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Abstract 

Background:  Ferroptosis is a newly discovered form of cell death characterized by iron-dependent lipid peroxida‑
tion. This study aims to investigate the potential correlation between ferroptosis and the prognosis of lung adenocar‑
cinoma (LUAD).

Methods:  RNA-seq data were collected from the LUAD dataset of The Cancer Genome Atlas (TCGA) database. Based 
on ferroptosis-related genes, differentially expressed genes (DEGs) between LUAD and paracancerous specimens 
were identified. The univariate Cox regression analysis was performed to screen key genes associated with the prog‑
nosis of LUAD. LUAD patients were divided into the training set and validation set. Then, we screened out key genes 
and built a prognostic prediction model involving 5 genes using the least absolute shrinkage and selection operator 
(LASSO) regression with tenfold cross-validation and the multivariate Cox regression analysis. After dividing LUAD 
patients based on the median level of risk score as cut-off value, the generated prognostic prediction model was 
validated in the validation set. Moreover, we analyzed the somatic mutations, and estimated the scores of immune 
infiltration in the high-risk and low-risk groups. Functional enrichment analysis of DEGs was performed as well.

Results:  High-risk scores indicated the worse prognosis of LUAD. The maximum area under curve (AUC) of the train‑
ing set and the validation set in this study was 0.7 and 0.69, respectively. Moreover, we integrated the age, gender, 
and tumor stage to construct the composite nomogram. The charts indicated that the AUC of LUAD cases with the 
survival time of 1, 3 and 5 years was 0.698, 0.71 and 0.73, respectively. In addition, the mutation frequency of LUAD 
patients in the high-risk group was significantly higher than that in the low-risk group. Simultaneously, DEGs were 
mainly enriched in ferroptosis-related pathways by analyzing the functional results.

Conclusions:  This study constructs a novel LUAD prognosis prediction model involving 5 ferroptosis-related genes, 
which can be used as a promising tool for decision-making of clinical therapeutic strategies of LUAD.
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Introduction
The ferroptosis is an iron-dependent form of regulated 
cell death (RCD) that has been recently discovered. It 
differs from the apoptosis, necrosis, and autophagy [1]. 
The implementation of ferroptosis requires the activa-
tion of the following three ferroptosis features: The 
oxidation of phospholipids containing polyunsatu-
rated fatty acids (PUFA); The presence of redox active 
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iron; and the loss of lipid peroxide repair abilities [2]. 
With the in-depth analysis of ferroptosis, the induc-
tion of ferroptosis has been identified as a vital event 
involved in pathological progressions, including human 
tumors. Preliminary evidences have suggested the reg-
ulatory effect of ferroptosis on the growth of various 
types of cancers like renal cancer, pancreatic cancer, 
non-small-cell lung cancer (NSCLC) and diffuse large 
B-cell lymphoma [3]. The ferroptosis has been identi-
fied to suppress tumor growth and the progression, and 
as a result, the induction of ferroptosis has emerged as 
a promising anti-cancer treatment [4].

Lung cancer is the most prevalent one among malig-
nancies and it is the chief leading cause of tumor-
related deaths worldwide. Pathologically categorized, 
about 85% of lung cancer cases belong to NSCLC, 
of which lung adenocarcinoma (LUAD) is one of the 
most frequent subtypes [5]. With the wide-spreading 
application of targeted drugs and immune checkpoint 
inhibitors, therapeutic options of patients with LUAD 
have revolutionarily changed. However, the prognosis 
of metastatic or recurrent LUAD is still far away from 
satisfying [6]. Besides, the overall survival of lung can-
cer patients significantly varies across the world, with 
a 5-year survival of 21.2% in the United States, which 
can be higher than that in China [7]. Recent studies 
have reported that up-regulation of the GSH synthesis 
pathway in NSCLC cells can suppress ferroptosis [8],9. 
NFS1, as a ferroptosis-related gene, is detected highly 
expressed in LUAD cells [10]. In addition, ferroptosis is 
also correlated to the prognosis of renal carcinoma and 
hepatocellular carcinoma [11],12. We therefore specu-
lated whether ferroptosis is correlated to the prognosis 
of LUAD, and the possible involvement of ferroptosis-
related genes.

