB localization13,15,24,27–29. Here we demonstrate that
despite high mTORC1 activity in TSC-deficient cells, TFEB is
predominantly nuclear and unexpectedly hypo-phosphorylated at
the mTORC1-dependent sites. Furthermore, TFEB drives lyso-
somal gene expression and promotes proliferation in vitro and
in vivo in TSC2-deficient cells. It has recently been discovered
that renal tumorigenesis in BHD is TFEB-dependent24. This
supports the concept that the regulation of TFEB is the critical
mechanistic link between tumorigenesis in TSC and BHD, dis-
eases in which there is some clinical similarity, and further
highlights the possibility that TFEB may be a primary driver of
tumorigenesis in TSC. Taken together, our findings indicate that
TFEB is a critical disease-relevant target of the TSC proteins.

Results
Lysosome abundance, lysosomal gene expression, and protein
levels are increased in TSC. Renal disease is a major source of
morbidity and mortality in TSC30,31. To elucidate the patho-
genesis of renal lesions in TSC, transmission electron microscopy
(TEM) was performed on the kidneys of 18-months old Tsc2+/−

mice, which develop renal cysts and cystadenomas32. This
revealed a 3-fold increase in lysosome number within cystic
epithelial cells compared to normal adjacent kidney (Fig. 1a, b).
Consistent with this increased lysosomal number, expression of
the lysosomal cholesterol transporter Niemann-Pick C1
(NPC1)33, was enriched in the mouse kidney cystic epithelium
(Fig. 1c). Interestingly, NPC1 is also enriched in renal lesions
from TSC patients (angiomyolipomas and RCCs) compared with
adjacent normal kidney (Fig. 1d–f, Supplementary Fig. 1a). In

Tsc1−/− and Tsc2−/− mouse embryonic fibroblasts (MEFs),
mRNA levels of lysosomal genes such as Npc1, Niemann-pick c2
(Npc2), Cathepsin K (Ctsk), and Hexosaminidase (Hexa) were
increased 2- to 6-fold compared to controls (Fig. 1g, h), and
protein levels of NPC1 and Cathepsin K were higher in Tsc2−/−

MEFs compared with controls (Fig. 1i). These results establish
that lysosomes, which are increasingly recognized as critical dri-
vers of tumorigenesis34–36, are enriched in TSC.

TSC-deficiency leads to increased nuclear localization and
activity of TFEB with decreased TFEB phosphorylation at
Serine 142 and 211. To understand the mechanisms driving high
lysosome abundance in TSC, we focused on the MiTF family of
transcription factors (TFEB, TFE3, MITF, TFEC), known reg-
ulators of lysosome biogenesis10,11,13. We found that Tfeb, but not
Tfe3 or Mitf, was upregulated in Tsc-deficient MEFs (Supple-
mentary Fig. 1b). Tfec was not expressed. As noted earlier,
although phosphorylation of TFEB by mTORC1 is known to
result in its cytoplasmic sequestration13,15–17, the localization of
TFEB in TSC-deficient cells is controversial15,16,24,27,29. We found
that TFEB is predominantly nuclear in Human Melanoma Black-
45 (HMB45) and NPC1-positive lymphangioleiomyomatosis
(LAM) nodules, the pulmonary manifestation of TSC37 (Sup-
plementary Fig. 1c–e). TFEB is also primarily nuclear in TSC-
associated RCC and renal angiomyolipomas (Fig. 2a–c), and in
Tsc1/2-null MEFs (Supplementary Fig. 2a).

To understand the mechanisms through which TFEB is nuclear
in TSC, despite high mTORC1 activity, we used HeLa cells with
stable expression of TFEB-GFP13,15–17. First, we confirmed the
nuclear enrichment of exogenous GFP-tagged TFEB after either
TSC1 or TSC2 knockdown by siRNA (Fig. 2d, e). Next, we examined
TFEB’s phosphorylation at the mTORC1-dependent sites (S142 and
S211). Surprisingly, both mTORC1-dependent sites were hypopho-
sphorylated in TSC-deficient HeLa-TFEB-GFP cells (Fig. 2f, g).

To determine if the nuclear TFEB in TSC2-deficient cells is
active, we generated a novel luciferase construct derived from the
promoter of the transmembrane glycoprotein NMB (GPNMB), a
TFE3-TFEB target, and lysosomal glycoprotein38. TSC2 down-
regulation by siRNA increased the activity of the GPNMB
promoter by 10-fold in HeLa cells and 27-fold in HeLa-TFEB-
GFP cells (Fig. 2h). Downregulation of FLCN, used as positive
control, increased the promoter activity of GPNMB by 7-fold in
HeLa cells and 10-fold in HeLa-TFEB-GFP cells (Fig. 2h).

