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Abstract

Motivation: DNA methylation can be measured at the single CpG level using sodium bisulfite conversion of genom-
ic DNA followed by sequencing or array hybridization. Many analytic tools have been developed, yet there is still a
high demand for a comprehensive and multifaceted tool suite to analyze, annotate, QC and visualize the DNA methy-
lation data.

Results: We developed the CpGtools package to analyze DNA methylation data generated from bisulfite sequencing
or Illumina methylation arrays. The CpGtools package consists of three types of modules: (i) ‘CpG position modules’
focus on analyzing the genomic positions of CpGs, including associating other genomic and epigenomic features to
a given list of CpGs and generating the DNA motif logo enriched in the genomic contexts of a given list of CpGs; (ii)
‘CpG signal modules’ are designed to analyze DNA methylation values, such as performing the PCA or t-SNE analy-
ses, using Bayesian Gaussian mixture modeling to classify CpG sites into fully methylated, partially methylated and
unmethylated groups, profiling the average DNA methylation level over user-specified genomics regions and gener-
ating the bean/violin plots and (iii) ‘differential CpG analysis modules’ focus on identifying differentially methylated
CpGs between groups using different statistical methods including Fisher’s Exact Test, Student’s t-test, ANOVA,
non-parametric tests, linear regression, logistic regression, beta-binomial regression and Bayesian estimation.
Availability and implementation: CpGtools is written in Python under the open-source GPL license. The source code
and documentation are freely available at https://github.com/liguowang/cpgtools.
Contact: kocher.jeanpierre@mayo.edu or Wang.Liguo@mayo.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA methylation is one of the most extensively studied epigenetic
modifications that is involved in many cellular processes, such as
transcription regulation, genomic imprinting and chromatin remod-
eling. The Illumina DNA methylation microarrays, including the
HumanMethylation450 BeadChip (i.e. 450 K array) and Infinium
MethylationEPIC BeadChip (i.e. 850 K array), as well as whole-
genome and reduced representation bisulfite sequencing are the
most widely used techniques to interrogate DNA methylation at
single-nucleotide level. Many tools have been developed to analyze
these data (Supplementary Table S1). Most of these tools are

dedicated to one data type or focus on certain aspects of DNA
methylation analyses, such as bisulfite reads mapping or DMR
(differentially methylated region) calling. The goal of this study was
to develop a comprehensive Python package to perform DNA
methylation data QC, conversion, dimensionality reduction, annota-
tion, statistical comparison and visualization.

2 Features and methods

Programs in CpGtools package can be broadly divided into three
categories (Supplementary Table S2).
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(1) CpG position modules can be used to analyze, annotate and

visualize CpGs by their genomic locations. For example, we

developed modules to calculate the distribution of given CpGs

on chromosomes (Supplementary Fig. S1); on gene-centered

genomic regions (Supplementary Fig. S2) and on user-specified

genomic regions (Supplementary Fig. S3). To better annotate a

given list of CpGs with epigenomic features, we built several

annotation files using data generated from the ENCODE and

other resources (Supplementary Table S3). In addition, we devel-

oped CpG_logo.py to visualize the local genomic context of a

given list of CpGs. To demonstrate the utility of this module, we

applied it to 2932 CHG or CHH (H ¼ A, C or T) sites extracted

from the Illumina 450K probes, and a novel DNA motif

was identified as shown in Figure 1A. We also implemented

CpG_to_gene.py to assign given CpGs to their putative targets

using the algorithms developed by GREAT (McLean et al., 2010).

(2) CpG signal modules focus on the analysis and visualization of

methylation signals. We developed modules to visualize the

distributions of beta values for each sample using the jitter

plot overlaid by violin plot (Fig. 1B) and stacked bar plot

(Supplementary Fig. S4), the mean methylation profiles over

gene-centered genomic regions (Fig. 1C) and user-specified

genomic regions (Supplementary Fig. S5). We implemented the

PCA (principal component analysis) and t-Distributed

Stochastic Neighbor Embedding (t-SNE) algorithms to perform

dimensionality reduction and to visualize the local and global

structures within the data. For example, we observed a clear sep-

aration between tumor and normal samples when applying PCA

and t-SNE algorithms to 450K array data generated from the

TCGA-LIHC cohort (Fig. 1D, Supplementary Fig. S6). In add-

ition, we also developed a module to perform methylation status

calling using Bayesian Gaussian mixture modeling. This module

is able to classify each CpG into one of the three discrete states:

methylated, partially methylated, or unmethylated (Fig. 1E).

(3) Differential CpG analysis modules aim to identify differentially

methylated cytosines using various statistic approaches

(Supplementary Table S4). To analyze beta values generated from

Illumina BeadChip array, CpGtools offer methods including t-test

(automatically switches to ANOVA if more than two groups are

provided), generalized linear mode and Bayesian estimation

(Kruschke, 2013). Non-parametric analyses using the Mann–

Whitney U test (two-group comparisons) and the Kruskal–Wallis

H-test (multiple-groups comparisons) are also provided. Despite

the different statistical methods employed, we found the resulting

P-values are highly concordant (Supplementary Fig. S7). To ana-

lyze count-based proportion values generated from RRBS/WGBS

experiments, CpGtools provide Fisher’s exact test, logistic regres-

sion and beta-binomial regression. Fisher’s exact test is less com-

monly used as most experiments have biological replicates. We

found the resulting P-values from logistic regression model (with

the quasi-binomial family to deal with over-dispersion) and beta-

binomial regression are highly correlated with each other as well

as with the published methods, such as DSS (Wu et al., 2015)

(Supplementary Fig. S8).

3 Conclusion

The CpGtools package provides a number of modules that can ana-
lyze and visualize CpGs by their genomic positions and methylation
signals, as well as perform statistical comparisons. Written in the
Python genera-purpose programming language, it is easy to use and
capable of handling large-scale DNA methylation data.
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Fig. 1. Example output from CpGtools. (A) The consensus DNA motif logo calcu-

lated from CHG and CHH context contained in 450 K. (B) Jitter and violin plots

generated from 450 K data of 20 TCGA samples. (C) Mean methylation profiles

across genomic regions centered on RefSeq genes. All genomic regions were scaled

into the same length. (D) Two-dimensional scatter plot showing the PCA analysis of

429 TCGA samples, including 50 normals (blue circles) and 379 LIHC samples (red

triangles). (E) Methylation status calling from one TCGA LIHC patient. The fre-

quencies (y-axis) of ‘Methylated’, ‘partially methylated’, ‘unmethylated’ and ‘un-

assigned’ CpGs are indicated by red, green, blue and purple bars, respectively.

LIHC, Liver hepatocellular carcinoma
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