RNA sequencing data of ferroptosis-related genes 
and clinical information of LUAD patients were down-
loaded from the public databases. It is shown that 
expression levels of ferroptosis-related genes were 
correlated to survival outcomes of LUAD. In the pre-
sent study, LUAD patients were divided into a training 
set and a validation set based on the random strati-
fied sampling of tumor stages. Then, we established 
the multi-gene LUAD prognosis prediction model and 
calculated risk scores through the LASSO regression 
with tenfold cross-validation, and univariate and mul-
tivariate Cox regression analyses. Finally, the estab-
lished model was verified in the validation set and the 
overall sample set, aiming to test the fitting degree of 
the model. To explore the underlying molecular mech-
anism of the difference in the prognosis of LUAD, we 
further performed immune and biological functional 
enrichment analyses.

Materials and methods
Data acquisition and preliminary processing
LUAD is a frequently detected subtype of NSCLC. LUAD 
dataset obtained from the TCGA database (https://​por-
tal.​gdc.​cancer.​gov/) involved 533 cancer specimens and 
59 paracancerous ones. Their raw RNA-Seq data, single-
nucleotide variation (SNV) data and clinical information 
were included as well. The mRNA expression data were 
normalized using the DESeq2 variance stabilizing trans-
formation (VST). Based on the previous research, we 
selected the top 60 ferroptosis-related genes as the candi-
date gene set (Additional file 5: Table S1) [4, 13–15].

Analysis of DEGs and model establishment
The DESeq2 package in R [16] was utilized to analyze 
DEGs between LUAD specimens and paracancerous 
ones based on the false discovery rate (FDR) < 0.05. The 
Cox proportional-hazards model is a type of semipara-
metric regression model, in which survival outcomes and 
survival time are considered as the dependent variables, 
and the impact of multiple factors on survival time is 
analyzed. The most crucial concept in the model is haz-
ard ratio (HR). Generally speaking, HR > 1 and HR < 1 
indicate a risk and protective prognostic factor in can-
cer dataset, respectively. The values in the matrix of VST 
were utilized to the following univariate Cox regression 
analysis that assessed potential influences of ferroptosis-
related genes on the overall survival of LUAD. P values 
were adjusted with the Benjamini & Hochberg (BH) pro-
cedure. Genes with HR ≠ 1 and p < 0.05 were selected 
as prognosis-related genes. Subsequently, the intersec-
tion set between the identified DEGs and prognosis-
related genes was taken, and their downstream functions 
in influencing the prognosis of LUAD were further 
analyzed.

The glmnet package in R was utilized to perform 
LASSO regression analysis on the target gene set [17] 
and the establishment of the multi-gene prognostic pre-
diction model. To avoid over-fitting and obtain reliable 
results, we applied the tenfold cross-validation to acquire 
optimal lambda values from the minimum partial likeli-
hood deviance, and screened out representative genes. A 
few candidates were selected to establish a multivariate 
Cox regression model [18]. Using the coxph function, the 
PH test of each factor was performed, and the VIF and 
correlation coefficient of each factor in each regression 
model were calculated as well. Meanwhile, the possible 
collinearity of factors was determined. Variables that 
conformed to the PH hypothesis and collinearity tests 
were re-modeled. Risk scores of LUAD patients were cal-
culated according to the modeling results. The formula 
was established as follows: Risk score = Sum (expres-
sion level of each gene × corresponding coefficient). 
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Expression level of each gene was the normalized mRNA 
expression, and the coefficient was the result of the mul-
tivariate Cox regression analysis.

To explore the survival predictive feasibility of risk 
scores obtained from the multi-gene prognostic pre-
diction model, we used the "survival" and "survminer" 
packages and the Kaplan–Meier method to estimate the 
survival curve. The time-dependent ROC curve was plot-
ted by the "survival ROC" package in G, which graphi-
cally displayed the predictive ability in the prognosis of 
LUAD at different time points.

