
https://doi.org/10.1007/s10723-021-09570-2

Serverless Workflows for Containerised Applications
in the Cloud Continuum

Sebastián Risco ·Germán Moltó ·
Diana M. Naranjo · Ignacio Blanquer

© The Author(s) 2021, corrected publication 2021

Abstract This paper introduces an open-source plat-
form to support serverless computing for scientific
data-processing workflow-based applications across
the Cloud continuum (i.e. simultaneously involving
both on-premises and public Cloud platforms to pro-
cess data captured at the edge). This is achieved via
dynamic resource provisioning for FaaS platforms
compatible with scale-to-zero approaches that min-
imise resource usage and cost for dynamic workloads
with different elasticity requirements. The platform
combines the usage of dynamically deployed auto-
scaled Kubernetes clusters on on-premises Clouds
and automated Cloud bursting into AWS Lambda to
achieve higher levels of elasticity. A use case in public
health for smart cities is used to assess the platform,
in charge of detecting people not wearing face masks
from captured videos. Faces are blurred for enhanced
anonymity in the on-premises Cloud and detection via
Deep Learning models is performed in AWS Lambda

S. Risco (�) · G. Moltó · D. M. Naranjo · I. Blanquer
Instituto de Instrumentación para Imagen Molecular (I3M),
Centro mixto CSIC - Universitat Politècnica de València,
Camino de Vera s/n, 46022, Valencia, España
e-mail: serisgal@i3m.upv.es

G. Moltó
e-mail: gmolto@dsic.upv.es

D. M. Naranjo
e-mail: dnaranjo@i3m.upv.es

I. Blanquer
e-mail: iblanque@dsic.upv.es

for this data-driven containerised workflow. The results
indicate that hybrid workflows across the Cloud con-
tinuum can efficiently perform local data processing
for enhanced regulations compliance and perform
Cloud bursting for increased levels of elasticity.

Keywords Cloud computing · Serverless
computing · Workflow · Containers

1 Introduction

Cloud computing has become in the last decade the
premier option for virtualised computing. It has increased
hardware resource utilization and provided the abil-
ity to execute disparate computing workloads with
complex requirements on shared computing infras-
tructures. Initial service delivery models, such as
Infrastructure as a Service (IaaS), were exemplified by
public Cloud services such as Amazon EC2 [4] and
on-premises Cloud Management Platforms (CMPs)
such as OpenStack [48]. These were later extended to
accommodate additional models such as Platform as a
Service (PaaS) and, more recently, Functions as a Ser-
vice (FaaS). FaaS aims to rise the level of abstraction
for application developers at the expense of relying
on the infrastructure provider for automated elastic-
ity, efficient virtual infrastructure provisioning and
improved resource allocation.

Initial FaaS services, exemplified by public Cloud
services such as AWS Lambda [6] and Azure Functions

/Published online:13 July 2021Received: 29 October 2020 / Accepted: 21 June 2021

Journal of Grid Computing (2021) 19: 30

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-021-09570-2&domain=pdf
http://orcid.org/0000-0002-7710-2182
mailto:serisgal@i3m.upv.es
mailto:gmolto@dsic.upv.es
mailto:dnaranjo@i3m.upv.es
mailto:iblanque@dsic.upv.es

[42], provide event-driven execution of functions
coded in certain supported programming languages,
offering automated resource allocation and ultra-
elastic capabilities that superseded the ones found in
traditional IaaS offerings. For example, a Lambda
function can support up to 3000 concurrent executions
which is two orders of magnitude beyond the default
number of virtual machines that can be deployed in
a newly created AWS account, which is 20 (and can
of course be increased upon request). This could only
be achieved by using lightweight virtualization tech-
nologies, as is the case of Firecracker [1] which allows
deploying micro Virtual Machines (microVMs) in less
than a second. In general, lightweight virtualization
such as Linux containers (LXC) [39], introduced in
2008, also paved the way for this success. Indeed,
the increased popularity gained by Linux software
containers fostered the emergence of Docker [27] in
2013, which spawned an entire ecosystem of tools that
boosted innovation and widespread adoption.

Both enterprise-based workloads and scientific
computing benefited from this trend to provide encap-
sulated applications with all the dependencies to guar-
antee successful execution across a myriad of com-
puting platforms. Docker images turned into a de
facto approach for consistent multi-platform applica-
tion delivery. The advent of containers, together with
the sustained development of Container Orchestra-
tion Platforms (COPs) such as Kubernetes [15], paved
the way for implementing the event-driven capabil-
ities of FaaS under open-source platforms such as
OpenFaaS [47], Knative [38] and Apache OpenWhisk
[7]. These platforms mimic the functionality of pub-
lic FaaS offerings for the execution of functions coded
in certain languages within the premises of an orga-
nization. This computing paradigm for the Cloud, in
which dynamic resource allocation is managed by the
Cloud infrastructure provider, was coined as serverless
computing [9].

However, the benefits of serverless computing can-
not be restricted to just function-based computing,
especially in the case of scientific computing [34]
where complex software dependencies [36], resource-
intensive requirements [49, 62] and, sometimes, the
necessity of accelerated hardware is required [26], fea-
tures that are not currently available in public Cloud
serverless offerings. Currently, an AWS Lambda func-
tion cannot run beyond 15 minutes, use more than

10240 MBytes of RAM, use any accelerated comput-
ing device such as GPUs or use an ephemeral storage
space greater than 512 MB, thus jeopardizing the
adoption of these platforms by scientific computing.

Also, new challenges arise for scientific applica-
tions to harness the computing continuum, as indi-
cated in the work by Beckman et al. [13], where
they identify multiple infrastructures on which com-
puting takes place such as interconnected sensors from
IoT/Edge devices to computer clusters and Cloud
infrastructures. Workflow-like applications may ben-
efit from the orchestration of resources along the
computing continuum. These applications may gather
data at the edge, perform local processing to com-
ply with privacy regulations on on-premises comput-
ing platforms and seamlessly profit from the elastic-
ity of public Cloud infrastructures to reduce overall
makespan.

Towards this vision, this paper introduces an archi-
tecture composed of open-source components that sup-
ports the execution of workflow-based data-processing
applications packaged as Docker containers that can
elastically provision resources from on-premises Clouds
and perform automated bursting into a public Cloud
using an event-driven serverless approach. The flex-
ibility of this architecture provides a step forward in
defining data-driven workflows that can execute along
the Cloud continuum.

After the introduction, the reminder of this paper is
structured as follows. First, Section 2 introduces the
related work in the area of serverless scientific com-
puting. Next, Section 3 describes the components of
the designed platform and the Functions Definition
Language created to support data-driven workflows
along the Cloud continuum. Later, Section 4 describes
a use case to assess the benefits of the developed
platform that integrates Deep Learning models with
serverless computing to produce cost-effective pro-
cessing of videos from surveillance cameras to detect
mask usage by the population. Finally, Section 5 sum-
marizes the main achievements of the paper and points
to future work.

2 Related Work

Several research groups understood from the early
beginning that serverless computing could certainly

30 Page 2 of 18 J Grid Computing (2021) 19: 30

benefit scientific computing. This is the case of the
work by Jonas et al. [37] who introduced the PyWren
tool to perform distributed computing using AWS
Lambda, in order to support several programming
models, building on the assumption that stateless func-
tions can be a natural fit for data processing. Our
earlier work in the area, MARLA (MapReduce on
AWS Lambda)1 by Giménez-Alventosa et al. [31]
created a framework to execute Python-based MapRe-
duce applications on AWS Lambda, thus producing
a high-performant serverless open-source tool to exe-
cute High Throughput Computing (HTC) jobs without
requiring any pre-provisioned computing infrastruc-
ture by the user. In this work we identified the
unbalanced performance properties of serverless plat-
forms such as AWS Lambda and produced a thorough
research which identified performance variabilities in
both network throughput and CPU performance for
different invocations of the same Lambda function
even with the same allocated resources. This sparked
the need to create appropriate serverless load balanc-
ing strategies for HTC jobs that can minimise both
execution time through proper dynamic load assign-
ment thus resulting in reduced cost using the fine-
grained billing models, as described in [32]. More-
over, the work by Fouladi et al. [30] also envisioned
the mapping of thousands of parallel threads to mul-
tiple invocations of a Lambda function in order to
achieve close to near-interactive completion times.
They produced the gg software tool2 which performs
distributed compilation of large code bases, together
with other use cases such as video encoding, offering
an API with bindings for Python and C++.