In Tsc1-null and Tsc2-null MEFs we observed increased Tfeb
mRNA expression (Supplementary Fig. 1b), thereby in these cell
lines increased nuclear localization and activity of TFEB could be
due to its higher total levels. In HEK293T cells after TSC2
knockdown by siRNA we found only a minor increase in TFEB
mRNA expression (20%) (Fig. 3a), no appreciable change at the
protein level (Fig. 3b), and primarily nuclear TFEB (Fig. 3c).
Similarly, in HeLa cells after TSC2 knockout by CRISPR we
observed a 50% increase in the mRNA expression of TFEB
(Fig. 3d), no appreciable change at the protein level (Fig. 3e), and
a clear increase in nuclear TFEB after nuclear/cytoplasmic
fractionation (Fig. 3f), indicating that increased nuclear localiza-
tion of TFEB is not driven by increased expression.

TFE3 was also primarily nuclear in TSC-deficient cells (Fig. 3c, f,
Supplementary Fig. 2b, c) behaving similarly to TFEB, TFE3 mRNA,
and protein expression was not affected by TSC2 loss. Over-
expression of TFEB with serine to alanine mutation at the
mTORC1-dependent phosphorylation sites (S142, S211, and S142/
S211) resulted in nuclear localization of TFEB in both TSC2-
expressing and TSC2-deficient HeLa cells (Supplementary Fig. 3).

To confirm that increased GPNMB promoter activity and
increased lysosomal gene expression are TFEB-dependent in
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TSC2-deficient cells, we downregulated TFEB by siRNA and
observed decreased GPNMB promoter activity (Supplementary
Fig. 4a), GPNMB protein expression (Supplementary Fig. 4b), as
well as decreased expression of multiple lysosomal genes
including GPNMB, ATPase H+ transporting VO subunit D2
(ATP6V0D2), Interleukin 33 (IL-33) NPC1 and Mucolipin1
(MCOLN1) (Supplementary Fig. 4c).

Tfeb knockdown decreases proliferation of Tsc2-deficient cells.
To understand better the functions of TFEB in TSC, we knocked
down Tfeb in Tsc2-expressing and deficient MEFs with two

different shRNAs (Fig. 4a). Downregulation of Tfeb decreased the
proliferation of Tsc2−/− MEFs, with a 25% decrease for shTfeb #1
and a 45% decrease for shTfeb#2 at 72 h (Fig. 4b). Tfeb down-
regulation did not affect the growth of Tsc2+/+ MEFs (Fig. 4b).
Rapamycin (20 nM) had no additional effect on the proliferation
of Tsc2-deficient cells with Tfeb downregulation (Supplementary
Fig. 5a), although it decreased the expression of Tfeb by about 2-
fold (Supplementary Fig. 5b). In vivo, the subcutaneous growth of
Tsc2-null MEFs was decreased by 3-fold in cells with Tfeb
downregulation (Fig. 4c). Taken together these data establish Tfeb
as a driver of Tsc2-deficient cell proliferation in vitro and in vivo.
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Fig. 1 Increased lysosome biogenesis in TSC. a Transmission electron microscopy representative images showing increased lysosomes (white arrows) in
renal cyst-lining cells in 18mo Tsc2+/− mice compared to the normal kidney. N denotes nucleus. Scale bar= 2 µm. b Quantification of lysosomes in
10 fields/kidney in 18mo Tsc2+/− mice cysts and adjacent normal tubules (n= 4 kidneys), p= 0.0285. c–e Immunohistochemistry for the lysosomal
marker NPC1 in renal cysts from Tsc2+/− mice (n= 6 kidneys), (left image scale bar= 100 µm, right image scale bar= 20 µm) (c), human renal
angiomyolipoma (n= 3 patient samples) (left image scale bar= 100 µm, right image scale bar= 10 µm) (d), and TSC-associated renal cell carcinoma (n=
3 patient samples). Scale bar= 100 µm (e). The dashed line in d shows the boundary between angiomyolipoma cells on the right and a blood vessel on the
left. f NPC1 optical density quantified for TSC-associated renal cell carcinomas (20 measurements on 5 random areas of tumor and normal adjacent kidney
quantified per section in 3 patient samples). g, h qRT-PCR analysis of lysosomal genes in Tsc1+/+ and Tsc1−/− MEFs (g) and Tsc2+/+ and Tsc2−/− MEFs
(h), (n= 3 biological replicates per condition). i Immunoblot analysis of the lysosomal proteins NPC1 and Cathepsin K (CTSK) in Tsc2+/+ and Tsc2−/−

MEFs (n= 3 biological replicates per condition, samples not contiguous, from the same gel). Graphs are presented as mean ± SD. Statistical analysis in b
was performed using the Mann–Whitney U test, *p < 0.05. Statistical analyses in (f), (g), and (h) were performed using two-tailed Students t-test, *p <
0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Source data are provided as a Source data file.
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FLCN and TSC2 coordinately regulate TFEB localization,
activity, and phosphorylation. FLCN is a GAP for RAGC/D,
converting RAGC/D from the inactive (GTP)-bound to the active
(GDP)-bound form, thereby facilitating the recruitment of TFEB
to the surface of the lysosome where it can be phosphorylated by
mTORC119–23,39. Interestingly, we found that FLCN expression is
increased ~2-fold upon TSC2 downregulation in Hela and Hela-
TFEB-GFP cells (Fig. 5a). To examine the relationship between
TSC2 and FLCN, TSC2 and FLCN were downregulated alone and

