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Abstract

Transcranial magnetic stimulation (TMS)-induced silent periods provide an /n vivo measure of
human motor cortical inhibitory function. Cortical silent periods (cSP, also sometimes referred to
as contralateral silent periods) and ipsilateral silent periods (iSP) may change with advancing age
and disease and can provide insight into cortical control of the motor system. The majority of past
silent period work has implemented largely varying methodology, sometimes including subjective
analyses and incomplete methods descriptions. This limits reproducibility of silent period work
and hampers comparisons of silent period measures across studies. Here, we discuss
methodological differences in past silent period work, highlighting how these choices affect silent
period outcome measures. We also outline challenges and possible solutions for measuring silent
periods in the unique case of the lower limbs. Finally, we provide comprehensive
recommendations for collection, analysis, and reporting of future silent period studies.
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1. Introduction

Transcranial magnetic stimulation (TMS) was first introduced in 1985 as a noninvasive
method for stimulating the human brain (Barker et al., 1985). Barker et al. demonstrated that
a single TMS pulse to the primary motor cortex could elicit responses in the muscles that

received corticospinal input from the stimulated cortical region (Barker et al., 1985). Since
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this time, multiple TMS approaches including single pulse (e.g., Fling & Seidler, 2011;
Swanson & Fling, 2018), paired pulse (e.g., Gagnon et al., 2011; Wittenberg et al., 2007),
and repetitive TMS (e.g., Brunoni et al., 2017; Chou et al., 2015; Fitzgerald et al., 2006;
Galhardoni et al., 2015) have been adopted and applied to a wide variety of tasks and patient
populations.

Despite the growing popularity of TMS, there has been a lack of methodological studies for
single pulse techniques, including testing of cortical and ipsilateral silent periods (cSPs and
iSPs, respectively). TMS-induced silent periods present as a reduction of ongoing
electromyography (EMG) activity and provide information regarding intracortical and
interhemispheric inhibition during voluntary muscle contraction. Thus, they are particularly
suited for studying how the central nervous system controls muscle activity. To date, silent
period studies have used varying methodology and many papers fail to report complete
methods. This has made it difficult to compare outcome measures across studies and has
precluded meta-analyses among patient populations (Major et al., 2015) or in older age
(Levin et al., 2014). For instance, older age has been associated with decreased upper limb
cSP duration (Beynel et al., 2014; Davidson & Tremblay, 2013a; Oliviero et al., 2006; Sale
& Semmler, 2005), no difference in cSP duration (Fujiyama et al., 2009, 2012; Hunter et al.,
2008), and increased cSP duration (McGinley et al., 2010) across studies. Methodological
differences between these studies make it difficult to understand how age relates to cSP
duration.

In the present review, we address the potential impacts of methodological differences on
silent period outcome variables and provide recommendations for future work. We begin
with a discussion of the mechanisms underlying cSPs and iSPs as well as common silent
period outcome measures (Section 2). Next, we outline methodological differences among
past silent period work, which make inter-study comparisons difficult (Sections 3-5).
Finally, we examine unique methodological considerations for measuring silent periods in
the lower limbs (Section 6), and provide recommendations for collection, analysis, and
reporting in future silent period studies (Section 7).

2. Transcranial Magnetic Stimulation Underlying Mechanisms

2.1 Overview of TMS in the Motor System

TMS induces currents in the brain via Faraday’s principle of electromagnetic induction.
Ultimately, TMS depolarizes cerebral neurons and triggers action potentials. Descending
corticospinal volleys induce glutamate release in cortico-motoneuronal synapses. Provided
the volleys are strong enough to exceed the firing threshold an action potential is
subsequently triggered in spinal motoneurons. These action potentials propagate along the
peripheral motor axons to induce a muscle response. The resulting muscle responses can be
recorded as motor-evoked potentials (MEPS), which are spikes in muscle activity due to the
activation of corticospinal neurons. MEPs provide a direct measure of cortical and spinal
motoneuron excitability. See Groppa et al. (2012) for a more detailed description of these
TMS principles.
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2.2 Overview of TMS-Induced Silent Periods

Silent periods represent the primary single pulse TMS method for assessing inhibitory
function. Paired pulse methods (e.g., short- / long- latency intracortical inhibition and

short- / long- latency interhemispheric inhibition) also provide metrics of cortical inhibition.
However, these techniques typically do not measure the motor system during a sustained
muscle contraction and are mediated by different underlying mechanisms than silent periods
(Chen et al., 2003) and thus are beyond the scope of the present review. As silent periods
measure inhibition of volitional motor activity, rather than inhibition of MEPs (as is the case
for paired pulse methods), silent periods are particularly well suited for investigating the
inhibitory effects of cortical and corticospinal control of voluntary motor output.

2.2.1 Cortical Silent Period (cSP)—When TMS is applied to the primary motor
cortex contralateral to the contracting target muscle, the resulting phenomenon is termed a
cortical silent period (cSP; this effect is also sometimes referred to as a contralateral silent
period; Fig. 1A). The TMS pulse typically causes a MEP in the target muscle, followed by a
disruption or silence in the ongoing voluntary EMG activity for a period of up to several
hundred milliseconds (Cantello et al., 1992). Of note, a cSP may not always be preceded by
a MEP, as the threshold for inducing cSPs can sometimes be lower than the threshold
required to elicit a MEP in certain target muscles. cSPs are typically quantified by their
duration (Fig. 2), where longer cSP durations are interpreted as greater cortical inhibition.
See Table 1 for a list of common silent period outcome measures.

It is generally thought that both spinal and cortical mechanisms contribute to the cSP.
Typically, the early portion (0-50 ms) of the cSP is attributed to spinal mechanisms
(Cantello et al., 1992; Fuhr et al., 1991), including recurrent inhibition by Renshaw cell
activation, motoneuron after-hyperpolarization, or disynaptic inhibition via la inhibitory
interneurons (Cantello et al., 1992; Classen & Benecke, 1995; Fuhr et al., 1991; Inghilleri et
al., 1993; Roick et al., 1993). The later portion (50-200 ms) is thought to be caused by
intracortical suppression of corticospinal output (Cantello et al., 1992; Chen et al., 1999;
Fuhr et al., 1991; Inghilleri et al., 1993; Schnitzler & Benecke, 1994). Given the larger
assumed contribution of cortical (75%) versus spinal (25%) mechanisms, cSPs are said to be
mainly due to activation of cortical inhibitory interneurons. However, this notion has been
debated by some who argue that the spinal contributions are larger than once thought
(YYacyshyn et al., 2016), as well as by some who argue that the cSP is generated in the
primary motor cortex and thus is entirely of cortical origin (Roick et al., 1993; Schnitzler &
Benecke, 1994). Given the above evidence, in the present review, we presume that the cSP
has at least some cortical origin and therefore provides a measure of intracortical inhibition.

cSP inhibition is thought to be mediated by gamma-aminobutyric acid (GABA), particularly
by GABAg receptors within the primary motor cortex (Siebner et al., 1998; Werhahn et al.,
1999). Pharmacological evidence for this includes: (1) in healthy individuals, cSPs were
prolonged following oral administration of the GABA reuptake inhibitor, tiagabine
(Werhahn et al., 1999). (2) In a patient with dystonia, cSPs were prolonged following
infusion of baclofen, a GABAg receptor agonist (Siebner et al., 1998). However, this notion
is complicated by several studies that failed to show prolongation of cSPs after baclofen
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administration in healthy individuals (Inghilleri et al., 1996; Ziemann, Lonnecker, et al.,
1996). While the doses used in these studies could have been insufficient for healthy
individuals, this work still raises questions about the simplicity of the proposed relationship
between GABARg and cSP duration. Positive modulators of GABAA receptor function (e.g.,
lorazepam) increase cSP durations at low stimulus intensities, but shorten cSP durations at
higher stimulus intensities (Kimiskidis et al., 2006). Thus, with low-intensity stimulation,
GABA might make a direct contribution to the cSP, whereas for high-intensity stimulation,
presynaptic GABA, receptors might suppress GABARg receptor function (Kimiskidis et al.,
2006). This relationship is further complicated by other neuromodulators that have been
found to affect cSP duration, including dopaminergic drugs, which may increase cSP
duration (Priori et al., 1994; Ziemann, Bruns, et al., 1996). Thus, while cSPs are likely
GABA-mediated, cSPs may also be influenced by dopaminergic transmission.

2.2.2 Ipsilateral Silent Period (iSP)—iSPs are elicited when TMS is applied to the
hemisphere ipsilateral to a tonically contracting muscle (Fig. 1B). iSPs are thought to be a
result of transcallosal inhibition via the posterior mid-body of the corpus callosum
(Wassermann et al., 1991). That is, the proposed mechanism for iSPs is as follows. The TMS
pulse results in excitatory (glutamatergic) transcallosal motor fibers synapsing on inhibitory
(GABAergic) interneurons in the contralateral primary motor cortex (Ferbert et al., 1992;
Meyer et al., 1995). This causes a net inhibitory effect and results in a brief depression in the
descending corticospinal activity that is supporting the tonic muscle contraction (Ferbert et
al., 1992; Meyer et al., 1995). This is visible as a short attenuation or interruption to the
ongoing EMG activity in the contracting muscle. iSPs are typically quantified by duration,
depth, and/or area, which each provide a measure of suppression of the ipsilateral EMG
(Fig. 2). Greater depth, duration, and area are interpreted as greater interhemispheric
inhibition (Table 1). Another common iSP measure includes transcallosal conduction time,
which quantifies the speed of signal transmission through the posterior corpus callosum.
Transcallosal conduction time is typically calculated as the time elapsed from the onset of
the contralateral MEP to the onset of the iSP (Fig. 2; Table 1). To date, there are no studies
that clearly explore how these measures relate within a single individual or whether these
metrics quantify unique aspects of interhemispheric inhibition. Further, there are no studies
which propose distinct physiologic mechanisms for iSP duration versus iSP depth or area.
We suspect that the amount of EMG suppression (i.e., depth/area) compared to the duration
of EMG suppression provides a unique metric of GABAergic inhibitory capacity and
function; however, based on the current literature, such interpretations are not yet clear. We
thus recommend that future work extract each of these measures, characterize whether and
how these measures differ, and, where possible (e.g., in patient or drug studies), consider the
physiologic mechanisms that may underlie these measures.