The report by Sewak et al. [59] summarises the dif-
ferent applications of serverless computing along with
the advantages and disadvantages of the main FaaS
platforms in public Clouds, anticipating their growth
and adoption in the near future, as well as indicat-
ing the need for new tools to harness the capabilities
of these platforms and facilitating their adoption by
developers. The applicability of serverless architec-
tures to serve AI models has also been investigated
in numerous studies. For example, the study carried
out by Ishakian et al. [35] analyses the application
of AWS Lambda to serve lightweight deep learning
models, as the maximum available ephemeral storage

1MARLA - https://github.com/grycap/marla
2gg - https://github.com/StanfordSNR/gg

in a function is 512 MB, concluding that such plat-
forms can be suitable for workloads running on warm
functions. However, their results show how cold starts
can add significant overhead in latency times when
compared to conventional services deployed on vir-
tual machines. Aditionally, the papers conducted by
Christidis et al. [23, 24] propose a set of optimisa-
tions for deploying machine learning workloads on
serverless platforms. Some of these optimisations are
in fact aligned with those implemented in our work,
such as minimizing container images or loading them
on the ephemeral storage of functions in order to over-
come the maximum size of the deployment package.
These studies further conclude that it is worth adapting
such applications to serverless platforms in view of the
potential savings and robust elasticity, and point to the
growing need to support specialised AI-accelerated
hardware on such platforms.

Indeed, supporting serverless computing for scien-
tific computing requires solving specific challenges
that lie ahead the development of our early proto-
type. To begin with the first challenge, a problem
that remains unsolved is chaining function composi-
tion to produce serverless workflows that can fully
exploit resources from on-premises to public Clouds
including computing at the edge for local data prepro-
cessing. The serverless trilemma by Baldini et al. [10]
identified that engineering function composition for a
serverless application is possible but function compo-
sition must obey a substitution principle with respect
to synchronous invocation and invocations should not
be double-billed, what poses additional constraints to
enact serverless workflows with respect to traditional
workflow systems.

An early work by Malawski [40] explored the idea
of serverless workflows for processing background
tasks of Web applications and how to rethink server-
less architectures for executing scientific workflows,
introducing a prototype based on Google Cloud Func-
tions coupled with the Hyperflow workflow engine.
In this line, the work by Skluzacek et al. introduced
Xtract, a service to process large collections of sci-
entific files to extract metadata from various file
types. They used funcX [20] to develop the prototype,
a federated FaaS system to enable function execu-
tion across heterogeneous distributed resources. These
functions are snippets of Python code and the sys-
tem relies on Globus transfer to perform data staging.
The authors found that it can be difficult to modify

J Grid Computing (2021) 19: 30 Page 3 of 18 30

https://github.com/grycap/marla
https://github.com/StanfordSNR/gg

applications for stateful execution, since the state
is not easily shared among functions. Thus, poorly
designed solutions may lead to significant communi-
cation overhead.

Despite the large number of open-source FaaS
frameworks, few research has been dedicated to
serverless workflows, specially to those that are inher-
ently data-driven because they require processing data
across multiple stages of the workflow. For exam-
ple, Faas-flow [58] provides function composition
for the OpenFaaS framework by creating chains of
functions that can be executed both synchronously
and asynchronously with support for parallel execu-
tion with branching, even upon certain conditions.
Other workflow engines that run on top of Kubernetes
may be used to provide some support for serverless
workflows. This is the case of Argo Workflows [8],
an open-source container-native workflow engine for
orchestrating parallel jobs on Kubernetes which mod-
els multi-step workflows as sequences of tasks via
DAGs (Directed Acyclic Graphs) and which provides
support for event-driven workflow automation.

In fact, serverless workflows is an active research
area where several contributions are being proposed.
For example, the work by Ristov et al. [57] intro-
duces a language to describe function choreographies
to connect serverless functions. Indeed, the Server-
less Workflow Specification (SWS) [25] was recently
approved as a Cloud native Sandbox level project to
define declarative workflow models that orchestrate
event-driven serverless applications. We expect that
this specification will bring benefits in the area of
consistency, providing a common way of describing
serverless workflows, portability and accessibility, to
provide interoperability among serverless workflow
runtimes. However, for the time being, this specifica-
tion allows to compose a workflow from pre-existing
serverless functions and, therefore, does not involve
function provisioning. Techniques such as Dynamic
parallelism supported by AWS Step Functions are
beneficial for the orchestration of microservices-based
applications. Nevertheless, this technique is mainly
employed for control-driven workflows, where the
connections between the activities or tasks in a work-
flow represent a transfer of control from the proceed-
ings task (or tasks) to the one (or ones) that follow
[60]. However, the focus of our work is on data-driven
workflows where a task input depends on the output
data generated by the previous task.

Concerning the support to the computing contin-
uum, several authors have previously explored this
topic. For example, the work by Balouek-Thomert et
al. [11] presents a vision to enable such a comput-
ing continuum and they set the focus on enabling
edge-to-cloud integration to support data-driven work-
flows. They focus on stream-oriented workflows to
filter data near the sources but they do not use a server-
less approach and no open-source implementation is
provided. The work by Baresi et al. [12] introduces
the A3-E unified model for the Mobile-Edge-Cloud
continuum which exploits the FaaS model to bring
computation to the continuum. It uses Apache Open-
Whisk to support the implementation together with
AWS Lambda. However, no support for workflows is
introduced.

It is precisely at the verge of this state-of-the-art
that lies this contribution, producing an open-source
platform that provides serverless scientific computing
along the Cloud continuum, including both on-premises
and public Clouds, and that supports data-driven work-
flow enactment in serverless platforms and multi-
Cloud hybrid deployments of infrastructures. To best
of the author’s knowledge, this is the first platform that
supports event-driven serverless scientific computing
simultaneously harnessing resources from multiple
Clouds (exemplified in our case via OpenStack and
AWS Lambda). The platform, together with the defi-
nition of the use case described in this paper has been
released as open-source, publicly available in GitHub,
for the sake of reproducibility.

3 Components to Support Serverless Workflows
along the Cloud Continuum

This section identifies the main components employed
to support hybrid serverless workflows that can span
across on-premises Clouds and public Cloud plat-
forms to process data that may be captured at the edge.
First, the SCAR3 [50] software for serverless scien-
tific computing in public Clouds is described. Later,
the open-source OSCAR4 [53] framework to sup-
port serverless computing for data-processing applica-
tions in on-premises Clouds is covered. Finally, this
section introduces the Functions Definition Language

3SCAR - https://github.com/grycap/scar
4OSCAR - https://github.com/grycap/oscar

30 Page 4 of 18 J Grid Computing (2021) 19: 30

https://github.com/grycap/scar
https://github.com/grycap/oscar

(FDL) created to define the functions together with
its relationship with data-driven serverless computing
workflows.

The main contribution of this paper lies in the
development of a new version of the OSCAR frame-
work to match the same computing model provided
by SCAR. This allowed the integration of both com-
ponents to support the same computing model across
both on-premises and public FaaS platforms for data-
processing applications. Another key contribution is
the development of a novel FDL to define data-driven
serverless workflows that can execute along the Cloud
continuum, in order to support the definition of use
cases that require processing at different levels of this
continuum. Notice that, by building on existing open-
source software that is being used in production we
aim to foster long-term sustainability of the developed
architecture.

3.1 SCAR: Serverless Scientific Computing in Public
Clouds

SCAR is an open-source framework that supports a
High Throughput Computing model [52] to create
embarrassingly parallel event-driven file-processing
serverless applications on public FaaS platforms, cur-
rently supporting AWS Lambda. The applications can
be packaged as Docker images that can be optionally
stored in Docker Hub [28] (alternative means include
Amazon S3). This allows to execute complex scien-
tific applications in AWS Lambda, thus being able to
spawn up to 3000 parallel invocations (depending on
the region used). There are strict computing require-
ments per invocation in AWS Lambda, which are
currently 10240 MB of RAM, 512 MB of ephemeral
storage that is potentially shared across invocations
and 15 minutes of execution time. Therefore, this
typically requires using container minimization strate-
gies in order to fit the Docker container within AWS
Lambda’s runtime environment, such as those avail-
able in tools like minicon [33], which analyses an
application execution to obtain a filesystem that exclu-
sively contains the dependencies detected.

For those applications that do not fit within
AWS Lambda’s computing requirements, SCAR pro-
vides a seamless integration with AWS Batch [5] an
elastic-cluster as a service offering by AWS which
dynamically deploys a cluster in charge of execut-
ing jobs packaged as a Docker images and which can

grow and shrink depending on the number of jobs
queued up at the Local Resource Management System
(LRMS). This integration allows to delegate into AWS
Batch functions invocations that require longer exe-
cution times, larger amount of memory or even GPU
resources for accelerated execution, as described in the
work by Risco et al. [56].