in combination in HeLa, and HeLa TFEB-GFP cells using siRNA.
The combined downregulation of TSC2 and FLCN resulted in
stronger nuclear localization of TFEB-GFP (Fig. 5b, c), a further
increase in GPNMB activity (Fig. 5d), a further decrease in S211
phosphorylation (Fig. 5e, f), and a higher expression of lysosomal
genes when compared to single gene knockdowns of either TSC2
or FLCN (Fig. 5g). In parallel, we found that overexpression of
FLCN (Myc-FLCN) partially restored TFEB phosphorylation at
S142 and S211 in HEK293T cells after TSC2 downregulation by
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for 72 h and visualized with confocal live imaging. Scale bar= 50 µm (d). The nuclear/cytoplasmic ratio of GFP was quantified using ImageJ as described in
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Representative immunoblotting of HeLa-TFEB-GFP cells transfected with Ctrl, TSC1 or TSC2 siRNA for 72 h (n= 3 biological replicates per condition). Blot
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Statistical analyses were performed using two-tailed Students t-test or one-way ANOVA if more than two groups, **p < 0.01, ***p < 0.001, ****p < 0.0001.
Source data are provided as a Source data file.
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siRNA (Fig. 5h, i). Further work using CRISPR-mediated
knockout of TSC2 and FLCN will be important to complement
these siRNA-based findings.

Activation of RAGC GTPase is necessary and sufficient to
localize TFEB into the cytoplasm in TSC2-deficient cells. Our
data showing that knockdown of either FLCN or TSC2 has similar

effects on TFEB phosphorylation, localization, and activity led us to
focus on the RAG GTPases in TSC2-deficient cells. We found that
RAGC and RAGD were increased at the mRNA level in HeLa cells
after knockdown of either TSC2 or FLCN, and even further increased
with downregulation of both TSC2 and FLCN (Supplementary
Fig. 6a). In HeLa-TFEB-GFP (which do not express detectable level
of RAGD), a similar pattern was found for the expression of RAGC at
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the mRNA and protein levels (Supplementary Fig. 6b, c). Interest-
ingly, RAGC/D have been shown to be TFEB targets40.

The increase in RAGC/D expression in TSC2-deficient cells,
together with the increase in FLCN expression, suggest a potential
role of the RAG GTPases in the nuclear localization of TFEB in
TSC. To determine if the localization of TFEB in TSC2-deficient
cells is RAG-dependent we overexpressed wild-type RAGA/C and
constitutively active (CA) RAGA/C (RAGAQ66L-GTP bound,
RAGC S75N-GDP bound)41 in HeLa-TFEB-GFP cells with TSC2-
downregulation. CA active RAGA/C, but not wild-type RAGA/C,
decreased the nuclear localization of TFEB in HeLa-TFEB-GFP
cells with TSC2-downregulation (Fig. 6a). To dissect which
component of the RAG heterodimer was primarily responsible
for the decreased nuclear localization of TFEB-GFP, we
individually expressed wild-type (WT) RAG A, WT RAG C,
CA RAG A, and CA RAG C. CA RAGC (but not WT RAGA, WT
RAGC or CA RAGA) decreased nuclear TFEB-GFP levels
(Fig. 6b, Supplementary Fig. 7a, b). CA RAGC increased the
levels of TFEB phosphorylation at S211 in cells with TSC2
downregulation (Fig. 6c) and CA RAGC alone was as efficient as
the CA RAGA/C combination in relocalizing TFEB-GFP to the
cytoplasm (Supplementary Fig. 8a, b) and in increasing TFEB
phosphorylation at S142/211 (Supplementary Fig. 8c). Treatment

with Torin1, an mTOR kinase inhibitor (250 nM, 6 h), resulted in
nuclear localization of TFEB in both siCtrl and siTSC2 HeLa-
TFEB-GFP cells expressing CA RAGC (Supplementary Fig. 9).
These data indicate that the localization of TFEB in TSC2-
deficient cells is both RAGC and mTOR-dependent (Fig. 6d).

Discussion
In this study we demonstrate that TFEB is predominantly nuclear
in human TSC lesions and in TSC-deficient cells with both acute
and chronic downregulation of TSC2 and TSC1, where it drives
lysosomal biogenesis and cell growth in vitro and in vivo. In TSC-
deficient cells, TFEB is hypo-phosphorylated at the mTORC1-
dependent sites. TFEB’s nuclear localization and hypo-
phosphorylation in TSC are unexpected because TSC-deficient
cells have high mTORC1 activity, and phosphorylation of TFEB
by mTORC1 is a well-established mechanism of TFEB’s cyto-
plasmic sequestration13,15–17. Prior analyses of TFEB localization
in TSC2-deficient cells have shown variable results, with some
studies showing primarily nuclear localization28,29 and others
primarily cytoplasmic localization15,24,27. Of note, the prior stu-
dies focused on cultured cell models, while our work included
also mouse and human tumor specimens of TSC, cellular models
of acute and chronic loss of TSC2, and multiple methods of TSC2