In contrast to cSPs, iSPs are thought to be completely of cortical origin. iSPs do not decrease
H-reflex amplitude and thus are thought to not involve spinal contributions (Wassermann et
al., 1991). Support for the transcallosal nature of iSPs includes absent or delayed iSPs in
patients with agenesis or lesions of the posterior corpus callosum (Meyer et al., 1995, 1998)
and callosal infarction (Li et al., 2012). The transcallosal route of iSPs is further supported
by iSP abnormalities in patient populations with callosal pathologies, such as multiple
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sclerosis (Boroojerdi et al., 1998; Hoppner et al., 1999; Lenzi et al., 2007; Schmierer et al.,
2000) and schizophrenia (Bajbouj et al., 2004; Fitzgerald et al., 2002; Hoppner et al., 2001).
This transcallosal route is also supported by the absence of iSPs in children who do not have
a fully developed corpus callosum, and typically have more prevalent physiologic mirroring
(i.e., involuntary EMG activity in the resting limb during a unimanual movement; Heinen et
al., 1998; Koerte et al., 2009).

3. Variations in Hardware Used for Silent Period Data Collection

In Sections 3-5, we discuss how methodological choices affect cSP and iSP outcome
measures, which makes comparison across studies difficult and limits reproducibility. Many
studies fail to comprehensively report their hardware settings, preventing replication of their
work. Here we discuss some of the implications of various hardware settings that may be
used for silent period testing.

3.1 Coil Type and Orientation

3.1.1 Coil Type—There are various TMS coils capable of eliciting neurophysiological
responses in the form of cSPs and iSPs. Factors including loop diameter, number, and set
angle of windings affect both depth of penetration and focality of stimulation (Deng et al.,
2013). The original TMS coils were circular and induced a relatively broad non-focal
electrical current, which was capable of superficial stimulation. To enhance penetration
depth and focality, the figure-of-8 coil was developed in the mid 1990’s. This coil effectively
uses two adjacent circular coils housed within a single encasement. The two circular loops
produce current flow in opposing directions which greatly improves the focality of the
induced electrical current (Deng et al., 2013). Improving the focality has been demonstrated
in smaller loop diameters, although heat and stress ultimately limits these coils for practical
use (Cohen & Cuffin, 1991; Yunokuchi & Cohen, 1991).

Further efforts have been made to enhance the penetration depth of stimulation. The figure-
of-8 coil was modified so that the windings were secured at a set inward angle, commonly
referred to as a butterfly (MagVenture) or double cone (MagStim) coil design. This angled
design has enabled researchers to improve the depth of stimulation penetration, although at a
cost of decreased focality compared to the original flat figure-of-8 coil design. This design
has allowed researchers to investigate lower limb regions of the primary motor cortex which
lie within the interhemispheric fissure. A note of caution: due to focality limitations for all
coils in use with humans, it remains possible to unintentionally stimulate both hemispheres
when targeting a muscle representation that is close to the midline of the brain. This could
lead to unintended interhemispheric interactions if, for instance, a protocol is aiming to test
cSP (i.e., intracortical inhibition) of a lower limb muscle (Di Lazzaro et al., 2004). See
Section 6 for further discussion of this issue. For further details regarding coil
characteristics, please see Deng et al. (2013).

Coil selection is largely based on the manufacturer of the TMS machine. Two of the most
common manufacturers, MagStim and MagVenture, offer a variety of coil sizes and shapes
depending on necessity. The most common coil for targeting the lower limbs is the angled
figure-of-8 coil design. Both manufacturers offer versions of this coil design, the double
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cone coil and the butterfly coil (MagStim and MagVenture, respectively). While these coils
are designed for similar purposes, they differ in coil size with the MagStim one averaging a
larger winding diameter, theoretically reducing stimulation focality (described nicely in
Deng et al 2013).

In practice, the angled figure-of-8 coil design is important for establishing specific
stimulation parameters such as the resting motor threshold (RMT), or the minimum
threshold needed to elicit a reliable MEP response (discussed in more detail in Section 4.2).
For instance, one recent study found lower RMTs for a leg muscle using a MagStim double
cone coil compared to a planar figure-of-8 or circular coil (Dharmadasa et al., 2019).
Similarly, another recent study found lower RMTs with a MagVenture butterfly figure-of-8
coil compared to a planar figure-of-8 coil for both the first dorsal interosseous finger muscle
and for the tibialis anterior leg muscle (Schecklmann et al., 2020). Silent period protocols
typically base TMS intensity on the RMT (e.qg., stimulations are delivered at 120% of the
RMT); thus, coil selection may influence silent period characteristics, as detailed below.

Several studies have demonstrated that coil selection does directly affect silent periods. For
instance, past work found that using a planar figure-of-8 versus a circular coil did not affect
cSP variability (Badawy et al., 2011), but did reduce cSP duration (Badawy et al., 2011;
Oozumi et al., 1992). The authors (Badawy et al., 2011) suggested that these results could be
due in part to the circular coil stimulating a broader cortical area compared to the figure-of-8
coil. These authors suggested that the larger stimulation area of the circular coil may have
enhanced the spinal contributions to the early portion of the cSP, which could prolong total
cSP duration. Alternatively, or in addition, less focal stimulation may activate inhibitory
pathways traveling from the supplementary motor or premotor cortices (Civardi et al., 2001),
which could also lengthen the cSP. Of note, in one (Oozumi et al., 1992) of these two
mentioned studies that compared the effects of coil choice on cSPs, the coil used was a
prototype of modern day figure-of-8 coils and involved two 14.5-centimeter circular coils
placed together. In comparison to a more recent study (Badawy et al., 2011), this coil
configuration produced a more dramatic difference in cSP duration between the two coil

types.

While coil selection should be determined based on the target muscles, use of different coil
types across studies does make inter-study comparison difficult. Here our primary
recommendation is to clearly report the coil type and brand so that others may replicate the
coil selection in their future work.

3.1.2 Coil Orientation—In most cases, coil orientation and the resulting direction of the
induced current for figure-of-8 coils is related to the coil handle, while for circular coils, the
side of the coil that touches the head dictates the current direction. When using a figure-of-8
coil for stimulation, it is important to keep the handle orientation constant for each subject to
ensure consistent stimulation conditions. The position of the coil greatly influences the
direction of the induced current and affects a variety of factors, including the efficacy of
stimulation (i.e., the intensity needed for corticospinal neurons to reach firing threshold), the
types of neurons recruited (i.e., interneuron versus pyramidal; Brasil-Neto et al., 1992;
Groppa et al., 2012; Rotenberg et al., 2014), and the site of neuronal depolarization (e.g.,
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soma versus axon hillock; Fox et al., 2004; Niehaus et al., 2000; Thielscher et al., 2011). In
addition, coil orientation has been shown to induce various patterns of descending volleys,
such that lateral-to-medial induced currents have been shown to induce direct waves (“D-
waves”) more easily compared to posteriorly or anteriorly oriented coils and currents
(Rotenberg et al., 2014). Therefore, when targeting specific regions of the cortex, the
anatomical orientation of the underlying neural tissues should be taken into consideration.
Additional discussion of this topic is beyond the scope of the current review; for more
details regarding coil orientation influences on induced currents, see Di Lazzaro et al.
(2012).

Conventionally, when using a figure-of-8 coil, a posterior-to-anterior cortical current flow,
with the coil positioned perpendicular to the central sulcus or angled at approximately 45
degrees with respect to the median longitudinal fissure, produces the lowest RMTs for upper
limb muscles (Balslev et al., 2007; Brasil-Neto et al., 1992; Gomez-Tames et al., 2018;
Laakso et al., 2014; see Chapter 5, pg. 81: Fig. 2 in Rotenberg et al. (2014) for a diagram of
common figure-of-8 coil orientations). Work targeting the lower limbs with a figure-of-8 coil
has found the medial-to-lateral coil orientation (i.e., the coil handle pointing laterally, to
produce a lateral-to-medial induced current) to be more effective than the posterior-to-
anterior coil orientation at activating corticospinal projections to the tibialis anterior muscle,
by requiring lower stimulation intensities for achieving the same motor thresholds (Hand et
al., 2020).

For the MagStim double cone coil, studies targeting lower limb cortical representations often
recommend applying a posterior-to-anterior induced current, with the coil placed slightly
posterior and lateral to the vertex (e.g., Madhavan et al., 2010; Mrachacz-Kersting et al.,
2007). Double cone coils typically fit the head only if the windings are placed laterally. This
limits the possible current directions that can be applied because the coil only fits onto the
head in this manner.

One study specifically examined the effect of coil orientation on iSP duration by measuring
iSPs in the first dorsal interosseous hand muscle using a MagStim planar figure-of-8 coil
(Chen et al., 2003). This work found that an anterior-medial current direction produced
longer iSP durations than a posterior-medial current direction, with no differences between
the posterior-lateral or anterior-lateral directions (Chen et al., 2003; see Fig. 1 here for a
diagram illustrating these current directions). Using a circular coil, within the lower limbs,
one study suggested applying clockwise stimulation to the right motor cortex and
counterclockwise stimulation to the left motor cortex for eliciting tibialis anterior iSPs (Lo
& Fook-Chong, 2004). However, one important caveat is that these authors provided very
few details regarding their methods for testing optimal coil orientation; thus, these
recommendations should be interpreted with caution.