Construction of the prognostic composite nomogram 
and its verification
To establish a more reliable prediction method that could 
be applied in clinical practice, we constructed the com-
posite nomogram through the rms package. Similarly, 
clinical features and risk scores of LUAD patients were 
combined to establish a multivariate Cox regression 
model. Based on the influenced degrees of risk factors 
on the outcome, they were graded to value its level, and 
a total score was obtained by the sum of the score of each 
factor. Finally, through the converse relation between the 
total scores and the outcome events, the predicted sur-
vival time of LUAD patients was calculated.

We further verified the accuracy of the nomogram 
by applying the model using the C-statistic, calibration 
curve and time-dependent ROC curve. Meanwhile, the 
nomogram model was calibrated to predict the proxim-
ity between the predicted survival and the actual result 
numerically. The Hosmer–Lemeshow (H–L) test was 
performed by dividing data into 3 ascending ordered 
groups (tertiles) based on the predicted result obtained 
from the model, thus testing the goodness of fit for the 
χ2 test. Furthermore, the average predicted survival was 
compared with the actual event rate estimated using the 
Kaplan–Meier method.

The enrichment analysis of DEGs function 
and the enrichment score of immune gene set
DEGs between high-risk groups and low-risk groups 
divided by risk scores were obtained. Subsequently, 
enrichment analysis of gene ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways 
of DEGs were analyzed using the clusterprofiler package 
in R [19].

The single-sample gene set enrichment analysis 
(ssGSEA) on 29 immune gene sets [20] involving 16 
immune cells and 13 immune-related activation path-
ways was performed using the gsva package in R [21] 
(Additional file 6: Table S2). The degree of immune infil-
tration of each sample was recorded.

Statistical analysis
The sample function in R was used to perform the ran-
dom stratified sampling. Meanwhile, the heatmap of 
DEGs and SNV mutation landscape were respectively 
depicted by the pheatmap and maftools packages in 
R [22]. Wilcoxon-test was used to test the difference 
between groups of the boxplot. Kaplan–Meier survival 
curve was depicted for assessing the prognostic poten-
tial, followed by the log-rank test to compare the dif-
ference between curves. The R software (Version 3.6.0) 
was used for all statistical analyses. The flowchart of 
this study was shown in Fig. 1.

Results
Identifying prognosis‑ related DEGs that were associated 
with ferroptosis
The downloaded LUAD dataset contained 533 LUAD 
specimens and 59 paracancerous ones. Among them, 
502 LUAD cases had clinical information of the over-
all survival (Table  1). Besides, the DESeq2 package 
was used to analyze the mRNA expression data of the 
original counts for obtaining DEGs (FDR < 0.05). The 
acquired DEGs were sorted according to the value of 
log2 fold change, and they were displayed by depict-
ing the heatmap (Fig.  2a). Univariate Cox regression 
analysis revealed that among the 60 ferroptosis-related 
genes, 11 were significantly correlated to the prognosis 
of LUAD (adj p < 0.05). Taking the intersection of the 
11 genes and DEGs, it is obviously shown that the for-
mer ones were differentially expressed between LUAD 
and paracancerous specimens. In addition, the results 
of Cox regression analysis were depicted in the forest 
plots (Fig. 2b).