Fig. 3 Endogenous TFEB and TFE3 are enriched in the nucleus of TSC2-deficient HEK293T and HeLa cells. a qRT-PCR analysis of TSC2 and TFEB
expression in HEK293T cells transfected with control or TSC2 siRNA for 72 h (n= 3 biological replicates per condition), p < 0.0001 for TSC2 and p=
0.0008 for TFEB. b Immunoblot analysis (biologic triplicates) of whole-cell lysates of HEK293T cells transfected as in (a) with indicated antibodies and
used for fractionation in (c). c Immunoblot analysis (biological triplicates) of TFEB and TFE3 in cytoplasmic (cyto) and nuclear (nucleus) fractions of
HEK293T cells transfected as in (a), GAPDH and CREB were used as markers of cytoplasmic and nuclear fraction, respectively. d qRT-PCR analysis of TFEB
expression in HeLa cells with non-targeting control (Ctrl) or TSC2 CRISPR knock-out (TSC2 KO) (n= 3 biological replicates), p= 0.0062. e Representative
immunoblotting of TFEB and TFE3 in whole-cell lysates of Ctrl and TSC2 KO HeLa cells used for fractionation in (f), with phospho-S6 (S235/S236) and p4E-
BP1 (Thr37/46) as indicators of mTORC1 activity and NPC1 as an indicator of TFEB transcriptional activity. f Immunoblotting of TFEB and TFE3 in
cytoplasmic (cyto) and nuclear (nucleus) fractions of HeLa Ctrl and TSC2 KO cells, GAPDH and CREB were used as markers of cytoplasmic and nuclear
fraction, respectively (n= 3 biological replicates per condition). Graphs are presented as mean ± SD. Statistical analyses were performed using two-tailed
Students t-test, **p < 0.01, ***p < 0.001, ****p < 0.0001. Source data are provided as a Source data file.
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downregulation (littermate-derived Tsc2+/+ and Tsc2−/− MEFs,
siRNA, and CRISPR/Cas9 downregulation of TSC2). The reasons
for the differing results are unclear at this time but could reflect
differences in nutrient conditions and/or the duration and extent
of TSC2 downregulation. Taken together, our data indicate that a
non-canonical regulatory mechanism is responsible for TFEB’s
nuclear localization in TSC.

Lysosomes are an emerging driver of tumorigenesis34–36. TFEB
and TFE3 are oncogenes, with translocations involving splicing
genes and TFE3 (or TFEB) causing a particularly aggressive RCC
that disproportionally affects children and young adults42,43.
These translocation RCC, which were previously referred to as
“TSC-like”42, may reflect key similarities to RCC in TSC
patients3,44, in which we have found high levels of nuclear TFEB
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and high expression of the lysosomal protein NPC1. Moreover,
TFEB has been shown to be a primary driver of pancreatic
adenocarcinoma45. Our data support the concept that activation
of TFEB is a key driver of renal tumorigenesis in TSC.

TFEB and its family members TFE3 and MITF may also be
involved in other manifestations of TSC via enhanced lysosomal
biogenesis and/or other mechanisms. Cathepsin K (a lysosomal
enzyme) is known to be upregulated in pulmonary LAM46 and
multiple lysosomal genes are increased in TSC-associated sub-
ependymal giant cell astrocytomas compared with normal
brain47. The hypothesis that TFEB and lysosomes are directly
involved in the pathogenesis of TSC via a non-canonical RAGC-
dependent mechanism challenges the concept that hyperactivity
of mTORC1 to its canonical substrates is the unique driver of
tumor formation in TSC.

Increased nuclear TFEB is a hallmark of BHD syndrome24, which
has some clinical similarity to TSC (both diseases are associated with
chromophobe/oncocytic RCCs, benign facial skin tumors, and cystic
lung disease)48,49. BHD is caused by mutations in FLCN, a known
GAP for RAGC/D20–22. Levels of mTORC1 activity vary con-
siderably between different in vitro and in vivo models of BHD, with
some FLCN-deficient cells showing lower mTORC1 activity50,51 and
others showing higher mTORC1 activity24,52,53. As a GAP for
RAGC/D, FLCN knockdown would be predicted to result in lower
mTORC1 activity51, on the other hand, FLCN loss has been shown
to increase the expression of RAGD through TFEB and thereby boost
RAG GTPase-dependent mTORC1 activation40, in fact hyperactive
mTORC1 has been observed in BHD-associated RCC54. We found
increased expression of RAGC and RAGD in both TSC2 and FLCN-
deficient HeLa cells, with an even greater increase in RAGC/D
expression in cells with downregulation of both TSC2 and FLCN. The
increase in RAGC/D expression in TSC2-deficient cells could
represent an additional mechanism by which the absence of TSC2
sustains high mTORC1 activity, similarly to what has been proposed
for FLCN loss40,55.