Overall, optimal coil orientation and direction of induced current will likely depend largely
on the coil design and particular TMS paradigm. We have provided the above examples to
highlight that coil orientation does influence responses within the motor system, including
silent period outcome metrics. We therefore recommend that investigators clearly report the
coil orientation and direction of induced current (ideally using a diagram that shows the coil
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positioning and direction of current flow in relation to the subject’s head) and any specific
justification for selecting the reported coil orientation and current direction (e.g., pilot
testing or past studies).

While most studies implement the same coil orientation for all subjects, other studies
individualize coil orientation for each subject, adopting the one that induces the largest
MEPs for that subject (e.g., Jung & Ziemann, 2006). This practice likely introduces greater
between-subject variability to silent periods. If authors do elect to individualize coil
orientation, we recommend that they clearly explain how the optimal coil orientation was
determined for each subject (e.g., in steps of a certain number of degrees), as well as the
duration required for this process (e.g., we performed X number of MEPs for each subject in
each orientation; we selected the orientation which, on average, elicited the largest MEPS).

3.2 EMG Electrodes

Silent periods are typically obtained using surface EMG electrodes, such as Ag/AgCl cup
electrodes. We were unable to identify a methodological study that systematically tested the
influence of electrode features (e.g., size, placement, or shielding) on silent period outcome
variables. However, many studies fail to report electrode characteristics such as size.
Additionally, many studies fail to report whether any skin preparation was done prior to
electrode placement and subsequently if impedance measures were obtained. As electrode
size (Stegeman & Hermens, 2007), skin preparation (Merletti & Migliorini, 1998), and
placement of recording and ground electrodes (Mesin et al., 2009; Stegeman & Hermens,
2007) can all influence EMG signal quality, our primary recommendation here is that
authors report details of their EMG preparation. We further suggest adhering to all best
practice recommendations set forth by the Surface EMG for the Non-Invasive Assessment of
Muscles project (SENIAM; http://www.seniam.org). Of note, there are no widely
implemented, standardized approaches for evaluating the quality of EMG data. However, in
future work, we recommend that researchers consider calculating the signal-to-noise ratio
(SNR) of collected EMG data. See Agostini & Knaflitz (2012) for a proposed EMG SNR
calculation and Luki et al. (2020) for MatLab code implementing this calculation. Although,
to our knowledge, SNR metrics have not previously been investigated for use as exclusion
criteria or statistical covariates in TMS work, such quality control measures could prove
useful if more widely used and tested.

4. Variations in Silent Period Data Collection Methods

Several variations in data collection methods influence silent period outcome measures and
thus should be carefully described and justified when reporting methods.

4.1 Localization of the Motor Hotspot

Few studies provide a detailed description of the method by which they identified the motor
hotspot (i.e., the optimal scalp location for eliciting MEPs in the target muscle). When
describing hotspot localization procedures, many studies use broad language such as, “we
determined the optimal spot for eliciting a MEP in the target muscle.” We suggest more
detailed reporting of methods used to identify the hotspot. Both superficial current spread
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and overlapping muscle cortical representations often induce MEPs in several muscles at
one time (see discussion in Kesar et al., 2018). A small MEP might still be visible in the first
dorsal interosseous hand muscle, for instance, when the coil is not placed in the optimal
location for eliciting the largest possible MEP for that digit.

We thus suggest that authors clearly report how they identify the motor hotspot, especially
with patient populations, where long testing sessions may be uncomfortable and
experimenters might be eager to use the first spot that elicits any MEP response. In
particular, we recommend: (1) clearly indicating how the starting point for testing for the
hotspot was determined (e.g., by measuring a certain distance in the anterior/posterior and
lateral directions from the vertex of the head) and (2) indicating how locations for
subsequent stimulations were determined to ensure that the best possible hotspot was
identified (e.g., by testing 3-5 MEPs at 1 cm anterior, posterior, medial, and lateral to the
measured starting spot).

We also suggest recording and reporting the number of stimulations required to identify the
motor hotspot for each participant. Applying many subsequent stimulations could plausibly
have a lasting effect on cortical excitability and could thus be a confounding variable if a
greater number of stimulations is required to identify the motor hotspot for patient or aging
subject groups. While there are no clear recommendations or methodology studies to date
investigating an optimal interstimulus interval for identifying the motor hotspot or RMT
(described below), “single pulse” TMS (as opposed to paired pulse or repetitive TMS) is
typically defined as waiting at least 5-10 seconds between subsequent stimulations
(Edwards et al., 2018; Rotenberg et al., 2014). We recommend this interval as a minimum
safety standard for studies collecting only single pulse data.

4.2 Identification of Resting Motor Threshold (RMT)

Studies report multiple methods for identifying the RMT (listed in Table 2). The most
commonly-used approach is the “Minimum Number at 50 pV Method” (Rossini et al.,
1994). This method defines the RMT as the lowest stimulus intensity that induces a MEP
with an amplitude of = 50 microvolts in at least a certain percentage of trials (typically, 5 of
10 trials). Similar to this, we suggest the more systematic approach described by Groppa et
al. (2012), who recommend: (1) gradually increasing intensity of stimulator output (e.g., in
steps of 5%) until TMS consistently evokes MEPs with peak-to-peak amplitudes of = 50
microvolts; (2) lowering the intensity in steps of 1% until less than 5/10 MEPs are = 50
microvolts; (3) recording the RMT as this intensity +1%. As these approaches can be
relatively time-consuming and may require many stimulations (e.g., as many as 75
stimulations; Tranulis et al., 2006), it might be suitable to use a smaller criterion such as 3/6
MEPs (e.g., McGinley et al., 2010), although a cut-off of fewer than 5/10 MEPs has not
been validated (Groppa et al., 2012).

Other past work has suggested similar methods based on amplitude criteria (e.g., Mills &
Nithi, 1997), as well as newer adaptive modeling methods (e.g., Awiszus, 2003; 2011;
Mishory et al., 2004; Qi et al., 2011). Such adaptive modeling methods function by
estimating the probability of eliciting a MEP at a given stimulus intensity. These approaches
require additional (often freely available) software (e.g., the Motor Threshold Assessment
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Program, https://www.clinicalresearcher.org/software.htm). Although these methods may
substantially reduce the time required to determine the RMT (Awiszus, 2011; Qi et al.,
2011), they have not yet been widely implemented. Our recommendation for RMT
identification is transparency in how the RMT was determined across subjects. Further, we
recommend that investigators ensure that an unbiased method was implemented in order to
reduce any subjectivity that may be associated with RMT determination, especially for
clinical or aging population studies.

4.3 Silent Period Trial Parameters and Force Task

4.3.1 Minimum Number of Stimulations—Typically, investigators elicit multiple
silent periods per subject and average across individual trials to then calculate measures such
as average silent period duration. Some recommendations suggest averaging 5 to 6 trials for
silent period testing (see Groppa et al., 2012; Rossini et al., 2015), although we believe this
recommendation to be too few. Garvey et al. (2001) systematically tested the influence of
the number of trials on cSP duration. They found no statistically significant differences
between averaging 10, 20, 30, 40, or 50 trials for cSP analysis, suggesting that fewer trials
may still provide a reliable indication of cSP metrics (Garvey et al., 2001). However, a
caveat to Garvey et al. (2001) is that this study included only 13 individuals (8 children and
5 young adults), making these findings difficult to generalize to other populations. In
contrast, as iSPs are shorter, shallower, and more difficult to elicit, we recommend collecting
and averaging a greater number of trials when testing iSPs. As recent work has found that a
minimum of at least 2030 trials is needed to accurately estimate MEP amplitude
(Brownstein et al., 2018; Cuypers et al., 2014; Goldsworthy et al., 2016), short-interval
intracortical inhibition (Brownstein et al., 2018), and intracortical facilitation (Brownstein et
al., 2018), with no added benefits after 30 trials for MEP amplitude (Goldsworthy et al.,
2016), we recommend using a similar number for all silent period testing. The number of
trials averaged to calculate silent period outcome measures and the reasoning for this
selection should be clearly noted so that others may replicate it.

4.3.2 Force Level—As depicted in Fig. 1, to elicit a silent period, the participant must be
holding a tonic contraction. However, past work has implemented widely varying parameters
for these tonic contractions. For instance, some studies have used force goals as low as 15—
20% of one’s maximal voluntary contraction (MVC; Fling & Seidler, 2012; Fling & Seidler,
2011; Swanson & Fling, 2018), while others have used maximal contractions (i.e., 100% of
MVC; Giovannelli et al., 2009; Jung & Ziemann, 2006). There is no consensus on whether
the intensity of the target muscle contraction influences cSP duration. Some studies have
found that background EMG has little effect on cSP duration (Séisanen et al., 2008; Taylor
et al., 1997; Yasuo Terao & Ugawa, 2002). For instance, past work found cSP duration to be
independent of target muscle activation level for contractions ranging from 0-75% (Taylor et
al., 1997) and 20-80% (Saisanen et al., 2008) of MVC. However, others have found that
target muscle activation level does affect cSP duration for forces ranging from 10-100% of
MVC (Mathis et al., 1998; Matsugi, 2019; St&tk&rova et al., 1994). Some studies have found
that increasing force level relates to shorter cSPs (Mathis et al., 1998; Matsugi, 2019). Other
studies have found that increasing force level relates to shorter or longer cSPs, depending on
the method used for defining cSP onset and offset (St&tk&rova et al., 1994). For instance,
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Stetkarova et al. (1994) found that defining the cSP offset as “relative” (i.e., the “return of
uninterrupted EMG activity”) versus “absolute” (i.e., the period of “complete EMG silence™)
yielded opposite results. Greater force levels related to longer cSPs when considering the
relative offset, but shorter cSPs when considering the absolute offset. Thus, as demonstrated
in this example by St&tkarova et al. (1994), it is possible that a reason for these varied
findings could be due to study-specific methods for calculating the cSP duration (see Section
5.2).