However, there are applications that can benefit
from the event-driven behaviour of serverless plat-
forms but that require strict privacy requirements and,
therefore, cannot be run in a public Cloud provider.
Also, there are organizations that are already operating
an on-premises Cloud managed by a Cloud Manage-
ment Platform such as OpenStack [48] and, there-
fore, do not want to spend additional economic cost
from provisioning resources from a public Cloud. The
OSCAR platform described in the following section
was developed to support these scenarios.

3.2 OSCAR: Open-Source Serverless Computing
for Data-Processing Applications

OSCAR is an open-source platform to support the
Functions as a Service computing model for compute-
intensive applications. OSCAR can be automatically
deployed on multi-Clouds in order to create highly-
parallel event-driven file-processing serverless appli-
cations that execute on customized runtime environ-
ments provided by Docker containers than run on
an elastic Kubernetes cluster that grows and shrinks
depending on the usage of resources.

The automated deployment of an OSCAR cluster
on multi-Clouds is achieved using:

– IM (Infrastructure Manager) [16], a TOSCA-
compliant [46] Infrastructure as Code (IaC) tool
to deploy complex customized virtualised infras-
tructures on the major on-premises and public
Infrastructure as a Service providers.

– CLUES (CLUster Elasticity System) [3], an elas-
ticity manager that allows virtual clusters to grow
and shrink in terms of the number of nodes. It has
plugins for popular systems such as Kubernetes,
Apache Mesos, SLURM, etc.

– EC3 (Elastic Cloud Computing Cluster) [17], which
combines the two developments above to deploy
automated self-scaling clusters on multi-Clouds.

An OSCAR cluster features the integration of the
following components:

J Grid Computing (2021) 19: 30 Page 5 of 18 30

– Kubernetes [15], a container orchestration plat-
form, thus managing containerised applications
across multiple hosts. It provides basic mecha-
nisms for deployment, maintenance, and scaling
of applications.

– OpenFaaS [47], an open-source FaaS framework
to execute short-lived functions on top of a con-
tainer orchestration platform.

– MinIO [43], an open-source object storage system
with Amazon S3’s API compatibility.

– OSCAR, the component in charge of creating
a function together with the required resources
to support event-driven batch-based GPU-aware
executions on top of the Kubernetes cluster for
serverless scientific computing.

The creation of an OSCAR function allows users
to upload files to the object storage system which
triggers the execution of the function to perform
the data-processing, with automated elasticity if it is
required, and the output data is stored in any of the
object storage systems supported. This is the case of
Onedata [29] a global data management system that
provides access to distributed storage resources for
data-intensive scientific computations. This is used to
support EGI DataHub, a federated data storage layer
auspiced by EGI (European Grid Infrastructure), the
largest federated Cloud in Europe. OSCAR is com-
patible with the EGI DataHub. Other object storage
systems, such as Amazon S3, can be employed to
store the output data, thus allowing to trigger the AWS
Lambda functions.

Figure 1 describes the internal architecture of an
OSCAR cluster. The bottom part depicts a horizon-
tally elastic Kubernetes cluster that is deployed via
EC3 from pre-defined TOSCA templates that are
employed by the Infrastructure Manager (IM) to pro-
vision and configure the front-end node of the cluster.
This node is configured with the required Kubernetes
services, the CLUES elasticity manager, and a private
instance of the IM server deployed in the aforemen-
tioned front-end node. This way, the clusters become
autonomous in deciding whether to scale out (provi-
sion additional nodes from the underlying Cloud) or
to scale in, depending on the number of pods that are
pending to be executed.

The upper part of the figure shows the main compo-
nents of the cluster together with a typical workflow.

For this contribution, OSCAR was completely redesigned
in order to support the computing model offered by
SCAR. To this aim, OSCAR exposes a secure REST
API that receives requests to create functions. It is
responsible for creating the corresponding input and
output buckets in MinIO, depending on the function
configuration, and configure the event notifications
in order to trigger the function execution upon a file
upload to the input bucket. OpenFaaS is employed
in order to perform synchronous executions of func-
tion invocations, typically short-lived, which is the
most common use case of serverless computing. How-
ever, in order to support resource-intensive event-
driven scientific computing, asynchronous executions
are required. To this aim, OSCAR creates a Kuber-
netes job for each asynchronous invocation that are
delegated into the Kubernetes workload scheduler for
efficient execution. These jobs are wrapped with the
FaaS supervisor,5 an Input/Output data manager espe-
cially created for multi-cloud settings, which allows to
gather data from input data storages and upload output
data into the corresponding data storages. The sup-
ported data storages are depicted in the right part of
the picture.

Security has been addressed using best practices
depending on the infrastructure being employed. For
example, Lambda functions use pre-defined IAM
(Identity and Access Management) Roles6 that follow
the Principle of Least Privilege (PoLP) so that they can
only access the resources required, such as an Ama-
zon S3 bucket to store the generated output data. The
deployment via EC3 of the Kubernetes cluster dynam-
ically generates a token for the user to connect to the
OSCAR web-based user interface and tokens to access
the Kubernetes dashboard and MinIO browser, in case
the user wants to directly access them. Dynamic gen-
eration of secrets prevents from reusing passwords
that would cause severe security implications such as
unauthorized access breach that could be exploited
for nefarious purposes. Moreover, the OSCAR API
requires basic auth and is exposed through a Kuber-
netes ingress that supports SSL. Finally, Onedata
leases tokens, which can be revoked at any time, in
order to provide access to the space.

5FaaS Supervisor - https://github.com/grycap/faas-supervisor
6IAM Roles: https://docs.aws.amazon.com/IAM/latest/UserGuide/
id roles.html

30 Page 6 of 18 J Grid Computing (2021) 19: 30

https://github.com/grycap/faas-supervisor
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Fig. 1 Architecture of the OSCAR platform and interactions among their services

3.3 Functions Definition Language for Data-Driven
Serverless Workflows

To support the deployment of data-driven workflows
of serverless functions that require complex data-
processing, we opted for defining a YAML-based
Functions Definition Language (FDL) that specifies
the requirements for each function and how they are
linked. Notice that, unlike the Serverless Workflow
Specification (SWS) which provides a workflow def-
inition out of existing FaaS functions, our language
focuses on the definition of the functions to be dynam-
ically created across the hybrid Cloud. Therefore,
our proposal could be coupled at a later stage with
the SWS language to provide a portable, interopera-
ble description of workflows out of the dynamically
created functions from our platform.

Two top-level resources are defined in a FDL (see
a sample document in Fig. 2, used to support the case
study described in Section 4):

– Functions, which are created in a Cloud provider
and they are assigned a name, a certain amount of
computing resources together with a shell-script
that will be executed, as part of the function invo-
cation, inside a container created out of a specific
Docker image that may available in Docker Hub.
The function will be triggered whenever a file
is uploaded to a specific folder within a storage
provider and the shell-script will be in charge to
perform the data processing on the file.

– Storage Providers, which become sources of
events for input data processing and store the
output data results from a function invocation.
By using as output from a function the input
storage provider from another function, a prece-
dence relationship is established among them and
a data-driven link is created.

Notice that our platform focuses on data-processing
applications and, therefore, each function is linked

J Grid Computing (2021) 19: 30 Page 7 of 18 30

Fig. 2 Functions Definition Language file to deploy the workflow used in the following section

to an input storage provider (so that the function is
invoked upon a file upload) and also to one or more
output storage providers (where the output file results
of the processing will be stored). The choice of Docker
allows to have complex execution environments that
may be required by scientific applications, which typ-
ically rely on multiple libraries, require specific OS
distributions, etc. This way we can have a consistent
execution environment whether using a public Cloud
or an on-premises one. Note that SCAR’s ability to
handle Docker images as runtime environments within
both AWS Lambda and AWS Batch also supports the
decision to use Docker images in this environment.

The choice of shell-scripts instead of providing
bindings for specific programming languages responds
to the goal of supporting scientific applications, which
are typically legacy applications that are unfeasible to

be adapted to other programming languages other than
those initially used to code them. Also, this allows to
execute any application that supports the command-
line, thus broadening the scope of applications that can
be supported, instead of forcing developers to adapt
their legacy applications to a certain programming
language.

The integration of SCAR and OSCAR tools, together
with the adaptation of the FaaS Supervisor, has been
carried out in order to support these new FDL files.
For this purpose, as previously indicated, OSCAR
has been redesigned to support the function defini-
tion model through its REST API, along with other
improvements such as a refreshed web interface and
the ability to retrieve execution logs for enhanced visi-
bility. The SCAR tool has also been improved to allow
communication with OSCAR endpoints, as well as

30 Page 8 of 18 J Grid Computing (2021) 19: 30

a parser update to handle the new functions defini-
tion files. Finally, the FaaS Supervisor required minor
changes to support the loading of storage providers’
credentials from the new files. In this way, as shown
in Fig. 3, SCAR has become a tool capable of orches-
trating resources to support file-processing serverless
computing along the Cloud continuum. Hence, SCAR
manages the creation of the required resources both
in AWS and in the OSCAR cluster together with the
corresponding output folders in the Onedata space.
The composition of the different steps of the work-
flow is achieved by using the output bucket of one
function as the input of the subsequent one. There-
fore, to start the execution of the workflow, users only
have to upload a file to the input bucket of the first
function.