Our discovery that constitutively active RAGC, but not wild-
type RAGC, is sufficient to induce cytoplasmic TFEB localization
in TSC2-deficient cells further supports a model in which FLCN
and TSC2 act in parallel to regulate TFEB via the activity of
RAGC/D. It is possible that in a TSC-deficient setting, impaired
RAGC/D activity is responsible for the inability of mTORC1 to
phosphorylate TFEB, as has been shown for FLCN-deficient
cells20,24,56. Moreover, the fact that combined loss of FLCN and
TSC2 induced even stronger nuclear localization of TFEB, while
overexpression of FLCN in TSC2-deficient cells increased the
phosphorylation of TFEB at the mTORC1 sites, support a
pathogenic link between TSC and BHD. Further work will be
needed to determine if Tfeb inactivation can alleviate renal disease

in genetically engineered mouse models of TSC, as has been
recently demonstrated for BHD-associated renal disease24.

In summary, we identified a non-canonical RAGC-dependent
pathway through which loss of the TSC complex drives TFEB
into the nucleus and increases lysosomal gene expression and cell
proliferation. TFEB represents a previously unrecognized patho-
genic link between the clinical manifestations of TSC and BHD
and may represent a therapeutic target for the treatment of both
diseases.

Methods
Cell culture. Tsc1+/+, Tsc1−/−, Tsc2+/+, Tsc2−/− MEFs were provided by Dr.
David Kwiatkowski at Brigham and Women’s Hospital Boston, MA, US. HeLa cells
and HEK293T cells were purchased from ATCC. Hela-TFEB-GFP cells were
developed by Shawn Ferguson16. All cells were grown in Dulbecco’s Modified Eagle
Medium (DMEM, Gibco/Thermo Fisher Scientific, Waltham, MA, USA) supple-
mented with 10% fetal bovine serum with 1% penicillin/streptomycin, with the
exception of the Tsc2+/+ and Tsc2−/− MEFs in Fig.1h and i, which were grown in
0.1% FBS for 96 h. Rapamycin R-5000 (20 nM) and Torin1 T-7887 (250 nM) were
purchased from LC Laboratories.

Generation of TFEB knockdown cell lines. Tfeb mouse shRNA Lentiviral
Transduction Particles (Sigma-Aldrich, clone TRCN0000085548 and Dharmacon,
clone V3SVMM00_13136092) were used to downregulate Tfeb in Tsc2+/+ and
Tsc2−/− MEFs. Cells were transduced with Lentiviral particles for 24 h with
polybrene (8 µg/ml) and selected with puromycin at 5 µg/ml.

Generation of HeLa TSC2 CRISPR knock-out line. Non-targeting control gRNA
and TSC2 gRNA plasmids were designed using pRP_gRNA_Cas9 plasmid back-
bone from Vector Builder. The expression of small guide RNAs and mCherry-
tagged human codon-optimized Cas9 from Streptococcus pyogenes was driven by
U6 and modified chicken beta-actin (CBh) promoters respectively. Both non-
targeting control and TSC2 CRISPR plasmids included two small guide RNAs
(GTGTAGTTCGACCATTCGTG and GTTCAGGATCACGTTACCGC for non-
targeting control; TCCTTGCGATGTACTCGTCG and GACCCGGTCGTTAC-
TAGGCC for TSC2). Plasmids were transiently expressed in HeLa cells using
Lipofectamine 3000 (Life Technologies/Thermo Fisher) for 48 h and single-cell
sorted for mCherry on 96-well plates. Single Clones were isolated and TSC2 knock-
out was verified by immunoblotting.

siRNA transfection. The following siRNA reagents were used: TSC2 Silencer
Select siRNA (ThermoFisher, assay ID s502596), TSC1 Silencer Select siRNA
(Thermofisher, assay ID s526384), FLCN Silencer Select siRNA (ThermoFisher,
assay ID s47320), TFEB Silencer Select siRNA (ThermoFisher, assay ID s15496)
and non-targeting control Silencer Select siRNA (ThermoFisher, 4390844). All
siRNA transfections were performed using Lipofectamine RNAiMax (Thermo-
Fisher, LMRNA015).

Cell viability. Cell viability was assessed using crystal violet staining. One thousand
cells were seeded on clear 96-well plates. Cells treated with Dmso or Rapamycin
(20 nM) were fixed after 24, 48, 72 h with 10% formalin for 10 min and stained
with 500 mg/L crystal violet (Sigma) solution for 20 min. Crystal violet was then
eluted with methanol for 5 min in a plate shaker. Absorbance was measured at
540 nm.