In contrast to cSPs, to be elicited reliably, iSPs appear to require greater contraction intensity
of the target muscle than cSPs (Ferbert et al., 1992; Giovannelli et al., 2009; Jung &
Ziemann, 2006). Some past work suggests that iSPs should be tested during short maximal
contractions (i.e., 100% of MV C; Davidson & Tremblay, 2013b; Giovannelli et al., 2009;
McGregor et al., 2013; Perez et al., 2014). However, we have demonstrated that upper limb
iSPs may be elicited even at low (e.g., 20% MVC) contraction levels (Fling & Seidler, 2012;
Fling & Seidler, 2011). No study to date has clearly examined differences in silent period
outcome measures when using low-level sustained contractions versus short bursts of
maximal contraction.

Some past work suggests that varying the contraction intensity of the target muscle between
30%, 50%, and 100% of MVC does not affect iSP duration of the abductor pollicis brevis
hand muscle (Kuo et al., 2017). However, other past iSP work suggests that the contraction
level of the contralateral hand affects iSP duration (Giovannelli et al., 2009). That is, some
protocols involve contraction of both the target muscle (i.e., ipsilateral to the TMS
stimulation) and the opposite hand (i.e., contralateral to the TMS stimulation). This work has
found that only the contraction level of the contralateral hand influences iSP duration
(Giovannelli et al., 2009).

Given that force level may affect silent period outcomes, when selecting force parameters,
care should be taken to avoid fatiguing the target muscle. Thus, we recommend that
participants either sustain a low-level contraction (e.g., 15-20% MVC) for the entire
duration of the trial (Fling & Seidler, 2012; Fling & Seidler, 2011; Swanson & Fling, 2018),
or alternatively, that participants perform short, near-maximal contraction bursts with
standard inter-trial rest intervals between each subsequent stimulation (Davidson &
Tremblay, 2013b; Giovannelli et al., 2009; McGregor et al., 2013; Perez et al., 2014). The
latter option may function better for patient or aging populations who are more susceptible
to muscle fatigue.

We also recommend checking for possible signs of fatigue in the EMG of the target muscle,
such as an increase in the amplitude of the EMG signal for silent period paradigms that use
sustained, submaximal contractions (for review, see Enoka & Duchateau (2008)). In this
case, it is possible for an experimenter to visually observe increased EMG amplitude in real-
time during a silent period collection; for an example of visually increasing EMG amplitude
due to fatigue, see Fig. 4B in Enoka & Duchateau (2008). During post-processing of data,
investigators may wish to calculate the average amplitude or root mean square of the EMG
signal and quantify whether these metrics change significantly across the course of the trial.
One could then test whether such EMG metrics of fatigue differed between a patient and

J Neurosci Methods. Author manuscript; available in PMC 2021 December 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Hupfeld et al.

Page 12

control group to rule out fatigue as a potential cause of group differences in silent period
metics. Furthermore, in watching for signs of fatigue during data collection, we also
recommend that investigators clearly monitor force output to ensure that participants achieve
and maintain the target force level throughout each trial.

Fatigue increases corticospinal excitability, as evidenced by increased MEP amplitude as
muscle fatigue develops in the upper limbs (Benwell et al., 2006; Yoon et al., 2012) and in
the knee extensors (Kennedy et al., 2016; Vernillo et al., 2018). Fatigue also increases cSP
duration in the upper (Hunter et al., 2008; McKay et al., 1996; Yoon et al., 2012) and lower
(Goodall et al., 2018; Kennedy et al., 2016; Vernillo et al., 2018) limbs. For instance,
Goodall et al (2018) recently identified that cSP duration increases following multiple
fatiguing contractions in the lower limbs, suggesting that investigators should control for
fatigue in cSP analyses. Although some paradigms that employ only low target force levels
(e.g., 15% MVC) may not induce fatigue, it is still important to be aware of potential fatigue
effects, especially when using higher force levels or collecting multiple subsequent trials.

Taken together, the different levels and patterns of muscle contraction used make it difficult
to compare silent period outcome measures across studies. However, we acknowledge that it
may be difficult to avoid this issue, depending on the primary aims of future work. Thus,
future studies should strive to clearly report: (1) how MVCs were obtained; (2) the
percentage of MVC used for the force production task; (3) the reasoning behind each of
these choices; and (4) the methods used to quantify or account for muscle fatigue.

4.3.3 Force Task—In addition to the level of force produced, the type of force task can
also influence silent periods. For instance, (Tinazzi et al., 2003) identified shorter first dorsal
interosseous cSP durations for pincer and power grips than for index finger abduction. This
was potentially the case because motor cortical neurons become more excited during
complex manual tasks that require the activation of multiple adjacent synergistic muscles
(e.g., pincer and power grips) than during an isolated movement of one digit (e.g., index
finger abduction; Hess et al., 1986, 1987). During isolated movements, muscles that are not
involved in the task are likely inhibited, which may lengthen cSP duration (Tinazzi et al.,
2003).

On a similar note, Mathis et al. (1998) found that cSP duration depended on the instructions
provided to the participant regarding how they should react to the TMS pulse. At the start of
all trials, subjects held a tonic contraction of the biceps brachii muscle. In one condition,
subjects were instructed to perform an additional voluntary contraction of the biceps brachii
muscle “immediately after” the TMS pulse. This instruction resulted in shorter cSP
durations compared to maintaining a constant force level (Mathis et al., 1998). Contrarily,
instructing subjects to relax their biceps brachii muscle “immediately after” the TMS pulse
resulted in longer cSP durations compared to maintaining a constant force level (Mathis et
al., 1998). These effects were more pronounced at lower stimulation intensities and lower
force levels (Mathis et al., 1998). Further, this group found cSPs up to 130% longer in
duration for “maintain-position” contractions (i.e., holding the same arm position against a
load force) compared to “maintain-force” contractions (i.e., maintaining the same arm force
output) of the biceps brachii and brachioradialis muscles (Mathis et al., 1999). Of note, the
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force level of the contraction was held constant between both of these conditions, permitting
comparison of contraction type effects on cSP (controlling for force level). Together, these
studies highlight the need for consistent instructions for careful selection of force tasks and
consistent participant instructions, as well as the difficulties associated with comparing
across studies that have implemented differing force tasks.

One confounding factor here is that different tasks may elicit different absolute forces and,
as discussed in Section 4.3.2, force level may affect the silent period. For instance, while
Tinazzi et al. (2003) elicited cSPs as subjects completed a pincer grip, power grip, or index
finger abduction at 20% of their MV C for each of these tasks, the MV C differed by task.
Consequently, the absolute force produced in each condition was different. Thus,
investigators should consider and justify both the force level and the motor task when
designing silent period experiments.

4.3.4 Variability of EMG and Force Output—Few studies have examined whether
silent period outcome metrics vary with EMG or force output variability (i.e., how the
subject’s EMG signal or force output varies around their mean level; both EMG and force
variability have similar interpretations). EMG variability in the target muscle does not
appear to significantly influence cSP duration (Garvey et al., 2001). This was noted when
comparing healthy adults to children (i.e., who showed greater EMG variability; Garvey et
al., 2001), in addition to analyzing a single subject who was asked to purposely vary his or
her EMG activity during a cSP trial (Garvey et al., 2001). This lack of relationship removes
a potentially confounding variable in cSP work, given that older adults (e.g., Deutsch &
Newell, 2001; Sosnoff & Newell, 2011; Vaillancourt et al., 2003) and many patient
populations (e.g., Sheridan & Flowers, 1990; Vaillancourt et al., 2002) tend to show
increased force variability compared to healthy young adults. However, as the effects of
motor output variability on silent period outcomes have only been examined in several
studies using small sample sizes, this warrants further investigation. We thus recommend
reporting basic EMG and/or force variability measures (e.g., coefficient of variation of the
background EMG of the target muscle and/or coefficient of variation of the force output of
the target muscle) when comparing silent periods for two groups or pre-/post-intervention.
Although not investigated in silent period studies to date, investigators may also wish to
calculate a measure of force accuracy (e.g., root mean square error) around the target force
level to report a more complete subject performance profile and to assess whether and how
force accuracy affects silent period outcome metrics.

4.3.5 Stimulator Intensity—Past work has used a wide variety of stimulation intensities
(Table 3). Greater stimulation intensity is associated with longer cSPs (Devanne et al., 1997;
Inghilleri et al., 1993; Kimiskidis et al., 2006; Séisénen et al., 2008; Wilson et al., 1993) and
longer iSPs (Chen et al., 2003; Kimiskidis et al., 2005), until a plateau occurs at very high
stimulation intensities for both cSPs (Kimiskidis et al., 2005) and iSPs (Chen et al., 2003).
For instance, iSP area and duration have been found to increase from intensities of 45% of
stimulator output to 60% stimulator output, but to plateau at intensities of 75% to 90%
(Chen et al., 2003); however, this may not be a fully representative example, as this study
included only 10 healthy young adults who may have had differing levels of corticospinal
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excitability (e.g., different RMTSs). Similarly, Meyer and colleagues (Meyer et al., 1995)
found iSP duration to plateau after an intensity of 60%; see Fig. 5D in Meyer et al., (1995)
for an example of this plateau. Similarly, using visual identification methods, Meyer and
colleagues (1995) found iSP latency (i.e., the time interval from the TMS pulse to the onset
of the iSP) to increase with increasing stimulation intensities of 50-70%, and plateau at
80%-100% stimulator output. This is in contrast to other work using automated methods to
quantify iSP latency, which have not found an effect of stimulator intensity on iSP latency
(Chen et al., 2003).

Further complicating matters, although most studies (e.g., Swanson & Fling, 2018) use an
individualized stimulation intensity for each subject (i.e., a certain percentage of their RMT),
some studies have applied the same stimulation intensity across participants (e.g., Jung &
Ziemann, 2006). Jung and Ziemann (2006) justified applying the same stimulation intensity
of 80% to all subjects because of the plateau in iSP outcome measures at intensities of
greater than ~60%-80% identified by Meyer et al. (1995). Despite this, we do not
recommend applying the same stimulation intensity to all subjects. Presuming that RMT is
calculated in an unbiased and systematic manner, failure to individualize stimulation
intensity to percentage of RMT might risk eliciting shorter or shallower silent periods in
individuals with reduced cortical excitability. This would be especially problematic for the
case of aging (e.g., Bhandari et al., 2016; Oliviero et al., 2006) or patient (e.g., Butefisch et
al., 2001; Schippling et al., 2009) studies where the groups of interest may have altered
cortical excitability.