Fig. 1  Flow chart of the entire study
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The multi‑gene prognostic model in the training set
We randomly stratified LUAD patients according to 
their tumor stage and divided them into the training 
set (n = 251) and validation set (n = 251). Meanwhile, 
LASSO-Cox regression analysis of the above-men-
tioned set was performed to identify prognosis-related 
genes that were correlated to ferroptosis (Fig.  3a, b). 
The results revealed that a total of 5 genes conformed 
to the pH-partition hypothesis (Additional file  1: Fig-
ure S1) and the collinearity test (correlation coeffi-
cient less than 0.5) (Fig.  3c), namely the ACSL4, GSS, 
ACSL3, PEBP1 and PGD genes. Through plotting the 
forest plots of them, it is disclosed that the ACSL4 (adj 
P < 0.05), GSS, ACSL3 and PGD genes were the risk fac-
tors for the prognosis of LUAD, while the PEBP1 gene 
was a protective factor (adj P < 0.05) (Fig.  3d). Further-
more, LUAD patients were subgrouped based on the 
expression level of the 5 identified genes, and the corre-
sponding Kaplan–Meier survival curves were displayed 
in Fig.  4. Besides, the threshold of the expression level 
of each gene was calculated by the surv_cutpoint func-
tion from the survminer R package (Additional file  2: 
Figure S2). We subsequently calculated the risk score 
of each sample based on the modeling results using 
the following formula: Risk score = 0.2226 × expres-
sion level of ACSL4 + 0.2373 × expression level 
of GSS + 0.4369 × expression level of ACSL3—
0.4417 × expression level of PEBP1 + 0.1431 × expres-
sion level of PGD. Expression level of each gene was 
normalized. LUAD patients were further divided into the 
high-risk group and low-risk group based on the indi-
vidualized risk score. The grouped threshold was deter-
mined by the median value of the risk score of all LUAD 
patients in the training set, the median of which was 6.64. 
Kaplan–Meier survival curves based on the overall sur-
vival calculated using the KM algorithm have indicated 
that LUAD patients in the high-risk group had a worse 
survival than that of the low-risk group (p = 0.0041). 
Later, the predictive potential of the risk score model in 
LUAD was assessed by depicting the ROC curve, and the 
highest AUC was 0.7 (Fig. 5a).

Verification of the prognostic model
To determine the reliability of the established model 
and the predictive accuracy, results obtained from the 
prognostic model were validated in the verification 
set. Similarly, risk scores in the validation set, and sub-
group classification of LUAD patients into the high-
risk group and low-risk group with the same threshold 
(cut-off = 6.64) were conducted. Moreover, the survival 
status of LUAD patients in the validation set was esti-
mated using the KM algorithm, followed by plotting the 

Table 1  Clinical characteristics of LUAD patients

Clinical characteristics of LUAD patients

Training set Validate set

No. of patient 251 251

Age (mean (SD)) 64.57 (10.05) 65.86 (10.04)

Gender (%)

 Male 123 (49.0) 109 (43.4)

 Female 128 (51.0) 142 (56.6)

Stage (%)

 Stage I 1 (0.4) 4 (1.6)

 Stage IA 73 (29.4) 57 (23.2)

 Stage IB 63 (25.4) 72 (29.3)

 Stage II 1 (0.4) 0 (0.0)

 Stage IIA 22 ( 8.9) 28 (11.4)

 Stage IIB 37 (14.9) 31 (12.6)

 Stage IIIA 35 (14.1) 35 (14.2)

 Stage IIIB 3 ( 1.2) 7 (2.8)

 Stage IV 13 ( 5.2) 12 (4.9)

Pathologic T (%)

 T1 38 (15.1) 27 (10.8)

 T1a 29 (11.6) 19 (7.6)

 T1b 24 (9.6) 31 (12.4)

 T2 78 (31.1) 82 (32.7)

 T2a 40 (15.9) 41 (16.3)

 T2b 11 (4.4) 16 (6.4)

 T3 23 (9.2) 22 (8.8)

 T4 7 (2.8) 11 (4.4)

 TX 1 (0.4) 2 (0.8)

Pathologic N (%)

 N0 164 (65.3) 162 (64.8)

 N1 47 (18.7) 47 (18.8)

 N2 32 (12.7) 37 (14.8)

 N3 1 (0.4) 1 (0.4)

 NX 7 (2.8) 3 (1.2)

Pathologic M (%)

 M0 160 (64.3) 174 69.9)

 M1 7 (2.8) 10 (4.0)

 M1a 1 (0.4) 1 (0.4)

 M1b 4 (1.6) 1 (0.4)

 MX 77 (30.9) 63 (25.3)

Vital status = Dead (%) 92 (36.7) 90 (35.9)

Race (%)

 American indian or alaska native 1 (0.4) 0 (0.0)

 Asian 4 (1.6) 3 (1.2)

 Black or african american 26 (10.4) 26 (10.4)

 Not reported 26 (10.4) 28 (11.2)

 White 194 (77.3) 194 (77.3)