Fig. 3 Simplified diagram of a hybrid serverless workflow that
involves public, on-premises and federated cloud resources

Note that infrastructure management is being left
out from the FDL, in line with the serverless approach
of delegating in the Cloud provider for this task. In our
case, it is at deployment time of the OSCAR cluster
when the user/administrator indicates the maximum
number of nodes of the cluster, together with their
computing requirements. This way, the user can focus
on the definition of the application workflow and let
the cluster auto-scale within the on-premises Cloud.
In the case of functions created with SCAR, the con-
currency limits can be specified by the user at creation
time.

In order to demonstrate the benefits of the designed
platform, the following section introduces a use case
related to public health in smart cities.

4 Use Case: Mask Wearing Detection via
Anonymised Deep Learning Video Processing

Data analysis in the context of smart cities is an active
area of research and the role of data processing (Big
Data) to extract knowledge from dense networks of
sensors across a city is summarised in the review
work by Nuaimi et al. [2], in the work of Camero et
al. [18] and in the work by Chen et al. [22]. As an
example, the work by Bello et al. [14] highlighted the
importance of sound as a source of information about
urban life, focusing on monitoring noise pollution and
audio surveillance. Indeed, the work by Spadini et
al. [61] focused on ambient sound processing across
smart cities in order to detect abnormal events such as
gunshots, sirens, etc.

Using a similar approach, we focus in this study
on smart camera networks [55], which are distributed
systems that perform computer vision tasks using mul-
tiple cameras. These have implications in activities
such as surveillance with cameras that capture the nat-
ural movement of individuals and vehicles in every-
day environments, as indicated in the work by Chen
et al. [21].

This use case targets an scenario of video surveil-
lance in which it is required to provide increased
monitoring capabilities for the authorities to take bet-
ter public health decisions. With the COVID-19 global
pandemic that affected the entire world starting late
2019, many national authorities have regulated the
mandatory use of face masks in order to minimize the
spread of the virus across the population. To this aim,

J Grid Computing (2021) 19: 30 Page 9 of 18 30

this use case introduces a workflow entirely based on
open-source components that allows to determine the
people that are not wearing a mask out of sampled
images from video recordings that could be obtained
from a network of cameras distributed throughout a
city. This may allow public health authorities to better
devote resources to minimize this trend in the specific
areas being monitored.

However, according to the NIST Guide to Pro-
tecting the Confidentiality of Personally Identifiable
Information (PII) [41], a person’s face is considered
a PII because it can unequivocally identify a human
being. Therefore, in order to protect the privacy of
the individuals, a pre-processing stage is performed in
order to blur the faces before applying a deep learning
model to perform the face mask recognition. This is
why a hybrid serverless workflow is required so that
processing is performed along the Cloud continuum,
where data is captured at the edge (camera devices),
pre-processing is carried out in an on-premises Cloud
for regulatory compliance purposes and, finally, pro-
cessing and storing of final results is carried out in a
public Cloud using a serverless platform for increased
elasticity and long-term persistence.

The steps of the workflow can be shown in Fig. 4. A
set of cameras from a smart camera network periodi-
cally take short videos that are automatically uploaded
to an on-premises Cloud with a MinIO installation.
Each uploaded video triggers an event that starts the
“Anon and split” function within the OSCAR cluster
in order to extract a frame every 5 seconds of video
and perform the initial anonymisation phase on the
extracted images to blur the faces using the Blurry-
Faces tool [44]. This phase takes an average of 65
seconds to chunk and anonymise 1 minute of video at
a resolution of 1920x1080. Therefore, considering the
computational requirements and the need to comply
with the local regulations related to the use of PII, this
phase can be performed in the on-premises Cloud.

The resulting anonymised images are then uploaded
to an Amazon S3 bucket in order to start the infer-
ence process in the public Cloud. Each uploaded
image triggers the “Mask detector” Lambda func-
tion responsible for using the face-mask-detector [54]
Deep Learning model in order to compute the per-
centage of people in the picture that are not wearing
a face mask. The output images are made available
in another Amazon S3 bucket to guarantee long-term
data persistence and for the responsible stakeholder

Fig. 4 Workflow for the defined use case involving face mask
detection on anonymised images on a hybrid Cloud

to take actions upon the results obtained. We rely
on Amazon S3 instead of EGI DataHub to store the
output data for the sake of easier reproducibility. A
sample image result of the processed workflow is
shown in Fig. 5.

Notice that this technology can be applied by the
local authorities to perform a quantitative and system-
atic evaluation of the fulfillment of the regulations
to determine if further enforcement is required. The
ability to safely outsource the embarrassingly parallel
part of the workflow to a public Cloud supports the
scalability of the designed approach.

The following subsections describe the approach
employed to create the workflow, together with optimiza-
tion techniques applied for increased cost-effectiveness.

30 Page 10 of 18 J Grid Computing (2021) 19: 30

Fig. 5 Result image that
differentiates people not
wearing face masks

4.1 Optimal Resource Allocation for the Lambda
Function

The allocation of computing resources for an AWS
Lambda function is linearly dependent on the amount
of allocated RAM. Hence, increased amount of RAM
may reduce the execution time but, at the same time,
increases the cost, which is billed in milliseconds of
execution time. Therefore, in order to choose the opti-
mal amount of memory to achieve cost-efficient exe-
cutions in a timely manner, we relied on AWS Lambda
Power Tuning [19], an open-source tool to optimize
Lambda functions for cost/performance using a data-
driven approach. The tool performs the execution
of the function with different memory allocations in
order to compute both the execution time and the total
cost.

Figure 6 shows the output results obtained by the
aforementioned tool showing average values (N =
5 repetitions) for the execution cost and the execu-
tion time for the mask detector function running with
different RAM values starting at 256 MB, the least
amount of RAM required to execute the deep learning
model, until 4096 MB. Larger memory amounts have
been omitted since the execution time remained at
similar values, as can be seen in the line between 2048
MB and 4096 MB, while the cost kept increasing.
Note that the first invocation for each memory amount
is performed when the container image is not avail-
able in the AWS Lambda environment, which results
in an increased execution time due to the cold start,

while in the remaining ones (i.e. when the Docker
image is already available for the function invoca-
tions) no variation is appreciated. The function was
created using SCAR in the us-east-1 region and out-
side of a VPC (Virtual Private Cloud), which provides
faster execution times.

The figure shows that the best cost is obtained with
the least amount of memory, at the expense of achiev-
ing the worse (maximum) execution time. Notice that
the execution time reduces almost linearly when using
up to 512 MB of RAM. From this point on, increas-
ing the RAM, which proportionally affects the CPU

Fig. 6 Time and cost analysis for the mask detector function
running on AWS Lambda

J Grid Computing (2021) 19: 30 Page 11 of 18 30

allocation, provides moderate improvements in the
execution time with an increased cost, which starts to
grow considerably from 1024 MB upwards. Finally,
allocating 4096 MB provides a marginal improvement
with respect to 2048 MB at the expense of a substan-
tial cost increment. For this particular application, the
optimal amount of memory lies between 768 and 1024
MB of RAM, depending on the budget restrictions of
the user.

Several key results are obtained from this analy-
sis. On the one hand, allocating additional memory
to a Lambda function tends to reduce the execution
time, but this is not always the case (compare the exe-
cution time with 2048 and 4096 MB of RAM in the
figure above). On the other hand, the execution time is
billed in milliseconds and, therefore, optimization is a
mandatory strategy when creating a Lambda function.
Marginal optimizations on a Lambda function that are
executed a large amount of times end up in producing
significant cost savings.

4.2 Case Study Design

Two scenarios were designed in order to prove the
benefits of the designed platform. In the first one, the
whole workflow is executed on the on-premises plat-
form. In the second one, the proposed hybrid work-
flow has been used, which involves resources both
from the on-premises Cloud and the public Cloud.
This allows to better assess the benefits of adopting a
hybrid approach along the Cloud continuum.

The on-premises platform employed to conduct the
experiment consists of an elastic Kubernetes clus-
ter deployed with the EC3 tool, since the use of an
Infrastructure as Code (IAC) [45] approach allows
to guarantee deterministic provisioning of customized
virtual infrastructures. The cluster is composed of a
front-end node and a maximum of 5 working nodes,
each one with 4 vCPUs and 8 GB of memory. The
underlying infrastructure is a physical cluster sup-
ported by OpenStack which includes 14 Intel Skylake
Gold 6130 processors, with 14 cores each, 5.25 TB of
RAM and 2 x 10GbE ports and 1 Infiniband port in
each node.