Reliably eliciting iSPs requires higher stimulation intensity than eliciting cSPs. However,
iSPs have been reported to occur with stimulation intensities as low as 110% of RMT
(Davidson, 2016). Unpublished thesis work reported that iSPs only occur about 57% of the
time at stimulation intensities of 110% RMT, about 80% of the time at 120% RMT, and
plateau at about 97% of the time at 130% RMT and 95% of the time at 140% RMT
(Davidson, 2016). Thus, this group has suggested that 130% RMT represents the lowest
optimal intensity for reliability eliciting iSPs.

Some groups have used a stimulation intensity as high as 160% of RMT for eliciting iSPs
(Petitjean & Ko, 2013; Sommer et al., 2006). While this may be feasible in healthy young
adults, such a high threshold would become problematic in certain populations (e.g., older
adults) with high RMTs (Bhandari et al., 2016), such that 160% of RMT could be greater
than maximum stimulator output (i.e., >100% of stimulator output). In such cases,
investigators would need to exclude all individuals with RMTs that are too high to use the
same relative stimulation intensity for all subjects. Using high stimulation also reduces the
focality of the stimulation and increases the likelihood of stimulating other nearby motor
cortical representations and thus should be avoided.

Past work has successfully elicited cSPs at stimulator intensities varying from 80% RMT
(Saisanen et al., 2008) to 140% RMT (Fujiyama et al., 2009; although 80% RMT failed to
elicit cSPs in one subject included in (Sdisénen et al., 2008)). Saisanen et al. (2008) tested
how stimulator intensities ranging from 80% to 120% of RMT influenced cSP
characteristics for the abductor pollicis brevis muscle in 10 healthy young adults. This group
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found the lowest intra-individual variability (i.e., coefficient of variation) for stimulator
intensities of 120% RMT and thus recommends using this intensity for cSP tasks (Séisénen
et al., 2008).

Given the above work, we recommend using an intensity of 130% RMT for upper limb iSP
trials and 120% RMT for upper limb cSP trials. If investigators select to use other intensity
levels (e.g., because 130% RMT is too high for a certain patient population), then
justification for this choice should be provided. Methodological work is needed to determine
whether optimal stimulator intensities for eliciting silent periods in the lower limbs differ
from those needed for the upper limbs.

4.3.6 Ordering of the Protocol—It is also presently unknown whether single pulse
TMS induces cumulative effects on the primary motor cortex. That is, studies have not been
conducted to determine if it would be optimal to incorporate breaks into a testing session
instead of running several silent period trials subsequently, or if the stimulations required to
locate the motor hotspot and determine the RMT influence the parameters of a silent period
trial, if these procedures are completed directly before collecting silent periods. Additional
studies are thus warranted. At a minimum, conditions should always be counterbalanced
across participants and this should be reported.

4.4 Relaxation of the OFF Muscle During iSP Trials

It is necessary to keep the contralateral homologous muscle (i.e., the “OFF” muscle)
completely relaxed during silent period trials. In the case of iSPs, it has been shown that
contracting the OFF muscle (even at low levels, but also at one’s MVC) or even imagining
contracting the OFF muscle enhances iSP area, potentially via enhancing interhemispheric
motor inhibition of the contralateral primary motor cortex (Giovannelli et al., 2009). To
avoid (or at a minimum, quantify) this confound, we recommend collecting EMG data from
the target muscle and from the OFF muscle. Examining the EMG activity from the target
and OFF muscles (Fig. 3) serves as a quick quality check to visually assess whether any
notable EMG occurred in the OFF muscle, and to provide a visual estimation of whether
fatigue has occurred across the trial. Some studies have used real time feedback (e.g.,
acoustic feedback; Giovannelli et al., 2009) to allow participants to know whether they are
fully relaxing the OFF muscle and to make adjustments if necessary. Instructions should be
given to the participant to fully relax prior to starting each trial (and, if needed, during the
trial), and it should be ensured that participants have a comfortable position in which to rest
their OFF muscle during the trials.

If it is still found that the OFF muscle has not remained at rest during silent period trials
(particularly, iSP trials), the OFF muscle EMG activity should be analyzed for motor
overflow (Fling & Seidler, 2011). In such a case, it could be that the brain is experiencing
difficulty suppressing activity in the OFF muscle. Motor overflow can be assessed by
calculating the rectified integral (i.e., area) of the OFF muscle EMG between each
subsequent TMS pulse and normalizing this to the “baseline” EMG level for the same hand
(i.e., the EMG level immediately before each stimulation; Carey et al., 1983; Fling &
Seidler, 2012; Fling & Seidler, 2011). This is equivalent to expressing motor overflow as a
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percentage of the baseline EMG, to account for any inter-subject variability due to
differences in skin-electrode impedance, noise, or arousal. We previously found that reduced
iSP depth predicted greater motor overflow (Fling & Seidler, 2012), supporting the notion
that those with poorer transcallosal inhibitory capacity also have reduced ability to suppress
OFF muscle EMG. Given that motor overflow tends to increase with more challenging
motor tasks, higher cognitive load, fatigue, and older age (for review see Cincotta &
Ziemann, 2008), measuring motor overflow during silent period trials can add valuable data
for interpretation.

5. Post-Processing and Analysis of Silent Period Data

5.1 EMG Signal Filtering

Many studies report band pass filtering EMG data collected during silent period trials;
however, many studies have failed to report filtering parameters used. Current
recommendations suggest band pass filtering of 1 Hz to 2,000 Hz (Groppa et al., 2012).
However, settings may need to be adjusted for individual EMG systems. We have found a
10-1000 Hz band pass filter to be optimal for data collected in our laboratory (Fling &
Seidler, 2012; Fling & Seidler, 2011). We have noted past work using band pass filters with
cutoffs ranging from high pass: 2 Hz (Goodall et al., 2018) to 1,000 Hz (Beynel et al., 2014)
and low-pass: 500 Hz (Fujiyama et al., 2009) to 10,000 Hz (Silbert et al., 2006). The high
pass threshold (e.g., 1 Hz) will ideally shorten the duration of the stimulus artifact, and the
low pass threshold (e.g., ~2,000 Hz) should be determined based on a value that falls well
above the maximal frequency spectrum of the EMG signal (Groppa et al., 2012). Based on
the Nyquist theorem, the low pass threshold (and also the sampling rate itself) needs to be at
least twice that of the highest frequency in the signal of interest. Our primary
recommendation here is to clearly report bandpass filtering cut-off values, so that others may
replicate the same filtering processes in future work.

5.2 ldentification of Silent Period Onsets and Offsets

There are widely varied definitions of onset and offset for silent periods (and thus widely
different methods used to calculate the silent period duration; Table 2; Fig. 4). Some studies
have defined silent period onset as the onset of the TMS pulse (e.g., Tazoe et al., 2007),
others have defined it as the MEP onset (e.g., Davidson & Tremblay, 2013a), while others
have defined it as the MEP offset (e.g., Oliviero et al., 2006). Further complicating matters,
many previous studies have provided only a vague explanation of the silent period offset,
such as “the resumption (at any level) of sustained EMG activity” (Oliviero et al., 2006),
paired with only a brief description of how this was determined (although presumably in
such cases, the offset was determined using visual inspection methods). As depicted in Fig.
4, each method results in a different cSP duration. This makes it impossible to compare
across studies and to conduct robust meta-analyses.

Past work has employed many different methods to determine the onset and offset of silent
periods (and thus to calculate the silent period duration; Table 2). These methodological
differences are particularly concerning because many studies have used subjective visual
methods for identifying onsets and offsets (e.g., Damron et al., 2008; McGinley et al., 2010;
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Petitjean & Ko, 2013). While multiple studies have argued that such visual methods are
reliable (Damron et al., 2008; Petitjean & Ko, 2013) and produce high inter-rater reliability
(e.g., ICC =0.99 for all iSP parameters, (Petitjean & Ko, 2013), we argue that the benefits of
automated methods (described below) outweigh the ease of visual inspection, especially for
complex situations such as breakthrough EMG (Section 5.3) or secondary inhibition periods
(Section 5.4). Several studies have found cSP duration to vary by over 20 ms when two
separate investigators from the same group analyzed them using a visually-guided manual
method (Garvey et al., 2001; Nilsson et al., 1997). This is a notable difference, as variations
of similar magnitude have been reported as significant differences in silent period duration
between younger versus older adults (e.g., Beynel et al., 2014; McGinley et al., 2010; Sale &
Semmler, 2005) and patients versus controls (e.g., Ziemann et al., 1997). This issue is
contentious because others (e.g., as previously mentioned, Damron et al., 2008; Petitjean &
Ko, 2013) have found high inter-rater reliability of visual inspection methods; it may that
rater training and experience plays a role. However, we argue that the best (i.e., most
transparent and reproducible) approach is implementing an objective analytical method
(described below) so that subjective raters are not needed.