Smoke_history = Yes (%) 88 (35.1) 99 (39.4)

OS time (mean) 890.17 926.26
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survival curve. It is consistently shown that the prognosis 
of LUAD patients in the high-risk group was significantly 
worse than that of the low-risk group (p = 0.00042), and 
the maximum AUC was 0.69 (Fig. 5b). Finally, we com-
bined the training and validation set, calculated the risk 
score of the 502 patients according to the similar mod-
els, and performed survival analysis and plotted the 
survival curves of the high-risk group (n = 257) and low-
risk group (n = 245) using the same threshold (Fig.  5c). 
As expected, LUAD patients in the high-risk group 

presented a worse prognosis (p < 0.0001), and the maxi-
mum AUC was 0.69.

Construction and verification of the composite nomogram 
combining clinical information
To better apply the model to the actual clinical situa-
tion, clinical features of LUAD patients were introduced 
into the evaluations of the model and thus a composite 
nomogram to predict the survival probabilities of LUAD 
patients was constructed. By introducing the age, gender, 
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tumor stage (I/II vs III/IV) and risk score as variables in 
the multivariate Cox regression analysis, and incorporat-
ing the above factors into the model as variables, a nomo-
gram was obtained (Fig. 6a), in which, the line segment 
corresponding to each variable was marked with a scale 
that represented the value range of the variable, and the 
length of the line segment reflected the contribution of 
the factor to survival. The points in the nomogram rep-
resented the individual scores corresponding to each 
variable under different values and total points. The cor-
responding individual scores after introducing all the var-
iables were summed to produce the total score. The last 
three lines represented the total score of 1-year, 3-year 
and 5-year survival rate. To verify the prognostic value 

of the nomogram model, the predictive ability of the 
nomogram was evaluated by tROC, and the AUC corre-
sponding to 1-year, 3-year and 5-year survival was 0.698, 
0.718 and 0.731, respectively (Fig.  6b). The prediction 
result of the C statistics on the nomogram model was 
0.677 (95%CI, 0.633–0.721). The check chart indicated a 
good agreement between the predicted and actual results 
(Fig. 6c).

SNV mutation landscape variation between the high‑risk 
group and low‑risk group
We downloaded the SNV data of 502 LUAD patients, and 
subgrouped based on the risk score. Each figure of the 
mutation landscape indicated the top 20 genes with the 
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highest mutation frequency, and their mutations types 
were labeled with different colors (Fig. 7). The upper and 
right bar graph represented the total number of muta-
tions in each sample, and the mutation frequency of each 
gene in all samples. It is revealed that genes with a higher 
mutation frequency in the high-risk group were consist-
ent with those in the low-risk group, while their mutation 
frequencies were higher in the high-risk group [TP53 
(53%), TTN (50%), MUC16 (42%), CSMD3 (40%), and 
RYR2 (39%)].

The GO and KEGG enrichment analysis
To further explore the differences in biological func-
tions and pathways between the high-risk group and 
low-risk group, the DESeq2 package was used to ana-
lyze expression levels of DEGs between the high-risk 
group and low-risk group (logFC > 1, FDR < 0.05). DEGs 
screened out from both groups were later subjected 
to GO and KEGG enrichment analysis. The results of 
pathway enrichment and GO enrichment were shown 
in Fig.  8, and Additional file  7, 8:  Table  S3–S4. It is 
shown multiple pathways were enriched in the metabo-
lism. In detail, the mainly enriched pathways included 
the neuroactive ligand-receptor interaction, metabo-
lism of xenobiotics by cytochrome P450, steroid hor-
mone biosynthesis, staphylococcus aureus infection 
pathway, IL-17 signaling pathway, retinol metabolic 
pathway, etc. The results of GO enrichment showed 
that the biological functions and processes of DEGs 

were mainly enriched in the keratinization, axoneme 
assembly, and microtubule bundle formation. Enrich-
ment results could support the reasons for the varia-
tions in the prognosis of LUAD from a functional level. 
Moreover, some pathways and functions were identified 
closely correlated to ferroptosis or iron metabolism, 
which provided references for further research.

