Bifidobacterium
|
Mouse |
PD-L1 blockade |
Melanoma |
a) Improve antitumor immunity |
Ayelet Sivan 2015 |
(18) |
b) Enhancing dendritic cell function |
c) Enhancing local anti-CD47 immunotherapy in tumor |
Bifidobacterium pseudolongum
|
Mouse |
Immune checkpoint blockade |
CRC |
Increasing metabolite inosine production |
Lukas F. Mager 2020 |
(68) |
Lactobacillus johnsonii
|
Olsenella species |
Akkermansia muciniphia
|
Human/Mouse |
PD-1 blockade |
Epithelial tumors |
Enhancing the antitumor effect of PD-1 blockade |
Bertrand Routy 2018 |
(20) |
Bacteroides fragilis
|
Human/Mouse |
CTLA-4 blockade |
Melanoma/colon cancer |
Influence interleukin 12 (IL-12)-dependent TH1 immune responses |
Marie Vétizou 2015 |
(19) |
Bacteroides thetaiotaomicron
|
Burkholderiales
|
Uminococcaceae family |
Human/Mouse |
PD-1 blockade |
Melanoma |
Promote the infiltration of CD8+ T cells in tumors |
Gopalakrishnan V 2018 |
(17) |
Clostridiales order |
Faecalibacterium genus |
Ratio of Prevotella and Bacteroides
|
Human |
PD-1/PD-L1 blockade |
Gastrointestinal cancer |
Related to nucleoside and nucleotide biosynthesis, lipid biosynthesis, sugar metabolism, and fermentation to short-chain fatty acids |
Zhi Peng 2020 |
(69) |
Bifidobacterium longum, Collinsella aerofaciens, and Enterococcus faecium
|
Human |
PD-L1 blockade |
Melanoma |
a) Decreasing regulatory T cell |
Vyara Matson 2018 |
(70) |
b) Increasing Batf3 dendritic cells |
c) Enhancing Th1 responses |