Fig. 5 TSC2 and FLCN cooperate in the regulation of TFEB phosphorylation, nuclear translocation, and lysosomal gene expression. a qRT-PCR analysis
of FLCN in HeLa and HeLa-TFEB-GFP cells transfected with Ctrl or TSC2 siRNA for 72 h (n= 3 biological replicates per condition), p= 0.0005 for HeLa and
p= 0.007 for HeLa TFEB-GFP cells. b, c HeLa-TFEB-GFP cells were transfected with indicated siRNAs for 72 h and analyzed by confocal imaging after
fixation and staining for GFP. Scale bar= 50 µm, b, nuclear/cytoplasmic ratio of TFEB-GFP as quantitated with Cell Profiler is shown in (c) (146 cells were
analyzed in Ctrl siRNA, 140 cells in TSC2 siRNA, 120 cells in FLCN siRNA and 88 cells in TSC2+FLCN siRNA were analyzed in n= 3 biological replicates).
d Luciferase activity of HeLa and HeLa-TFEB-GFP stably expressing the GPNMB luciferase reporter and transfected with indicated siRNAs for 72 h (n= 6
biological replicates per condition). e, f Representative immunoblotting of phosphorylated TFEB at S211 in HeLa-GFP-TFEB cells after downregulation of
TSC2, FLCN, or both analyzed by staining with the indicated antibodies, with phospho-S6 (S235/S236) as an indicator of mTORC1 activity (e), band
intensity quantitated using ImageJ and normalized to total TFEB-GFP (n= 3 biological replicates per condition) (f). g Expression of lysosomal genes in
HeLa cells after siRNA downregulation for 72 h of TSC2, FLCN, or both (n= 3 biological replicates each condition). h, i Overexpression of myc-FLCN in
HEK293T cells with TSC2 downregulation by siRNA increases TFEB-GFP phosphorylation at S211 and S142 (h), band intensity quantitated using ImageJ and
normalized to total TFEB-GFP (i) (n= 3 biological replicates). Graphs are presented as mean ± SD. Statistical analyses were performed using two-tailed
Students t-test, or one-way ANOVA if more than two groups, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Source data are provided as a Source
data file.
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Fig. 6 Activation of RAGC is sufficient to re-localize TFEB into the cytoplasm in TSC2-deficient cells. a Immunofluorescent analysis of HeLa-TFEB-GFP
cells after siRNA downregulation for 72 h transfected with wild-type (WT) RAGA plus WT RAGC vs. constitutively active (CA) RAGA (RAGA Q66L) plus
CA RAGC (RAGC S75N) for 48 h (n= 3 biological replicates per condition). b Immunofluorescent analysis of HeLa-TFEB-GFP cells after TSC2 siRNA
downregulation as in (a), and individually transfected with WT RAGA, CA RAGA, WT RAGC, or CA RAGC for 48 h (n= 3 biological replicates per
condition). c Representative immunoblot analysis of cells treated as in (b) with indicated antibodies (n= 3 biological replicates per condition). d Working
model in which TSC2 regulates TFEB cytoplasmic/nuclear localization via RAGC (created with BioRender.com). Scale bars= 50 µm. Source data are
provided as a Source data file.
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Animal studies. Animal studies were approved by the Brigham and Women’s
Hospital Animal Care and Use Committee (IACUC) and conducted according to
an approved protocol for the care and maintenance of laboratory animals. Mice
were housed in an animal facility with 12 h light/12 h dark cycle at 72 °F and 40%
humidity with unrestricted access to food and water. 18 months old female AJ Tsc2
+/− mice were used for electron microscopy of the kidneys. Xenografts tumors
were generated by subcutaneously injecting (2.0 × 106) Tsc2−/− MEFs mixed with
matrigel 1:1 (v/v) (Corning, 356237) to a final volume of 100–150 μl unilaterally
into the shoulders of 8-week-old female NOD-scid IL2Rgammanull anesthetized
mice using a 21 G needle. Mice were inspected weekly, and tumors were measured
every three days by caliper once they became palpable and >100 m3.

Electron microscopy. Kidney specimens from Tsc2+/− mice in the AJ genetic
background at 18 months of age were fixed in 2% glutaraldehyde/2% paraf-
ormaldehyde in 0.1 M phosphate buffer for 3 h at 4 °C, postfixed in 1% osmium
tetroxide in the same buffer solution, dehydrated in graded alcohols, and embedded
in an Epon-Araldite mixture. Thin sections were stained with lead citrate and
examined with a CM10 transmission electron microscope. Ten random images at
the same magnification for each sample were utilized for lysosome quantitation in
either cysts or normal adjacent kidney tissue.