We recommend using only objective methods and do not suggest visual inspection for
identifying cSP and iSP onsets and offsets. In particular, we recommend the Mean
Consecutive Difference (MCD) Threshold Method (Garvey et al., 2001), given that it is
simple, easy to implement, and based on a systematic methodological study. This method is
described in detail in (Garvey et al., 2001) with the appendix detailing step-by-step
directions regarding calculation of the MCD; we briefly describe it here. (1) All silent period
trials are rectified (i.e., the absolute value is taken) and averaged. (2) The MCD of 100 ms of
pre-stimulus EMG is calculated. MCD is the mean successive difference between individual
data points; smaller differences between sequential data points equate to a smaller MCD,
while larger differences between sequential data points push the MCD further from the
mean. That is, instead of using thresholds based on the average pre-stimulus EMG, this
method creates thresholds based on the variability in the pre-stimulus EMG. (3) Thresholds
are set at: £ MCD x 2.66 (blue dotted lines in Fig. 4B). This covers 99.76% of possible pre-
stimulus EMG data points, which is equivalent to 3 standard deviations. (4) Silent period
onset is determined as the point at which the post-stimulus EMG falls below the variation
threshold (i.e., -MCD x 2.66) for five consecutive data points. As random data points fall
outside 99.76% variation limits less than 1% of the time, five consecutive points of post-
stimulus EMG can be considered different from the pre-stimulus mean (Pfadt & Wheeler,
1995). (5) The silent period offset is determined as the point at which the post-stimulus
EMG returns above the variation threshold (i.e., -MCD x 2.66) for five consecutive data
points.

We have implemented the MCD Threshold Method in our previous work (Fling & Seidler,
2012; Fling & Seidler, 2011), and it has been widely used by others (e.g., Giovannelli et al.,
2009; McGregor et al., 2011). As described by Garvey et al. (2001), we have found that
narrower variation limits are required for correctly identifying iSP trials (e.g., MCD x 1.77;
Fling & Seidler, 2012; Fling & Seidler, 2011) compared to cSP trials (e.g., MCD x 2.66)
because iSPs are shorter and less pronounced than cSPs. Thus, individual studies should
employ the MCD Threshold Method, but should be aware that thresholds may need to be
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adjusted (and reported) depending on whether iSPs or cSPs are being tested. Alternatively,
investigators may wish to test and report whether and how their primary results differ when
using varying MCD thresholds.

We do not recommend using a standard deviation threshold instead of an MCD threshold
(Garvey et al., 2001), although some have done this (e.g., Goodall et al., 2010). Calculation
of a standard deviation threshold assumes that each data point is independent, which is not
the case for time series data such as EMG. Further, as shown in Fig. 4B, similar to the
findings of Garvey et al. (2001), when using three standard deviations as the threshold for
identification of cSP onsets and offsets compared to + MCD x 2.66, only the most dramatic
suppression is quantified as part of the cSP and the cSP duration is substantially shorter.
Thus, we do not recommend using the standard deviation to set threshold lines.

Newer options are currently in development to encourage further automation of silent period
identification (Table 3). For instance, the freely available Visualize EMG TMS Analyze
(VETA) MatLab toolbox (https://github.com/greenhouselab/\Veta) has recently been released
and described (Jackson & Greenhouse, 2019). VETA is designed to interface with EMG and
TMS systems to facilitate collection and visualization of EMG data, as well as automatic
detection of cSPs. This software makes specific assumptions (e.g., it defines the cSP onset as
the MEP offset time and the cSP offset as the “inflection point” after onset “where the mean
of the rectified signal starts to increase™). While the VETA data collection features are
currently only supported for certain EMG vendors, future releases of the VETA toolbox may
represent a promising avenue for streamlining collection and analysis procedures in silent
period studies.

5.3 Breakthrough EMG Activity

Use of automated methods for identifying silent period onsets and offsets also circumvents
issues that may arise with abnormal silent period tracings such as breakthrough EMG (Fig.
5A). That is, the TMS pulse sometimes induces two periods of EMG silence which are
interrupted by a short burst of EMG activity (i.e., “breakthrough” EMG). Multiple studies
have reported the presence of breakthrough EMG (e.g., Butler et al., 2012; Chen et al., 2003;
Garvey et al., 2001; Jung & Ziemann, 2006; Lixandrdo et al., 2020). Some authors have
suggested that this breakthrough EMG arises from contributions by ipsilateral cortical or
subcortical structures (Holmgren et al., 1990). Others have hypothesized that breakthrough
EMG is mediated by spinal reflex mechanisms (Lixandrao et al., 2020). That is, muscle
force drops quickly following the TMS pulse (during the muscle silence). This leads to
muscle lengthening, which increases muscle spindle firing and ultimately triggers the firing
of spinal alpha motor neurons and results in the visible EMG breakthrough activity (Burke et
al., 2013; Li & Francisco, 2015). This notion is supported by previous work which found
decreased EMG breakthrough activity during shortening muscle contractions (Butler et al.,
2012) and with joint immobilization (Burke et al., 2013; i.e., two conditions in which muscle
lengthening was prevented during the cSP).

Few studies directly report how they may have quantified breakthrough EMG. In many cases
breakthrough should be easily identified (such as in Fig. 5A) and could be ignored when
determining the silent period offset. However, if the occurrence of breakthrough activity is
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less clear in any instances (e.g., breakthrough combines with a gradual return of EMG
activity, Fig. 5B) using an objective analytical method rather than a visual method prevents
the experimenter from needing to subjectively determine whether the breakthrough should
be considered as the offset of the EMG activity. This thus removes a level of subjectivity out
of silent period duration measurements and allows for better future reproducibility.

Additionally, we and others (e.g., Fritz et al., 1997; Fuhr et al., 1991) have encountered
situations where the EMG activity returns more gradually (Fig. 5A). In such cases, an
objective analytical method is also recommended because, in such a situation, it would be
quite difficult to subjectively determine where the offset point should be placed within the
yellow shaded box in Fig. 5A. Taken together, regardless of past reports of high inter-rater
reliability with visual methods, such subjective approaches fail to circumvent the problem of
special situations such as breakthrough EMG and gradual return of EMG activity.

In general, we recommend that breakthrough EMG should not be counted as the offset of the
silent period, due to the potentially non-cortical origins of this activity. We recommend that
breakthrough EMG be counted as part of the silent period and included as part of the whole
cSP duration. When calculating metrics such as silent period depth in cases of breakthrough
EMG, authors should carefully report how they handled these scenarios (e.g., by keeping
versus removing only the breakthrough portions or any trials that included breakthrough
EMG for depth calculations). Additionally, we recommend that authors clearly report the
number of trials that included any breakthrough EMG for each participant. Such reporting
would allow future investigators to know whether to expect breakthrough EMG for certain
muscles or subject populations. Further, such reporting would allow for future work
designed to examine possible underlying mechanisms of breakthrough EMG.

5.4 The Secondary Inhibition Period and Ipsilateral MEPs

5.4.1 The Secondary Inhibition Period—iSP trials may produce another potentially
confounding factor—a secondary inhibition period (Fig. 4B; Jung & Ziemann, 2006; Meyer
et al., 1995). This secondary inhibition period does not seem to occur reliably for every iSP
trial for a given subject, but does seem to occur more frequently in certain muscles. For
instance, one study found more frequent secondary inhibition periods for the first dorsal
interosseous muscle compared to the abductor pollicis brevis muscle (i.e., 40% of subjects
for the first dorsal interosseous but only 5% of subjects for the abductor pollicis brevis; Jung
& Ziemann, 2006).

Special consideration should be given to this secondary inhibition period, as evidence
suggests that it does not represent transcallosal inhibition (which is the intended
measurement of iSP; Jung & Ziemann, 2006): (1) This secondary inhibition period was
evident in some patients with complete agenesis of the corpus callosum, while the initial iSP
was absent in these individuals (Meyer et al., 1995). (2) The H reflex was not altered during
the iSP, suggesting that ipsilateral descending cortical pathways may underlie iMEPs, rather
than spinal contributions (Jung & Ziemann, 2006). Thus, it is suspected that secondary
inhibition phases are mediated by ipsilateral corticospinal pathways (Jung & Ziemann,
2006) such as the corticoreticulospinal or corticopropriospinal pathways.
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Given the probable non-transcallosal origins, the secondary inhibition period should likely
not be counted as part of the iSP. In our past work, the MCD Threshold Method performed
well in avoiding capturing secondary inhibition periods as part of the iSP; however, future
investigators should verify this in their work. One study found that, in some cases, the iSP
merged with the secondary inhibition period (which would make the iSP duration quite long;
Jung & Ziemann, 2006). In such cases, care should be taken to address these instances, by,
for example, removing trials where this happens, or by reporting the number of trials where
this occurred.

5.4.2 Ipsilateral MEPs—Typically, a MEP would only be expected in the contralateral
muscle during an iSP trial (Giovannelli et al., 2009; Wassermann et al., 1991; Ziemann et al.,
1999). An ipsilateral MEP (iMEP) occurs when there is a noticeable MEP in the ipsilateral
muscle. Similar to secondary inhibition periods, iMEPs are likely not of transcallosal origin
(Chen et al., 2003). As iIMEPs are visible in patients with complete corpus callosum agenesis
(Ziemann et al., 1999), it has been suggested that direct descending oligosynaptic pathways
from ipsilateral motor cortex are more likely to mediate iMEP responses than transcallosal
interhemispheric mechanisms.

There is no widely accepted definition for an iMEP; one study defined an iMEP as occurring
if the averaged rectified post-stimulus EMG signal exceeded 120% of the mean background
EMG levels for at least 5 ms (Giovannelli et al., 2009). Another study defined iIMEPS as
present if the post-stimulus EMG exceeded the pre-stimulus mean EMG by >1 standard
deviation for =5 ms (Chen et al., 2003). Our primary recommendation in handling iMEPs is
to clearly report the criteria used to classify them and to report metrics such as the
percentage of trials in which iMEPs occurred, whether there were group differences in
iMEPs, and if iMEP prevalence correlates with experimental variables of interest such as
silent period duration. Additionally, if iMEPs occur in a small enough percentage of trials,
investigators might consider using iIMEP presence as an exclusion criterion.