For the “Anon and split” function, which always
runs on the OSCAR platform, 1 vCPU and 2 GB
of memory were set. Note that although the working
node instances have 4 vCPU, the internal components
of Kubernetes require a small amount of resources (0.2

vCPU and 250 MB approximately), which makes the
4 entire vCPUs unavailable for processing. Therefore,
the Kubernetes scheduler can only assign for execu-
tion three function jobs simultaneously on the same
working node. Moreover, the “Mask detector” func-
tion was executed on the public or on-premises Cloud
depending on the scenario. Considering the results of
the study carried out in the section 4.1, 1024 MB of
RAM were chosen for this function in both scenar-
ios, setting 1 vCPU when running in the on-premises
OSCAR cluster.

The SCAR client was used to perform the work-
flow deployment, depicted in Fig. 4 across the hybrid
infrastructure using the FDL file shown in Fig. 2.
This file shows the definition of two functions, one
in AWS Lambda and one in the OSCAR cluster,
together with their computing requirements. It also
indicates the Docker image from which a container
will be created to execute the script that will process
the file that triggers the execution of the function.
Decoupling the infrastructure provisioning with the
workflow deployment allows to reuse the underlying
provisioned infrastructure to support multiple hybrid
workflows from different users, thus supporting a
multi-tenant approach.

To perform the different tests, a sample video with
a resolution of 1920x1080 pixels and a duration of
186 seconds was used. After the “Anon and split”
phase this resulted in 37 images to be processed by the
“Mask detector” function. The different experiments
conducted on each scenario together with the results
obtained are presented below.

4.3 Results and Discussion

This section analyses the results obtained from the
execution of the different scenarios previously defined.

4.3.1 Video Processing Analysis

In order to prove the effectiveness of hybrid serverless
workflows for processing data produced at the edge,
the times obtained after 5 workflow runs to process
a single video were measured. As mentioned above,
the first function is responsible for extracting frames
from the input video every 5 seconds and then apply-
ing an anonymisation strategy based on distorting the
faces. This “Anon and split” function will always run
on the on-premises platform (OSCAR), which will

30 Page 12 of 18 J Grid Computing (2021) 19: 30

ideally be deployed on private Cloud infrastructures
that comply with established data protection regula-
tions, or even on intermediate devices located near the
edge (fog computing). Afterwards, the “Mask detec-
tor” function will be triggered by each image resulting
from the previous function, hence it will be possible
to evaluate its performance when processing several
images in parallel on both scenarios.

Figure 7 shows the times obtained for each func-
tion after processing the sample video 5 times in the
two defined scenarios. The first function required an
average time of 206.4 seconds on the first scenario
and 227.4 seconds on the second one. This increment
is caused by the uploading of the images to the input
bucket of the second function, which in the first case
was located in the same cluster (due to the use of
MinIO), while in the hybrid workflow is on Amazon
S3, so the files must be uploaded via the Internet.

In the second function, a significant improvement
can be seen due to the massive parallelism supported
by AWS Lambda, which allows all the images to be
processed in parallel. The average time obtained in the
first scenario was 111.4 seconds, since the maximum
level of parallelism was 3 processing jobs within a sin-
gle node. Notice that to process a single video, the
CLUES elasticity manager of OSCAR does not have
enough time to scale out the cluster by deploying addi-
tional working nodes. In AWS Lambda, however, the
processing of all the images completed in an average
of 19.6 seconds, which supposes an improvement of

Fig. 7 Execution times of the workflow functions in the two
defined scenarios

82.4%. As you may observe, the processing time of
the 27 images in AWS Lambda is longer than that of
a single image, i.e. not all are strictly performed in
parallel. This is due to the fact that the time has been
measured from the moment the first image starts to be
processed until the result of the last image is saved.
Delays in uploading files to S3 from the first func-
tion directly affect the total image processing time,
which causes that not all the images are uploaded
simultaneously. Therefore, good network connectivity
between the two Clouds will considerably increase the
performance of the second function.

Moreover, as observed in the figure, the first exe-
cution of each function has longer times than the rest.
This can be explained by the fact that these values are
measured when the function is triggered for the first
time on the platform. On the one hand, in the OSCAR
Kubernetes cluster, the first time a function is executed
on a working node, the container image must be down-
loaded from Docker Hub, which generates a delay of
up to 13% in the first function and 10% in the second
one. Notice that the image used in the first function
is considerably larger (1.51 GB) than that used in the
second function (219 MB), as it has been reduced
by minicon to fit on the constrained environment of
AWS Lambda. On the other hand, the “Mask detec-
tor” function in the second scenario is performed on
AWS Lambda and, as described in [51], if the function
is “cold”, the time taken to download the container
image must be added to the time taken to start up the
corresponding execution environment, increasing the
gap from the average value.

Also, the execution cost of the “Mask detector”
function in the second scenario has been analysed.
As discussed in the Section 4.1, the optimal perfor-
mance point for the function in AWS Lambda was
approximately 1024 MB of RAM. The average billed
time after a cold start of the function is 12908 ms,
which translates into an image processing cost of
$0.00021556. On the other hand, the subsequent exe-
cutions, having the image of the container available,
will be much faster, obtaining an average billed time
of just 2123 ms and a cost of $0.00003545. Summa-
rizing, the processing cost of the 37 images generated
by the video can range from $0.00131165, when the
function is “warm”, to $0.00797572 in the worst case,
if all the executions were triggered exactly at the same
time and none of them had the container image in the
file system.

J Grid Computing (2021) 19: 30 Page 13 of 18 30

The total times measured when performing a com-
plete workflow execution are shown in Fig. 8. As
mentioned above, the maximum values in each sce-
nario, displayed in the box chart as outliers, match the
first invocations of each function when the container
images are not present in the working node and, in the
case of AWS Lambda, the function is cold. Despite
the fact that these situations considerably increase the
time needed to complete the workflow, they can eas-
ily be avoided by downloading the images when each
node in the cluster is started. For AWS Lambda sev-
eral techniques exist to keep the functions “warm”,
such as invoking them periodically or activating the
Provisioned Concurrency feature, at the expense of
increasing the cost of the application.

In an edge computing scenario, on-premises clus-
ters used by the sensors (the surveillance cameras in
the experiment) will be of reduced scale so they cannot
scale up to the sizes of AWS Lambda. Moreover, auto-
matic scaling up the cluster through CLUES would
require booting up resources and for this specific case
will imply a prohibitive overhead. Although the fig-
ures of the experiment with a larger-scale on-premise
cloud would have been more competitive with respect
to the AWS Lambda, they would not be comparable in
a large-scale production-level scenario.

4.3.2 Parallel Video Processing Analysis

In order to test the scalability of the designed system,
we executed the workflow under the two scenarios

Fig. 8 Total execution times of the workflow in the two defined
scenarios

with several number of videos to be processed. The
videos were uploaded simultaneously to the input
bucket thus simulating the data capturing process
from several cameras at the edge. Figure 9 shows the
results obtained. Notice that the benefits of perform-
ing a hybrid approach appear since the beginning,
as identified in the previous section, but the margin
of improvement increases as the workload increases.
Indeed, the impressive elasticity capabilities of AWS
Lambda, that may perform up to 3000 parallel invo-
cations greatly surpasses the bottlenecks that are typ-
ically found in on-premises Clouds where the parallel
execution slots are limited to those available in the
provisioned infrastructure.

At a more detailed level, the workflow execution
for the processing of a single video on the first sce-
nario has only been executed on one node. Despite
the fact that CLUES triggers the scale-out order to the
4 remaining working nodes shortly after the creation
of the 37 Kubernetes jobs for treating the images, all
the jobs ended up on the active WN before the new
ones completed their start up and configuration pro-
cess. This means that resources are wasted when the
load is low, as the platform is able to scale, but not in
time. Thus, after a period of idle time the new nodes
are shut down again. As can be seen, when the on-
premises platform receives more load (starting from 5
videos), the processing time is reduced in both scenar-
ios as a result of the availability of more resources for
parallel job processing.