Protein extraction and western blot analysis. Cells were washed with ice-cold
PBS, scraped, and lysed on ice with 1× RIPA buffer. Lysates were normalized by
concentration and each sample resolved on 4–12% Bis-Tris gel. Chemilumines-
cence was visualized with SuperSignal West Pico PLUS Chemiluminescent Sub-
strate (Thermo Fisher Scientific, Waltham, MA, USA). To isolate the nuclear and
the cytoplasmic protein fraction, CelLytic NuCLEAR Extraction Kit was used
(Millipore Sigma, NACRES NA56). The following antibodies were used at 1:1000
dilution unless otherwise indicated: β-actin (Sigma-Aldrich, A5316), phosphory-
lated S6 ribosomal protein (pS6 Ser 235/236) (Cell Signaling Technology, 2211),
total S6 ribosomal protein (TS6) (Cell Signaling Technology, 2217), phosphory-
lated 4E-BP1 (p4E-BP1 Thrn37/46) (Cell Signaling Technology, 2855), total 4E-
BP1 (T4E-BP1) (Cell Signaling Technology, 9644), TSC2 (Cell Signaling Tech-
nology, 4308), TSC1 (Cell Signaling Technology, 4906), TFEB (1:3000) (Bethyl
Laboratories, A303-673A), TFEB (Cell Signaling Technology, 32361), TFE3 (Cell
Signaling Technology, 14779), Cathepsin K (CTS K) (Abcam, ab19027), NPC1
(Abcam, ab134113), FLCN (Cell Signaling Technology, 3697), GFP (1:5000)
(Abcam, ab13970), phosphorylated TFEB S211 (Cell Signaling Technology, 37681),
phosphorylated TFEB S142 (Millipore Sigma, ABE1971), RAGC (Cell Signaling
Technology, 9480), MYC-Tag (Cell Signaling Technology, 2276), HA-tag (Cell
Signaling Technology Inc., 3724S), GPNMB (Cell Signaling Technology, 38313),
CREB (Cell Signaling Technology, 9197), GAPDH (Cell Signaling
Technology, 5174).

Plasmids. The following plasmids were used in HeLa-TFEB-GFP cells: pRK5 HA-
RAGA (#99710), pRK5-HA GST RAGA 66L (#19300), pRK5 HA- RAGC
(#99718), and pRK5-HA GST RAGC 75L (#19305), were purchased from Addgene.
The following plasmids were used in HeLa cells: TFEB-GFP wild type, TFEB-GFP
S142A, TFEB-GFP S211A, TFEB-GFP S142A/S211A developed by Dr. Shawn
Ferguson. The following plasmids were used in HEK293T cells: pEGFP-N1-TFEB
(Addgene #38119), pCMV-Tag3B vector plasmid (Agilent) and pCMV-Tag3B
expressing myc-FLCN plasmid57. All plasmids were expressed using Fugene6
reagent (Promega) for 48 h in immunofluorescence experiments and using Lipo-
fectamine 3000 (Invitrogen) for 6 h in immunoblotting experiments.

GPNMB reporter activity. The GPNMB reporter was generated by PCR amplifi-
cation of a 530 bp promoter fragment upstream of the GPNMB gene using genomic
DNA from LNCaP cells as a template. The following forward and reverse primers,
containing terminal NcoI sites and Kozak sequence, were used for amplification:
GPNMB_promoter_F:CATGccatggCCAACATAGTGAAACCTGCC;
GPNMB_promoter_R:CATGccatggtggcTGAATTCTCACGGACGCAGG. Follow-
ing amplification, the fragment was cloned into a Gateway-compatible entry vector
upstream of a NanoLuc luciferase cassette using a unique NcoI site. The GPNMB-
NanoLuc reporter was then transferred into a promoterless Gateway-compatible
lentiviral destination vector carrying Blasticidin resistance for use in downstream
studies. Lentiviral particles were prepared using HEK293T cells as a packaging line.
HeLa and Hela-GFP-TFEB cells were transduced with viral particles and selected
using 5ug/ml Blasticidin S to create stable lines. To measure the GPNMB promoter
activity cells were transfected with appropriate siRNA constructs for 48 h and then
seeded on opaque-white 96-well plates, allowed to attach and luminescence was
assessed using Nano-Glo Luciferase assay system (Promega) on Biotek Synergy HT
multi-well plate reader. All data were normalized to cell seeding.

mRNA extraction and real-time PCR. mRNA was isolated using the RNeasy Plus
Micro Kit with on-column genomic DNA-digest (Qiagen) according to the man-
ufacturer’s protocol. To generate cDNA from isolated and purified mRNA, Affinity
Script quantitative PCR (qPCR) cDNA Synthesis Kit (Agilent Technologies) was
used. Real-time PCR was conducted using StepOne Plus Realtime PCR Machine
(Applied Biosystems) with TaqMan Real-Time PCR Master Mix (Thermo Fisher

Scientific). Gene expression was measured relative to β-actin and delta delta Ct
(ΔΔCt) method was used to calculate the fold change differences of the experi-
mental groups compared to the control group. TaqMan real-time PCR assays
(Thermo Fisher Scientific) used for RT-PCR are listed in Supplementary Table 1.

Live imaging. Hela-TFEB-GFP cells were plated onto 35 mm glass bottom dishes
(Mattek Life Sciences) and grown in the appropriate conditions, images were
captured using Olympus Fluoview FV10i confocal microscope at 60x magnification
in live cells.