Although past work has not identified correlations between iMEP amplitude and iSP
duration (Jung & Ziemann, 2006), this work suggests that the occurrence of an iIMEP is
linked to the occurrence of a secondary inhibition period. This study found that the
secondary inhibition period occurred for 6 of 8 subjects after an iMEP and for only two
subjects without an iIMEP (Jung & Ziemann, 2006). We thus recommend that—particularly
if measuring the first dorsal interosseous muscle, for which secondary inhibition periods
may be more likely to occur—investigators qualitatively check for and report the presence of
iMEPs.

iMEP prevalence may also depend on individual characteristics, such as handedness. We
previously reported that less lateralized individuals (i.e., those who rely less on one
dominant hand) were more likely to show iMEPs during TMS applied to the hand motor
cortex (Bernard et al., 2011). Given these findings, we thus recommend testing and reporting
participant limb dominance in all silent period studies.

Of note, one study found that higher stimulation intensities (e.g., ~60% stimulator output
and above on their set-up) caused iIMEPs in the majority of subjects (Chen et al., 2003). This
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should thus also be considered when choosing stimulation intensity parameters for iSP
studies.

5.5 Accounting for MEP Amplitude in cSP Calculations

cSP duration may be strongly correlated with MEP size (Orth & Rothwell, 2004). That is,
the larger the evoked MEP in the contralateral muscle, the longer the cSP. If this is the case,
intracortical inhibition should only be considered greater if the cSP duration increases
without concurrent increase in MEP amplitude (Orth & Rothwell, 2004). Given that motor
cortical excitability and, consequently MEP amplitude, change with certain pathologies
(e.g., Huntington’s disease (Schippling et al., 2009), stroke (Bitefisch et al., 2001), and
aging (Bhandari et al., 2016; Oliviero et al., 2006)), it is recommended that the ratio of cSP
duration to MEP size be included as an additional outcome variable. This allows for the
analysis of cSPs to rule out possible contributions of differences in motor cortical
excitability and MEP size to cSP duration. Importantly, past work has found that group
differences (e.g., age differences) disappear when correcting cSP duration for MEP
amplitude (Orth & Rothwell, 2004). We thus suggest reporting both the corrected and
uncorrected cSP duration and computing any between group or behavioral performance
correlation statistics using both of these metrics.

5.6 Silent Period Depth and Area

We also suggest including average and maximal silent period depth as other measures of
inhibition. We have found iSP depth to be more sensitive for delineating between young and
older adults than iSP duration (Fling & Seidler, 2011). Despite these findings for iSP depth,
cSP depth is not frequently reported; it could be that cSPs tend to reach a higher level of
inhibition than iSPs (Garvey et al., 2001), making cSP depth less variable (i.e., as it would
be close to 100% for most people) and thus making it less likely for group differences or
associations with behavioral performance to emerge.

Silent period area and normalized area are also reported less frequently compared to silent
period duration. As outlined in Table 1, silent period area is typically calculated as the
integral of the rectified EMG trace in the region between the onset and offset of the iSP.
Normalized area is then calculated by normalizing this area to the average pre-stimulus
EMG level. The benefit of calculating normalized iSP area is that this takes the pre-stimulus
muscle contraction level into account (Coppi et al., 2014; Kuo et al., 2017). As discussed in
Section 4.3.2, as silent periods may be affected by contraction level, this represents a
reproducible way to account for contraction level. In 25 healthy young adults, Kuo and
colleagues (2017) found normalized iSP area to be the most consistent measurement
(determined by a homogeneity of variance test and by the coefficient of variation).
Normalized iSP area was consistent across all contraction levels (i.e., 30%, 50%, and 100%
of MVC; Kuo et al., 2017). Thus, Kuo and colleagues (2017) recommend normalized iSP
area over other iSP metrics for future work. To our knowledge, past work has not reported
normalized cSP area, although this would be possible to calculate and could also have less
measurement variability than other possible outcome metrics. Finally, as noted in Section
2.2.2, a major caveat to the discussion of silent period depth and area is that no studies to our
knowledge propose distinct physiologic mechanisms for silent period duration versus depth
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or area; the functional interpretation of the depth and area of EMG suppression, compared to
the duration, remains unclear.

5.7 Transcallosal Conduction Time (TCT)

Finally, we recommend testing transcallosal conduction time (TCT) when measuring the iSP.
This is typically calculated as the time from the onset of the contralateral MEP to the time of
the onset of the iSP (Petitjean & Ko, 2013). TCT may be a more between-group
measurement than iSP duration alone. For instance, (Davidson & Tremblay, 2013a) found
that TCT but not iSP duration was significantly different between young and older adults.

As discussed in Section 2.2.2, there are no studies that report how silent period duration,
depth, area, and TCT relate. Thus, we recommend that future work extract each of these
measures and attempt to clarify how these metrics might quantify different aspects of
cortical inhibition.

5.8 Removal of Trials

It is imperative to report any removals of trials. As discussed in Section 4.3.5, past work has
found that iSPs only occur about 57% of the time at stimulation intensities of 110% RMT,
about 80% at 120% RMT, and plateau at about 97% at 130% RMT (Davidson, 2016). This
means that, when investigators stimulate at 120% RMT to induce silent periods, trials are
more than likely being excluded when calculating average silent period metrics, or, if these
trials are included in the average, they artificially suppress silent period metrics. Despite
this, few studies report exclusions of silent period trials. Others, perhaps concerningly,
allude to excluding trials but do not specify how many trials were excluded. For instance,
Petitjean and Ko (2013) noted that, “stimulation was applied so as to obtain 9 consecutive
iSPs (defined as true electrically silent period, i.e. without any detectable EMG activity).”
This implies that these investigators delivered some TMS pulses that did not elicit an iSP;
however, they did not report how many trials were excluded and whether the percentage of
excluded trials differed for their young versus older adults.

6. Special Considerations for Lower Limb Muscles

There are several unique challenges with collecting silent period data for the lower limbs. A
recent review details general considerations for applying TMS to lower limb muscles (Kesar
et al., 2018). Here we discuss several challenges specific to eliciting silent periods in lower
limb muscles.

6.1 Stimulation Intensity and Coil Type

General challenges of applying TMS to lower limb muscles include the deep anatomical
location of the lower limb motor cortical representations. The lower limb motor cortical
representations locations are folded into the interhemispheric fissure of the brain, about 3—4
cm below the surface of the scalp (Fig. 6A). This makes it more challenging for TMS to
induce MEPs in this cortex, as the strength of the induced electric field diminishes the
further the target is from the scalp (Deng et al., 2013).
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In comparison to upper extremity muscles, lower extremity muscles are controlled by larger
corticospinal neurons with higher activation thresholds (Smith et al., 2017). Axon
orientations also make these neurons more difficult to stimulate trans-synaptically (Groppa
et al., 2012). Further, the longer central conduction distance for leg muscles results in less
optimal summation of the descending volley, making it more difficult to elicit lower limb
MEPs (Groppa et al., 2012). Together, these factors make it more difficult to elicit lower
limb MEPs compared to upper limb muscles; higher stimulation intensities are necessary
(Smith et al., 2017). Typically, specialized coils (e.g., double cone or angled butterfly;
Section 3.1.1) are needed to target these deeper cortical regions.

6.2 Localization of Lower Extremity Muscles

When targeting lower limb muscles with TMS, it may be difficult compared to the upper
limbs to find the hotspot for the muscle of interest. The primary motor cortex representations
of the lower extremity muscles are within close physical proximity and overlap, which
makes it difficult to stimulate only one muscle at a time (Kesar et al., 2018; Fig. 6). This is
not a major concern for testing cSPs. However, during cSP testing, the TMS pulses may
cause simultaneous activation of corticospinal neurons that innervate agonist, antagonist, and
synergist muscles, which could make it more difficult for participants to sustain a tonic
lower extremity contraction during a cSP trial (Kesar et al., 2018).

The close anatomical proximity of the left and right leg motor cortical representations is of
greater concern for testing iSPs. When attempting to elicit leg iSPs, it can be difficult to
position the TMS coil in a way that avoids superficial current spread and induces only a
unilateral response. To our knowledge, there is only one study that has reported iSPs in the
lower limbs (Lo & Fook-Chong, 2004). This group used a circular coil. While we have
successfully elicited cSPs in the tibialis anterior leg muscle using a double cone coil, we
have not been able to elicit iSPs using a double cone coil in this muscle (Fig. 6C). We
suspect that the double cone coil stimulation is not focal enough and reaches the bilateral
motor cortical representation, causing a “weak” cSP in the target muscle which covers up
any iSP that may have occurred (Fig. 6C). We have found that such stimulation elicits a
silent period far too long to be an iSP, as well as a large iMEP, which suggests that a cSP, not
an iSP, has occurred (Fig. 6C). Thus, we do not recommend using a double cone coil for
testing iSPs in the lower limbs. We recommend that future lower limb iSP work attempt to
replicate the (Lo & Fook-Chong, 2004) study with a circular coil. If positioned optimally,
the medial side of a circular coil could potentially be used to stimulate only the leg
representation better than a double cone coil (although the lateral side of the circular coil
may cause concurrent stimulation of more lateral motor representations, such as arm and
hand areas). Despite this, since Lo and Fook-Chong (2004) supposedly elicited lower limb
iSPs with a circular coil and recommended a circular over a double cone coil for this
purpose, we suggest that future investigators consider using a circular coil for eliciting iSPs
in the lower limbs. Future studies may also wish to instead implement a MagVenture angled
butterfly coil for eliciting iSPs in the leg muscles, as the angled butterfly coil can stimulate
at increased depths but with more focality than the circular or double cone coils.
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Our other primary recommendation for testing lower limb silent periods is to record from
multiple muscles. As demonstrated in Fig. 2 in Kesar et al. 2018 and in Fig. 7, recording
from multiple muscles will allow for demonstration that you have found the motor hotspot to
the best of your ability for the lower limb muscle of interest. Particularly a double cone coil
will likely induce activity in multiple muscles; however, it is possible to localize a spot that
elicits the best response in the muscle of interest and only minimal activity in other muscles.
We recommend using as many EMG channels as possible—ideally at least four channels—
to confirm the hotspot location. Four EMG channels allows for recording of the target
muscle, the homologous contralateral muscle, and two control muscles.