Fig. 9 Measured times after processing different amounts of
videos in parallel

30 Page 14 of 18 J Grid Computing (2021) 19: 30

It is important to point out that the gap between
the two lines in Fig. 9 can be closed by increasing
the number of parallel execution slots and reducing
the time until they are initially available for execution.
The former is bounded by the underlying physical
hardware available, which is fixed, and the alloca-
tion of resources to the deployed Virtual Machines,
i.e., the instance types, which can be configured at
deployment time. The latter depends on the elastic-
ity rules employed in the cluster. In our case, the
CLUES elasticity manager governing the rules to scale
out (add additional nodes) and scale in (terminate the
free nodes) was configured to only start the front-
end of the cluster and a working node in charge of
performing the job executions. This is a conservative
strategy that aims to minimize energy consumption in
an on-premises Cloud and only reactively provision
additional resources whenever they are needed. Since
CLUES rules can be configured, the user may pre-
fer to have a pre-provisioned fleet of VMs that are
immediately available upon moderate changes in the
workload to be processed.

The use of an open-source stack that can be
fully configured by the user in order to seamless-
ly perform both infrastructure provision along the
Cloud continuum and data-driven workflow enact-
ment using a serverless approach is an important step
forward in widespreading the adoption of this tech-
niques for scientific computing. Traditional server-
less use cases focused on unpredictable bursts of
short-lived requests, as is the case of web applica-
tions. However, we have demonstrated that compute-
intensive, workflow-based applications can also be-
nefit from the event-driven capabilities and auto-
mated resource management provided by serverless
computing.

5 Conclusions

This paper has introduced an open-source platform
that supports the definition of event-driven file-
processing workflows that can execute across the
Cloud computing continuum that features underlying
elasticity in the provisioning of resources. The ability
to Cloud burst into a public Cloud using a serverless
approach introduces an unprecedented level of elas-
ticity when compared to traditional approaches based
exclusively on Virtual Machines.

The seamless integration between SCAR, which
supports the execution of containers within AWS
Lambda to bring serverless for scientific computing,
and OSCAR, which provides the FaaS computing
model for file-processing applications on Kubernetes
clusters, has allowed to create hybrid data process-
ing workflows across the Cloud continuum. These
workflows can orchestrate automated provisioning of
resources both in the on-premises Cloud, through
elastic Kubernetes clusters and in the public Cloud,
through the use of serverless services such as AWS
Lambda.

A use case based on smart camera networks with
applications in smart cities for video surveillance has
been envisaged and assessed, in order to efficiently
determine the usage of face masks across the popu-
lation out of processed videos using Artificial Intelli-
gence models. The use case has been made publicly
available in GitHub7 in order to guarantee its repro-
ducibility. The experiments show that it is affordable
and efficient to deviate a computing intensive part of
the processing to AWS Lambda, rather than process-
ing it on limited-scale, on-premises clusters, even if
those clusters would have better network connectivity.
This fact is more evident as the scale factor increases

Future works include dynamic resource orchestra-
tion across the Cloud-to-Things continuum, where the
workflow can anticipate the expected incoming work-
load in order to further adapt the resources. This would
minimize the amount of time invested in provisioning
additional nodes within the on-premises Cloud and the
cold-start incurred by the Lambda functions once they
have scaled-to-zero. We also plan to adapt OSCAR to
minimalistic Kubernetes distribution to move part of
the event-driven functionality of OSCAR closer to the
edge, by enabling it to run on IoT devices, allowing the
composition of workflows that begin the processing
on the data gathering device itself.

Acknowledgements The authors would like to thank the
European Union for the project “Artificial Intelligence in Secure
PRIvacy-preserving computing coNTinuum” (AI-SPRINT),
with code 101016577, funded under the H2020 Framework
Programme and also the regional government of the Comu-
nitat Valenciana (Spain) for the project IDIFEDER/2018/032
(High-Performance Algorithms for the Modeling, Simulation
and early Detection of diseases in Personalized Medicine),

7Mask detector workflow - https://github.com/grycap/scar/tree/
master/examples/mask-detector-workflow

J Grid Computing (2021) 19: 30 Page 15 of 18 30

https://github.com/grycap/scar/tree/master/examples/mask-detector-workflow
https://github.com/grycap/scar/tree/master/examples/mask-detector-workflow

co-funded by the European Union ERDF funds (European
Regional Development Fund) of the Comunitat Valenciana
2014–2020.

Funding Open Access funding provided thanks to the CRUE-
CSIC agreement with Springer Nature.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Cre-
ative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated oth-
erwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

References

1. Agache, A., Brooker, M., Iordache, A., Liguori, A.,
Neugebauer, R., Piwonka, P., Popa, D.M.: Firecracker:
lightweight virtualization for serverless applications. In:
17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20), pp. 419–434. USENIX
Association, Santa Clara, CA. https://www.usenix.org/
conference/nsdi20/presentation/agache (2020)

2. Al Nuaimi, E., Al Neyadi, H., Mohamed, N., Al-Jaroodi,
J.: Applications of big data to smart cities. Journal
of Internet Services and Applications 6(1), 25 (2015).
https://doi.org/10.1186/s13174-015-0041-5.

3. de Alfonso, C., Caballer, M., Calatrava, A., Moltó, G.,
Blanquer, I.: Multi-elastic Datacenters: auto-scaled vir-
tual clusters on energy-aware physical infrastructures.
Journal of Grid Computing 17(1), 191–204 (2019).
https://doi.org/10.1007/s10723-018-9449-z.

4. Amazon Web Services: Amazon EC2. https://aws.amazon.
com/ec2/

5. Amazon Web Services: AWS Batch — Easy and Effi-
cient Batch Computing Capabilities. https://aws.amazon.
com/batch/

6. Amazon Web Services: AWS Lambda. https://aws.amazon.
com/lambda

7. Apache: OpenWhisk - Open Source Serverless Cloud Plat-
form. https://openwhisk.apache.org/

8. Argo: Workflows & Pipelines. https://argoproj.github.io/
projects/argo/

9. Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S.,
Ishakian, V., Mitchell, N., Muthusamy, V., Rabbah, R.,
Slominski, A., Suter, P.: Serverless computing: Current
trends and open problems. In: Research Advances in
Cloud Computing, pp. 1–20. Springer, Singapore (2017).
https://doi.org/10.1007/978-981-10-5026-8 1.

10. Baldini, I., Cheng, P., Fink, S.J., Mitchell, N., Muthusamy,
V., Rabbah, R., Suter, P., Tardieu, O.: The serverless
trilemma: function composition for serverless computing.
In: Proceedings of the 2017 ACM SIGPLAN Interna-
tional Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software - Onward!
2017, pp. 89–103. ACM Press, New York (2017).
https://doi.org/10.1145/3133850.3133855. http://dl.acm.
org/citation.cfm?doid=3133850.3133855

11. Balouek-Thomert, D., Renart, E.G., Zamani, A.R.,
Simonet, A., Parashar, M.: Towards a computing contin-
uum: Enabling edge-to-cloud integration for data-driven
workflows. International Journal of High Performance
Computing Applications 33(6), 1159–1174 (2019).
https://doi.org/10.1177/1094342019877383.

12. Baresi, L., Mendonça, D.F., Garriga, M., Guinea, S., Quat-
trocchi, G.: A unified model for the mobile-edge-cloud con-
tinuum. ACM Transactions on Internet Technology 19(2),
1–21 (2019). https://doi.org/10.1145/3226644

13. Beckman, P., Dongarra, J., Ferrier, N., Fox, G., Moore,
T., Reed, D., Beck, M.: Harnessing the computing con-
tinuum for programming our world. In: Fog Comput-
ing, pp. 215–230. Wiley (2020). https://doi.org/10.1002/
9781119551713.ch7.

14. Bello, J.P., Mydlarz, C., Salamon, J.: Sound analysis in
smart cities. In: Computational Analysis of Sound Scenes
and Events, pp. 373–397. Springer International Pub-
lishing, Cham (2018). https://doi.org/10.1007/978-3-319-
63450-0 13

15. Brewer, E.A.: Kubernetes and the path to cloud native.
In: Proceedings of the Sixth ACM Symposium on
Cloud Computing - SoCC ’15, pp. 167–167. Asso-
ciation for Computing Machinery (ACM), New York
(2015). https://doi.org/10.1145/2806777.2809955. http://
dl.acm.org/citation.cfm?doid=2806777.2809955

16. Caballer, M., Blanquer, I., Moltó, G., de Alfonso, C.:
Dynamic management of virtual infrastructures. Journal of
Grid Computing 13(1), 53–70 (2015). https://doi.org/10.
1007/s10723-014-9296-5

17. Calatrava, A., Romero, E., Moltó, G., Caballer, M., Alonso,
J.M.: Self-managed cost-efficient virtual elastic clusters
on hybrid Cloud infrastructures. Future Generation Com-
puter Systems 61, 13–25 (2016). https://doi.org/10.1016/j.
future.2016.01.018. http://authors.elsevier.com/sd/article/
S0167739X16300024

18. Camero, A., Alba, E.: Smart City and informa-
tion technology: A review. Cities 93, 84–94 (2019).
https://doi.org/10.1016/j.cities.2019.04.014