The correlation between risk score and immune status 
in LUAD
According to the threshold of risk score, the correlation 
between risk score and immune status in LUAD patients 
was further explored. We obtained a total of 29 immune-
related gene sets involving multiple immune cells and 
immune-related functions or pathways. To quantify 
the enrichment degree of transcriptome data in the 29 
immune gene sets, separate enrichment scores for each 
paring of a sample between the high-risk risk and low-
risk group were estimated by the ssGSEA and compared 
by depicting a boxplot (Fig.  9). The enrichment scores 
of concentrations of immune cell genes in aDCs, iDCs, 
B-cells, mast cells, neutrophils, NK cells, T helper cells, 
Th2 cells and TIL were significantly different between the 
high-risk group and low-risk group (p < 0.05). Besides, 
the enrichment scores of these immune function gene 
sets in HLA, inflammation promoting, MHC class I, T 
cell co-stimulation and type II IFN response were also 
significantly different between groups (p < 0.05).
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Discussion
The current study systematically identified the correla-
tion between 60 ferroptosis-related genes and the prog-
nosis (overall survival) of LUAD. In this study, the LUAD 
dataset was divided into the training set and validation 
set by the random stratified sampling method. The prog-
nostic prediction model involving 5 genes was estab-
lished for the training set samples through the LASSO 
regression with tenfold cross-validation and univariate 
and multivariate Cox regression analysis, which was vali-
dated in the actual clinical practice.

Previous evidences have confirmed the vital functions 
of ferroptosis-related genes in the entire ferroptosis 
process. Nevertheless, the specific influence of a single 

ferroptosis-related gene on the prognosis of a certain 
type of cancer remains unclear. We combined the 
mRNA expression levels of each gene with actual clini-
cal characteristics to analyze the differential expression 
between LUAD and paracancerous specimens. Moreo-
ver, quantitative data of gene expressions were analyzed 
for their predictive potential in the survival of LUAD. 
Subgrouped by the risk score, identified genes between 
the high-risk group and low-risk group were analyzed 
for their differential variations, biological functions and 
pathways they were mainly enriched in. In conclusion, 
our screened DEGs in LUAD patients may be potential 
targets involved in the occurrence and development of 
LUAD.
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In the constructed predictive model, a total of 5 genes 
(ACSL3, ACSL4, GSS, PEBP1, PGD) were involved in, 
which were closely associated with the process of fer-
roptosis. The ACSL3 gene is responsible for exogenous 
monounsaturated fatty acids to protect cells against fer-
roptosis, and it is negatively correlated with ferroptosis 
sensitivity [23]. The ACSL4 gene is essential for profer-
roptosis. Knockdown of ACSL4 inhibits erastin-induced 
ferroptosis, and its overexpression can restore ferroptosis 

sensitization. Re-expression of flag-tagged human wild-
type (WT) ACSL4 (ACSL4-Flag) in Acsl4 KO (Acsl4−/−) 
Pfa1 cells restores full sensitivity to ferroptosis induc-
tion, and knockdown of it significantly prolongs sur-
vival compared to vehicle-treated mice. Knockout of 
ACSL4 in ferroptosis-sensitive cells protects erastin- and 
RSL3-induced cell death [24], 25. The GSS gene pro-
vides instructions for making glutathione synthetase. 
The glutathione-dependent lipid hydroperoxidase GPX4 
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contributes to prevent ferroptosis by converting lipid 
hydroperoxides into non-toxic lipid alcohols. Overex-
pression of PEBP1 increases the sensitivity of HK2 cells 
to RSL3, and knockdown of PEBP1 in HAEC and HT22 
cells yields an opposite result [26]. The PGD gene is 
involved in erastin-induced ferroptosis [1].We modeled 
and calculated the corresponding risk score based on the 
expression data of 5 candidate genes, and then divided 
LUAD patients into high-risk group and low-risk group. 
Our established model effectively predicted the sur-
vival of LUAD patients in the training set, the validation 
set and the total cases. Meanwhile, the gender, age, and 
tumor stage of LUAD patients were taken into considera-
tion, and thus a composite nomogram was established, 
which was much closer to the actual clinical practice. 