Immunofluorescence. MEFs and HeLa-TFEB-GFP cells were plated onto 35 mm
glass bottom dishes, fixed with 2% paraformaldehyde (PFA) for 15 min, permea-
bilized with 0.1% Triton X-100 for 5 min and washed three times with PBS. Cells
were then blocked for 30 min in 1% BSA and incubated with primary antibodies,
TFEB (1:200) (Cell Signaling Technology, 32361), TFE3 (1:200) (Millipore Sigma,
HPA023881), GFP (1:1000) (abcam, ab13970), and HA-tag (1:1000) (Cell Signaling
Technology, 3724S) in blocking buffer (1% BSA) for 1 h. Cells were then washed
three times with PBS and stained with secondary antibody (1:1000 dilution) anti-
Rabbit Alexa Fluor Red 568 (Life Technologies), in blocking buffer (1% BSA) and
kept in the dark for 1 h. DAPI (4′, 6-diamidino-2-phenylindole) (Sigma-Aldrich)
was used to visualize nuclei. Cells were washed again three times with PBS and
mounted with VECTASHIELD Antifade Mounting Medium (Vector Laboratories).
Confocal images in HeLa-TFEB-GFP cells were analyzed for percentage of nuclear
localization in ImageJ, the background was removed from the channel corre-
sponding to the protein of interest (TFEB-GFP) using the rolling ball radius
method. The DAPI channel was used to generate nuclear mask of corresponding
cells. The threshold of the DAPI image was adjusted, transformed to binary and
then analyzed to produce nuclear regions of interest (ROI). This mask was then
applied to the protein of interest (TFEB-GFP) channel and the total fluorescence
intensity of the nuclear ROIs was measured. Phalloidin (1:1000) (Alexa Fluor 568
Phalloidin, A12380) channel was used to generate a mask of the whole cell of which
an ROI was created and applied to the protein of interest channel to measure the
total fluorescence intensity of the whole cell. The percentage of nuclear
localization was calculated as described58. Three random images, each containing
multiple cells, were used for quantification and statistical analysis in each
condition.

Nuclear to cytoplasmic TFEB ratio in Fig. 5b, c was quantified using CellProfiler
(https://cellprofiler.org/). DAPI staining was used to identify the nuclei and
phalloidin staining (1:1000) was used to create a mask that defines the cytoplasmic
compartment in each cell. The mean intensities of the nuclear and cytoplasmic
regions were measured and used to calculate nuclear to cytoplasmic ratio.

Immunohistochemistry. Immunohistochemistry (IHC) was performed on for-
malin-fixed, paraffin-embedded, and sectioned kidneys from Tsc2+/− mice and
human kidney and lung tissue samples. Human tissue samples were obtained with
the approval of Partners Healthcare Human Research Committee. Briefly, slides
were incubated at 65 C°, dewaxed with Xylene and ethanol and then rehydrated
with H20. Antigen retrieval was performed in citrate buffer (ph= 6) by a heat-
induced process using a Russell Hobbs pressure cooker, washed three times in H20,
and then blocked with 5% goat serum in TBS for 1 h at room temperature. Sections
were incubated overnight at 4 °C with primary antibodies: TFEB (1:150) (Cell
Signaling Technology, 32361), NPC1 (1:400) (Abcam, ab134113), and HMB45
(1:100) (Dako, M0643) in blocking buffer. After washing three times in TBS, cells
were incubated with ImmPRESS-HRP species-specific secondary antibodies
(Vector Laboratories), washed again three times in TBS, and then incubated with
ImmPACT DAB peroxidase substrate (Vector Laboratories, #SK4105). Finally,
slides were counterstained with haematoxylin (Dako, #S3309), washed in tap water,
dehydrated in ethanol and xylene prior to mounting with DPX (Sigma-Aldrich,
#06522).

Immunohistochemistry image analysis. IHC slides were analyzed with ImageJ as
described before59. In brief, the plug-in “color deconvolution” was executed on the
digitalized IHC sections using the built-in vector HDAB, which separates the
staining into 3 different panels with hematoxylin, DAB only image, and back-
ground. The DAB panel was used to measure the mean gray value of the region of
interest. Then, the optical density (absorbance) was inferred by taking the log10 of
the ratio of the maximum value of an 8-bit image (255) over the measured mean
gray value60. To measure nuclear DAB staining, we first used the hematoxylin
panel and adjusted the threshold in order to generate a nuclear mask. This mask
was then analyzed to generate nuclear ROIs which were applied to the DAB panel
and the optical density was calculated.

Statistical analyses. All quantitative, normally distributed data for in vitro studies
were analyzed for statistical significance using a Student’s unpaired t-test, One-way
ANOVA, and Tukey’s post hoc tests when comparing more than two groups
relative to a single factor, or two-way ANOVA and Tukey’s post hoc tests when
comparing more than two groups relative to more than one factor.

GraphPad Prism Software (GraphPad Prism version 8.3.1 for Windows;
GraphPad Software, www.graphpad.com) was used.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data are available from the corresponding author upon request and all unique
materials generated (such as HeLa TSC2 CRISPR KO line) are readily available from the
authors. Source data for Figs. 1b, f, g, h, i, 2b, e, g, h, f, 3a–f, 4a–c, 5a, c–i, 6c and Suppl
Figs. 1b, e, 4a–c, 5a, b, 6a–c, 7b, 8b, c are provided with this paper in a Source data file
and a separate supplementary pdf file with uncropped western blots. Source data are
provided with this paper.
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