19. Casalboni, A.: AWS Lambda Power Tuning. https://github.
com/alexcasalboni/aws-lambda-power-tuning

20. Chard, R., Babuji, Y., Li, Z., Skluzacek, T., Woodard, A.,
Blaiszik, B., Foster, I., Chard, K.: funcX: a federated func-
tion serving fabric for science. In: Proceedings of the 29th
International symposium on high-performance parallel and
distributed computing, pp. 65–76. ACM, New York (2020).
https://doi.org/10.1145/3369583.3392683

21. Chen, C.H., Favre, J., Kurillo, G., Andriacchi, T.P.,
Bajcsy, R., Chellappa, R.: Camera networks for health-
care, teleimmersion, and surveillance. Computer 47(5),
26–36 (2014). https://doi.org/10.1109/MC.2014.112. http://
ieeexplore.ieee.org/document/6818909/

30 Page 16 of 18 J Grid Computing (2021) 19: 30

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://doi.org/10.1186/s13174-015-0041-5
https://doi.org/10.1007/s10723-018-9449-z
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/batch/
https://aws.amazon.com/batch/
https://aws.amazon.com/lambda
https://aws.amazon.com/lambda
https://openwhisk.apache.org/
https://argoproj.github.io/projects/argo/
https://argoproj.github.io/projects/argo/
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1145/3133850.3133855
http://dl.acm.org/citation.cfm?doid=3133850.3133855
http://dl.acm.org/citation.cfm?doid=3133850.3133855
https://doi.org/10.1177/1094342019877383
https://doi.org/10.1145/3226644
https://doi.org/10.1002/9781119551713.ch7
https://doi.org/10.1002/9781119551713.ch7
https://doi.org/10.1007/978-3-319-63450-0_13
https://doi.org/10.1007/978-3-319-63450-0_13
https://doi.org/10.1145/2806777.2809955
http://dl.acm.org/citation.cfm?doid=2806777.2809955
http://dl.acm.org/citation.cfm?doid=2806777.2809955
https://doi.org/10.1007/s10723-014-9296-5
https://doi.org/10.1007/s10723-014-9296-5
https://doi.org/10.1016/j.future.2016.01.018
https://doi.org/10.1016/j.future.2016.01.018
http://authors.elsevier.com/sd/article/S0167739X16300024
http://authors.elsevier.com/sd/article/S0167739X16300024
https://doi.org/10.1016/j.cities.2019.04.014
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1109/MC.2014.112
http://ieeexplore.ieee.org/document/6818909/
http://ieeexplore.ieee.org/document/6818909/

22. Chen, Q., Wang, W., Wu, F., De, S., Wang, R., Zhang, B.,
Huang, X.: A survey on an emerging area: deep learning
for smart city data. IEEE Trans. Emerg. Topics Com-
put. Intell. 3(5), 392–410 (2019). https://doi.org/10.1109/
TETCI.2019.2907718. https://ieeexplore.ieee.org/document/
8704334/

23. Christidis, A., Davies, R., Moschoyiannis, S.: Serving
machine learning workloads in resource constrained envi-
ronments: A serverless deployment example. In: Proceed-
ings - 2019 IEEE 12th Conference on Service-Oriented
Computing and Applications, SOCA 2019, pp. 55–63.
Institute of Electrical and Electronics Engineers Inc (2019).
https://doi.org/10.1109/SOCA.2019.00016

24. Christidis, A., Moschoyiannis, S., Hsu, C.H., Davies,
R.: Enabling Serverless Deployment of Large-Scale
AI Workloads. IEEE Access 8, 70150–70161 (2020).
https://doi.org/10.1109/ACCESS.2020.2985282

25. CNCF: Serverless Workflow: A specification for defining
declarative workflow models that orchestrate Event-driven,
Serverless applications. https://serverlessworkflow.io

26. Couturier, R.: Designing scientific applications on GPUs.
Chapman and Hall/CRC. https://doi.org/10.1201/b16051.
https://www.taylorfrancis.com/books/designing-scientific-
applications-gpus-raphael-couturier/e/10.1201/b16051
(2013)

27. Docker: Enterprise Container Platform. https://www.
docker.com/

28. Docker: Docker hub. https://hub.docker.com/ (2019)
29. Dutka, Ł., Wrzeszcz, M., Lichoń, T., Słota, R., Zemek, K.,

Trzepla, K., Opioła, Ł., Słota, R., Kitowski, J.: Onedata
- A step forward towards globalization of data access for
computing infrastructures, vol. 51, pp. 2843–2847 (2015).
https://doi.org/10.1016/j.procs.2015.05.445. https://www.
sciencedirect.com/science/article/pii/S1877050915012533

30. Fouladi, S., Romero, F., Iter, D., Li, Q., Chatterjee, S.,
Kozyrakis, C., Zaharia, M., Winstein, K.: From laptop to
Lambda: Outsourcing everyday jobs to thousands of tran-
sient functional containers. In: Proceedings of the 2019
USENIX Annual Technical Conference, USENIX ATC
2019, pp. 475–488 (2019). https://dl.acm.org/doi/10.5555/
3358807.3358848

31. Giménez-Alventosa, V., Moltó, G., Caballer, M.: A
framework and a performance assessment for server-
less MapReduce on AWS Lambda. Future Generation
Computer Systems 97, 259–274 (2019). https://doi.org/
10.1016/j.future.2019.02.057. https://linkinghub.elsevier.
com/retrieve/pii/S0167739X18325172

32. Gimėnez-Alventosa, V., Moltȯ, G., Segrelles, J.D.:
RUPER-LB: Load balancing embarrasingly parallel
applications in unpredictable cloud environments. In: Inter-
national Symposium on Cloud Computing and Services for
High Performance Computing Systems (as part of the 18th
International Conference on High Performance Computing
& Simulation (HPCS 2020) (2020)

33. GRyCAP: minicon: minimization containers. https://
github.com/grycap/minicon

34. Heath, M.T.: Scientific computing: : an introductory survey,
revised second edition. Society for Industrial and Applied
Mathematics, Philadelphia, PA. https://doi.org/10.1137/1.
9781611975581. (2018)

35. Ishakian, V., Muthusamy, V., Slominski, A.: Serving
deep learning models in a serverless platform. In:
Proceedings - 2018 IEEE International Conference on
Cloud Engineering, IC2E 2018, pp. 257–262. Insti-
tute of Electrical and Electronics Engineers Inc (2018).
https://doi.org/10.1109/IC2E.2018.00052

36. Ivie, P., Thain, D.: Reproducibility in scientific computing.
https://doi.org/10.1145/3186266 (2018)

37. Jonas, E., Pu, Q., Venkataraman, S., Stoica, I., Recht,
B.: Occupy the cloud. In: Proceedings of the 2017 Sym-
posium on Cloud Computing, pp. 445–451. ACM, New
York (2017). https://doi.org/10.1145/3127479.3128601.
arXiv:1702.04024

38. Knative: Kubernetes-based platform to deploy and manage
modern serverless workloads. https://knative.dev/

39. Linux Containers: LXC. https://linuxcontainers.org/lxc/
introduction/

40. Malawski, M., Gajek, A., Zima, A., Balis, B., Figiela,
K.: Serverless execution of scientific workflows: Experi-
ments with HyperFlow, AWS Lambda and Google Cloud
functions. Future Generation Computer Systems 110, 502–
514 (2020). https://doi.org/10.1016/j.future.2017.10.029.
https://linkinghub.elsevier.com/retrieve/pii/167739X1730047X

41. McCallister, E., Grance, T., Kent, K.: Guide to protect-
ing the confidentiality of personally identifiable informa-
tion (PII). Special Publication 800-122 Guide pp. 1–59.
https://doi.org/10.5555/2206206 (2010)

42. Microsoft Azure: Azure Functions—Develop Faster With
Serverless Compute. https://azure.microsoft.com/en-us/
services/functions/

43. MinIO: High Performance, Kubernetes Native Object Stor-
age. https://min.io/

44. Mirkhan, A.: BlurryFaces: A tool to blur faces or
other regions in photos and videos. https://github.com/
asmaamirkhan/BlurryFaces

45. Morris, K.: Infrastructure as code: managing servers
in the cloud. O’Reilly Media, Inc. https://www.oreilly.
com/library/view/infrastructure-as-code/9781491924334/
(2016)

46. OASIS: TOSCA simple profile in YAML version 1.3.
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-
YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html

47. OpenFaaS: Serverless functions made simple. https://www.
openfaas.com/

48. OpenStack: Open Source Cloud Computing Infrastructure.
https://www.openstack.org

49. Pavlovic, M., Etsion, Y., Ramirez, A.: On the memory
system requirements of future scientific applications: Four
case-studies. In: Proceedings - 2011 IEEE International
Symposium on Workload Characterization, IISWC - 2011,
pp. 159–170 (2011). https://doi.org/10.1109/IISWC.2011.
6114176

50. Pérez, A., Moltó, G., Caballer, M., Calatrava, A.: Serverless
computing for container-based architectures. Future Gen-
eration Computer Systems 83, 50–59 (2018). https://doi.
org/10.1016/j.future.2018.01.022. http://linkinghub.elsevier.
com/retrieve/pii/S0167739X17316485

51. Pérez, A., Moltó, G., Caballer, M., Calatrava, A.:
Serverless computing for container-based architectures.
Future Generation Computer Systems 83, 50–59 (2018).