Among them, the gender and age of LUAD patients had 
relatively a small effect on the prognosis, whereas the 
tumor staging and risk score posed a greater one. The 
above results were consistent with our investigation 
expectations.

To explore the factors for the prognosis difference 
between the high-risk group and low-risk group, we 
compared the SNV levels and analyzed the differences in 
biological functions of the two groups. After subgroup-
ing the acquired SNV statistics according to high-risk 
and low-risk scores, the mutation frequency of each gene 
and the number of mutations in each sample were calcu-
lated, which were displayed as the mutation landscape. 
The results revealed that LUAD patients in the high-
risk group presented a higher frequency of each gene 
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mutation. Moreover, the top 5 genes with the highest 
mutation frequency in the high-risk group, involving the 
TP53 (53%), TTN (50%), MUC16 (42%), CSMD3 (40%) 
and RYR2 (39%) genes presented 5–13% higher mutation 
frequency than those in the low-risk group. Calculating 
the mutation frequency easily identified the source of 
the variations between groups. Genomic analyses about 
the prognosis difference between high-risk and low-risk 
LUAD patients need to be performed in the future.

Functional enrichment analysis and immune infil-
tration score on DEGs between the two groups were 

further performed. DEGs were mainly enriched in the 
cytochrome P450, steroid hormones, IL-17 signaling 
pathways, staphylococcus aureus infection pathways, 
etc. The cytochrome P450 oxidoreductase (POR) is nec-
essary for triggering the ferroptosis in cancer cells [27]. 
Moreover, POR boosts the execution of ferroptosis by 
engaging in the peroxidative modification of phospho-
lipids in the cell membrane. PPARα, as a member of the 
steroid hormone receptor superfamily, can inhibit iron 
overload and lead to ferroptosis by combining with the 
GPX4 and facilitating its expression. The preliminary 
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evaluations indicated that the steroid hormones in 
adrenal sebaceous cells are significantly affected by fer-
roptosis induction [28]. Iron plays a crucial role in the 
continuous evolution process for staphylococcus aureus 
by establishing efficient iron transportation systems. 
On the one hand, staphylococcus aureus consumes 
hemoglobin in the red blood cells of the host and serum 
through the transport systems encoded by the iron-
regulated surface determinants located in cell wall. On 
the other hand, it acquires the iron by the siderophores 
with a high affinity for iron. A previous study has shown 
that the reactive oxygen species can result in the drug 
resistance in staphylococcus aureus infection [29]. Pre-
vious GO enrichment revealed that biological functions 
like microtubule bundle formation and keratinization 
are mainly enriched in the iron [30, 31]. Therefore, we 
concluded that the variations in these pathways might 
be the inherent factors for the differences between the 
high-risk group and low-risk group. Our findings pro-
vide theoretical references for underlying the mecha-
nism of ferroptosis in lung cancer patients.

Although constructing a prognostic model is of 
great significance in the TCGA-LUAD cohort, only 
internal verification and overall verification were per-
formed in the verifying process of the model. Specifi-
cally, the external validation set was not included in the 
examination of the final results. In functional analysis, 
enrichment analysis was performed in DEGs between 
the high-risk group and low-risk group, while functions 
of these pathways were not be experimentally verified. 
As a result, we only identified which pathways and 
functions were responsible for triggering the prognosis 
difference in high-risk and low-risk LUAD patients, but 
how they induced it needs to be further explored.

In general, we established a prognostic prediction 
model based on 5 ferroptosis-related genes by analyz-
ing the LUAD dataset. In the training and validation 
set, this model was found effectively predict the overall 
survival of LUAD, and more important, clinical features 
of LUAD patients were taken into consideration, which 
remarkably simulated the actual clinical practice. Our 
findings provided a promising tool in predicting the 
prognosis of LUAD patients, and theoretical references 
for explaining the prognosis difference between high-
risk and low-risk LUAD.

Conclusions
This study constructed a novel LUAD prognosis pre-
diction model based on 5 ferroptosis-related genes, 
which can provide a reliable prognostic evaluation tool 
for clinical practice and assist the clinical therapeutic 
decision.
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