7. Recommendations for Future Reporting and Work

Based on our review of the literature, we have compiled our list of best practices for silent
period experiments (Table 4). Additionally, we report power analyses in Table 5 for the
aging studies detailed in Table 3. Table 5 suggests that between 2-33,484 per group is
required to observe age differences in cSP duration at 0.80 power and alpha p < 0.05. Table
5 serves an example for future work (which, if possible, should justify sample size using a
power analysis). Following the comprehensive guidelines outlined in Table 4 and adequately
powering studies will increase reproducibility of silent period experiments, especially as
future work applies this technique to clinical populations and moves towards more silent
period experiments in the lower limbs.
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Highlights

Muscle silent periods provide a valuable /7 vivo measurement of cortical
inhibitory function in the human brain and can be leveraged to characterize
how advancing age and disease impact the cortical control of movement.

Past silent period studies have implemented varying methodology, including
subjective analyses and lack of detail in methods descriptions, limiting
comparison across studies and reproducibility.

Here, we review in detail the impact of methodological choices on silent
period outcome measures, including considerations for the unique case of
collecting lower limb silent periods.

We conclude with comprehensive recommendations to improve the
consistency of data collection, analysis, and reporting in future silent period
studies.

J Neurosci Methods. Author manuscript; available in PMC 2021 December 01.




1duosnuey Joyiny

Hupfeld et al.

Page 35

A. ‘cSP (INTRAcortical Inhibition) ‘

B. ‘iSP (INTERhemispheric Inhibition) ‘

1. Participant tonically
contracts contralateral
target muscle.

2. TMS pulse elicits an
MEP in target muscle.

3. Intracortical GABA,-
mediated response
causes brief disruption
in tonic EMG of target
muscle.

1. Participant tonically
contracts ipsilateral
target muscle.

2. TMS pulse elicits an
MEP in OFF muscle.

3. Transcallosal
inhibition via the
posterior corpus
callosum causes a brief
disruption in tonic EMG
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of target muscle.

Fig. 1. Cortical mechanism for cSPs and iSPs.
A. While both spinal (0-50 ms) and cortical mechanisms (50-200 ms) are thought to

contribute to cSPs, here we depict the cortical mechanism, which dominates the cSP. Al.
The primary motor cortex (green) subserves a tonic low-level contraction in the contralateral
hand muscle. Here we depict a first dorsal interosseous (FDI) contraction elicited by asking
the participant to push laterally against a plunger that presses against a force transducer.
EMG from the active FDI is shown in blue; EMG from the opposite FDI which is resting is
shown in red. A2. Figure-of-8 coil stimulation is delivered to the active primary motor
cortex, resulting in a motor-evoked potential (MEP) in the target muscle (yellow inset box).
A3. The cortical response then includes GABAg-receptor mediated intracortical inhibition,
which causes a disruption of up to a couple hundred milliseconds in the target muscle (the
unrectified silent period is visible in the blue EMG trace; the rectified silent period is visible
in red inset box). B. iSPs are thought to be fully cortically mediated. B1. Similar to the cSP
setup, the primary motor cortex subserves a tonic low-level contraction in the contralateral
hand muscle (blue EMG trace), while the opposite hand is at rest (red EMG trace). B2. A
TMS pulse is delivered to the primary motor cortex ipsilateral to the target muscle. This
causes a MEP in the resting hand (yellow inset). B3. The TMS pulse results in excitation of
glutamatergic transcallosal fibers which pass through the posterior corpus callosum. These
fibers synapse onto inhibitory GABAergic interneurons. Excitation of these inhibitory
interneurons then causes a brief disruption in descending corticospinal activation of the
target muscle, which is visible as a brief silence (lasting only up to several dozen
milliseconds) in the target muscle EMG (unrectified silent period visible in blue EMG trace;
rectified silent period visible in red inset box).
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Fig. 2. Common silent period outcome metrics.
Here we depict example average rectified EMG data from the contracting (“ON”; top) and

resting (“OFF; bottom) first dorsal interosseous muscles during an iSP trial. The TMS pulse
occurred at time = 0 ms. The green and red points indicate the iSP onset and offset,
respectively. The red line depicts the mean pre-stimulus EMG activity for 100 ms before the
TMS pulse. The blue lines depict + 0.89 * MCD reference lines for determining the time of
iSP onset and offset, based on the MCD Threshold Method. 1. iSP Latency. The time
elapsed between the TMS pulse and iSP onset. 2. iSP Duration. The time elapsed between
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the ISP onset and offset. 3. iSP Area. iSP area (bright blue shading) represents the area of
the rectified EMG between the iSP onset and offset. See Tables 1-2 for information on
calcuating the normalized iSP area. 4. Average iSP Depth. Calculation of average iSP depth
involves taking the mean EMG signal for the entire iSP duration (i.e., the EMG signal
colored in dark purple) and normalizing this depth to the average pre-stimulus EMG level. 5.
Maximum iSP Depth. The maximum iSP depth is indicated by the pink point. Maximum
iSP depth is typically normalized to the average pre-stimulus EMG level. 6. Transcallosal
conduction time (TCT). The MEP onset for the OFF muscle is indicated by the yellow
point. TCT is the time elapsed between this MEP onset and the iSP onset (indicated by the
green point in both the top and bottom panels).
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Fig. 3. Rectified EMG for an iSP trial.
Rectified EMG trace for the target (ON) FDI muscle and contralateral (OFF) FDI muscle

during an iSP trial. These data were collected during a 2-minute iSP trial, with a TMS pulse
applied to the right hemisphere at 110% of the subject’s RMT approximately every 10
seconds, with 20 stimulations total. Spikes in the OFF muscle indicate timing of TMS
pulses. Little to no EMG signal is evident in the OFF muscle here. The EMG signal remains
relatively steady throughout the trial for the ON muscle, indicating that no fatigue occurred
over the course of the trial. This represents acceptable EMG signal for an iSP EMG
recording. As OFF muscle activation can influence iSP outcome metrics (Giovanelli et al.,
2009), investigators should demonstrate that the OFF muscle was fully at rest during silent
period trials. If the OFF muscle was not at rest, the OFF muscle EMG signal should be
examined and quantified, for instance for evidence of motor overflow.
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L MCD cSP =157 ms |
I 1

I SD cSP =128 ms I

Time (ms)

Data here are shown for a healthy young adult cSP (average of 20 individual cSPs). A. This
panel shows several common methods for coding the silent period onset and offset based on
the MEP. The dotted line (time = 0 ms) marks the time of the TMS pulse, the yellow point
marks the onset of the MEP, the blue point marks the offset of the MEP, and the purple point
marks the offset of the silent period. Horizontal lines show the resulting cSP durations
depending on which events are used for the duration calculation. B. This panel shows several
common methods for coding the silent period onset and offset based on the rectified EMG
signal. The blue dots and blue solid horizontal line indicate the cSP duration calculated
based on the MCD Threshold Method (Garvey et al., 2001). The blue dotted lines depict +
2.66*MCD around the mean pre-stimulus EMG. The green dots and green solid horizontal
line indicate the cSP duration calculated based on the standard deviation method. The green
dotted lines depict + 3 standard deviations around the mean pre-stimulus EMG.
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A.

Fig. 5. Common anomalies in silent periods.
Each example depicts an average silent period for a healthy young adult. A. Common

anomalies in cSP data. Left. Breakthrough EMG signal (yellow shading) for the tibialis
anterior leg muscle. Right. Gradual return of the EMG signal (yellow shading) for the first
dorsal interosseous hand muscle. B. Common anomalies in iSP data. Left iMEP (purple
shading) elicited in the first dorsal interosseous hand muscle. Right. Secondary inhibition
period (purple shading) elicited in the first dorsal interosseous hand muscle.
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A.
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Fig. 6. Silent period testing within the lower limbs.
A. Schematic indicating the approximate locations of upper (blue) and lower (green) limb

motor cortical representations. These locations are overlaid onto a 3D-rendered template
brain. B. Average functional brain activation (i.e., fMRI activation) during upper (blue) and
lower (green) limb tasks. These fMRI maps were obtained from Neurosynth (http://
neurosynth.org/) and overlaid onto a 3D-rendered template brain. The lower limb activation
was obtained from an automated meta-analysis (association test) of 83 studies using the
search term “foot”; the upper limb activation was obtained from an automated meta-analysis
(association test) of 83 studies using the search term “finger movements.” C. Left. cSP in the
right tibialis anterior for a young adult subject. Right. Attempted iSP for the right tibialis
anterior muscle in the same young adult subject. We believe that this is actually a hybrid
iSP-cSP due to superficial current spread, as this trace contains several characteristics of a
cSP, including a long duration (>100 ms) and an ipsilateral MEP (iMEP, shaded in yellow).
Large iMEPs are not typical for iSPs. In both of these cases, we show the rectified average
of 20 silent periods elicited with a MagStim double cone coil while the participant
dorsiflexed at 15% of their maximal contraction. The TMS pulse was delivered at time =0
ms, and the onset onset, offset, and maximum depth are indicated by green, red, and purple
points, respectively.
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Fig. 7. EMG recording from multiple muscles.
Here we depict the EMG trace during five MEP trials in the bilateral tibialis anterior and

bilateral medial gastrocnemius muscles. These MEPs were elicited with a double cone coil
and stimulation intensity set at the subject’s resting motor threshold. In the top panel, the
average MEP is plotted in red; this panel depicts the target (ON) muscle. In the bottom three

panels, the average MEP is plotted in blue; these panels depict the non-targeted (OFF)

50

Page 42

muscles. Here, the EMG traces reveal clear MEPs in ON muscle, and some, but generally

minimal EMG signal in OFF muscles. These EMG traces highlight the importance of

recording from multiple muscles when identifying the motor hotspot, especially for lower

limb muscles.
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