J Grid Computing (2021) 19: 30 Page 17 of 18 30

https://doi.org/10.1109/TETCI.2019.2907718
https://doi.org/10.1109/TETCI.2019.2907718
https://ieeexplore.ieee.org/document/8704334/
https://ieeexplore.ieee.org/document/8704334/
https://doi.org/10.1109/SOCA.2019.00016
https://doi.org/10.1109/ACCESS.2020.2985282
https://serverlessworkflow.io
https://doi.org/10.1201/b16051
https://www.taylorfrancis.com/books/designing-scientific-applications-gpus-raphael-couturier/e/10.1201/b16051
https://www.taylorfrancis.com/books/designing-scientific-applications-gpus-raphael-couturier/e/10.1201/b16051
https://www.docker.com/
https://www.docker.com/
https://hub.docker.com/
https://doi.org/10.1016/j.procs.2015.05.445
https://www.sciencedirect.com/science/article/pii/S1877050915 012533
https://www.sciencedirect.com/science/article/pii/S1877050915 012533
https://dl.acm.org/doi/10.5555/3358807.3358848
https://dl.acm.org/doi/10.5555/3358807.3358848
https://doi.org/10.1016/j.future.2019.02.057
https://doi.org/10.1016/j.future.2019.02.057
https://linkinghub.elsevier.com/retrieve/pii/S0167739X18325172
https://linkinghub.elsevier.com/retrieve/pii/S0167739X18325172
https://github.com/grycap/minicon
https://github.com/grycap/minicon
https://doi.org/10.1137/1.9781611975581
https://doi.org/10.1137/1.9781611975581
https://doi.org/10.1109/IC2E.2018.00052
https://doi.org/10.1145/3186266
https://doi.org/10.1145/3127479.3128601
http://arxiv.org/abs/1702.04024
https://knative.dev/
https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxc/introduction/
https://doi.org/10.1016/j.future.2017.10.029
https://linkinghub.elsevier.com/retrieve/pii/167739X1730047X
https://doi.org/10.5555/2206206
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://min.io/
https://github.com/asmaamirkhan/BlurryFaces
https://github.com/asmaamirkhan/BlurryFaces
https://www.oreilly.com/library/view/infrastructure-as-code/9 781491924334/
https://www.oreilly.com/library/view/infrastructure-as-code/9 781491924334/
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
https://www.openfaas.com/
https://www.openfaas.com/
https://www.openstack.org
https://doi.org/10.1109/IISWC.2011.6114176
https://doi.org/10.1109/IISWC.2011.6114176
https://doi.org/10.1016/j.future.2018.01.022
https://doi.org/10.1016/j.future.2018.01.022
http://linkinghub.elsevier.com/retrieve/pii/S0167739X17316485
http://linkinghub.elsevier.com/retrieve/pii/S0167739X17316485

https://doi.org/10.1016/j.future.2018.01.022. http://www.
sciencedirect.com/science/article/pii/S0167739X17316485

52. Pérez, A., Moltó, G., Caballer, M., Calatrava, A.: A pro-
gramming model and middleware for high throughput
serverless computing applications. In: Proceedings of the
34th ACM/SIGAPP symposium on applied Computing -
SAC ’19, pp. 106–113. ACM Press, New York (2019).
https://doi.org/10.1145/3297280.3297292

53. Perez, A., Risco, S., Naranjo, D.M., Caballer, M., Molto,
G.: On-premises serverless computing for event-driven
data processing applications. In: 2019 IEEE 12th Inter-
national Conference on Cloud Computing (CLOUD), pp.
414–421. Institute of Electrical and Electronics Engineers
(IEEE). https://doi.org/10.1109/cloud.2019.00073. https://
ieeexplore.ieee.org/document/8814513 (2019)

54. Purohit, A.: face-mask-detector: Real-Time Face mask
detection using deep learning with Alert system. https://
github.com/adityap27/face-mask-detector/

55. Reisslein, M., Rinner, B., Roy-Chowdhury, A.: Smart
Camera Networks [Guest editors’ introduction]. Computer
47(5), 23–25 (2014). https://doi.org/10.1109/MC.2014.134.
http://ieeexplore.ieee.org/document/6818928/

56. Risco, S., Moltó, G.: GPU-enabled serverless workflows
for efficient multimedia processing. Applied Sciences
11(4), 1438 (2021). https://doi.org/10.3390/app11041438.
https://www.mdpi.com/2076-3417/11/4/1438

57. Ristov, S., Pedratscher, S., Fahringer, T.: AFCL: An
abstract function choreography language for serverless

workflow specification. Future Generation Computer Sys-
tems 114, 368–382 (2021). https://doi.org/10.1016/j.future.
2020.08.012. https://linkinghub.elsevier.com/retrieve/pii/
S0167739X20302648

58. Sengupta, S.: faas-flow: Function Composition for Open-
FaaS. https://github.com/s8sg/faas-flow

59. Sewak, M., Singh, S.: Winning in the era of serverless com-
puting and function as a service. In: 2018 3rd International
Conference for Convergence in Technology, I2CT 2018.
Institute of Electrical and Electronics Engineers Inc (2018).
https://doi.org/10.1109/I2CT.2018.8529465

60. Shields, M.: Control-versus data-driven workflows. In:
Workflows for e-Science, pp. 167–173. Springer, London
(2007). https://link.springer.com/chapter/10.1007/978-1-
84628-757-2 11

61. Spadini, T., Silva, D.L.d.O., Suyama, R.: Sound
event recognition in a smart city surveillance context.
arXiv:1910.12369 (2019)

62. Vecchiola, C., Pandey, S., Buyya, R.: High-performance
cloud computing: A view of scientific applications. In: I-
SPAN 2009 - The 10th International Symposium on Perva-
sive Systems, Algorithms, and Networks, pp. 4–16 (2009).
https://doi.org/10.1109/I-SPAN.2009.150

Publisher’s Note Springer Nature remains neutral with
regard to jurisdictional claims in published maps and institu-
tional affiliations.

30 Page 18 of 18 J Grid Computing (2021) 19: 30

https://doi.org/10.1016/j.future.2018.01.022
http://www.sciencedirect.com/science/article/pii/S0167739X173 16485
http://www.sciencedirect.com/science/article/pii/S0167739X173 16485
https://doi.org/10.1145/3297280.3297292
https://doi.org/10.1109/cloud.2019.00073
https://ieeexplore.ieee.org/document/8814513
https://ieeexplore.ieee.org/document/8814513
https://github.com/adityap27/face-mask-detector/
https://github.com/adityap27/face-mask-detector/
https://doi.org/10.1109/MC.2014.134
http://ieeexplore.ieee.org/document/6818928/
https://doi.org/10.3390/app11041438
https://www.mdpi.com/2076-3417/11/4/1438
https://doi.org/10.1016/j.future.2020.08.012
https://doi.org/10.1016/j.future.2020.08.012
https://linkinghub.elsevier.com/retrieve/pii/S0167739X20302648
https://linkinghub.elsevier.com/retrieve/pii/S0167739X20302648
https://github.com/s8sg/faas-flow
https://doi.org/10.1109/I2CT.2018.8529465
https://link.springer.com/chapter/10.1007/978-1-84628-757-2_11
https://link.springer.com/chapter/10.1007/978-1-84628-757-2_11
http://arxiv.org/abs/1910.12369
https://doi.org/10.1109/I-SPAN.2009.150

	Serverless Workflows for Containerised Applications in the Cloud Continuum
	Abstract
	Introduction
	Related Work
	Components to Support Serverless Workflows along the Cloud Continuum
	SCAR: Serverless Scientific Computing in Public Clouds
	OSCAR: Open-Source Serverless Computing for Data-Processing Applications
	Functions Definition Language for Data-Driven Serverless Workflows

	Use Case: Mask Wearing Detection via Anonymised Deep Learning Video Processing
	Optimal Resource Allocation for the Lambda Function
	Case Study Design
	Results and Discussion
	Video Processing Analysis
	Parallel Video Processing Analysis

	Conclusions
	References

