
Harvey et al. BMC Res Notes          (2021) 14:269  
https://doi.org/10.1186/s13104-021-05687-5

DATA NOTE

Genome‑wide transcriptomic analysis 
of the forebrain of postnatal Slc13a4+/− mice
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Abstract 

Objective:  Sulfation is an essential physiological process that regulates the function of a wide array of molecules 
involved in brain development. We have previously shown expression levels for the sulfate transporter Slc13a4 to be 
elevated during postnatal development, and that sulfate accumulation in the brains of Slc13a4+/− mice is reduced, 
suggesting a role for this transporter during this critical window of brain development. In order to understand the 
pathways regulated by cellular sulfation within the brain, we performed a bulk RNA-sequencing analysis of the fore-
brain of postnatal day 20 (P20) Slc13a4 heterozygous mice and wild-type litter mate controls.

Data description:  We performed an RNA transcriptomic based sequencing screen on the whole forebrain from 
Slc13a4+/− and Slc13a4+/+mice at P20. Differential expression analysis revealed 90 differentially regulated genes in 
the forebrain of Slc13a4+/− mice (a p-value of 0.1 was considered as significant). Of these, 55 were upregulated, and 
35 were downregulated in the forebrain of heterozygous mice. Moreover, when we stratified further with a ± 1.2 
fold-change, we observed 38 upregulated, and 16 downregulated genes in the forebrain of heterozygous mice. This 
resource provides a useful tool to interrogate which pathways may require elevated sulfate levels to drive normal 
postnatal development of the brain.
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Objective
Sulfate is an abundant anion in circulation, and its enzy-
matic conjugation (sulfation) to a variety of molecules is 
a biotransformation widely utilised to regulate biological 
activity [1]. Within the developing brain, sulfation reac-
tions alter the functions of extracellular matrix compo-
nents, in turn regulating local growth factor interactions 
critical for neurogenesis or perineuronal net formation 
[2, 3]. Sulfate is also a substrate for brain cerebrosides 
and neurotransmitters [1]. To provide sufficient sulfate 
for these critical sulfation reactions, cells either metabo-
lize sulfur-containing amino acids to release intracellu-
lar sulfate, or uptake inorganic sulfate across the plasma 

membrane via transporters. The maintenance of a low 
ratio of cerebrospinal fluid (CSF)/serum sulfate level 
indicates the selective transport of sulfate to maintain 
brain levels within a tight range [4]. Yet despite its impor-
tance, sulfate levels are not typically measured clinically, 
and therefore the contribution of sulfate deficiencies 
to neurodevelopmental disorders and disease is poorly 
appreciated and understood.

Recently, we reported that haploinsufficiency for the 
sulfate transporter Slc13a4 resulted in abnormal social 
behaviours, memory deficits and altered neurogenesis 
in mice [5, 6]. SLC13A4 is expressed predominantly 
within the choroid plexus and pia mater of the brain, in 
an orientation that suggests a role in transporting sulfate 
from the blood into the CSF [5]. Expression of this trans-
porter therefore appears counter to the notion that sul-
fate is actively pumped out of the CSF [1]. Nevertheless, 
Slc13a4+/− mice, when injected systemically through 
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the tail vein, accumulate ~ 50% less radiolabelled sulfate 
within their brains than do Slc13a4+/+ mice [5]. Fitting 
with the model of active transport of sulfate out of the 
CSF, SLC13A4 activity is not essential for adult brain 
function, as conditional deletion of Slc13a4 in adult mice 
does not result in the onset of cellular or behavioural phe-
notypes. However, deletion of one Slc13a4 allele in early 
postnatal development does result in the onset of abnor-
mal social behaviours, memory deficits and increased 
neurogenesis, suggesting elevated sulfate transport into 
the brain is critical during early developmental stages 
of brain formation [5]. Indeed, gene expression analysis 
indicates that expression of multiple sulfate transport-
ers peak in postnatal mouse development [5], implying a 
critical role for sulfate availability and metabolism during 
this developmental window. In line with this, newborn 
humans have higher serum sulfate levels than children at 
3-years of age or adults [7].

The question remains: what critical pathways require 
elevated sulfate availability during the postnatal period 
for normal brain development? To address this ques-
tion, we have undertaken an unbiased RNA-Seq screen to 
compare the transcriptome of the forebrain of Slc13a4+/− 
mice to control Slc13a4−/− littermates at postnatal day 
20.

Data description
The rationale behind this profiling experiment was to 
understand the differential gene expression that arise 
during postnatal development in the mouse forebrain 
when one allele of Slc13a4 gene is absent. To do this, 
Slc13a4+/− mice and control wild-type littermates were 
used. These mice were maintained on a C57BL6 back-
ground. To generate Slc13a4+/− mice, Slc13a4+/− male 
mice were crossed to wild-type female mice. Polymerase 
chain reaction (PCR) was used to identify the genotype 
of the offspring (PCR primers are available on request). 
P20 Slc13a4+/− and control mice were cervically dislo-
cated and whole brains were removed and placed on ice. 
The forebrain was isolated and snap frozen using dry ice. 
An RNeasy Micro Kit (QIAGEN) was used to extract 
total RNA from these samples, and 5–10  μg RNA in a 
total volume of 20 μl was sent to the Institute for Molecu-
lar Biosciences Sequencing Facility (The University of 
Queensland). The sequencing facility assessed sample 
quality using a Bioanalyzer. All samples passed the qual-
ity control with an RNA integrity number > 8. A second 
analysis was performed to measure the purity of the RNA 
using a spectrophotometer to determine the OD 260/280 
ratio; all samples had values ~ 2.

RNA-Seq libraries were prepared using the Illumina 
TruSeq Stranded Total RNA LT (Ribo-Zero Gold) Sam-
ple Prep Kit (Illumina, RS-122-2301/RS-122-2302), 

according to the standard manufacturer’s protocol (Illu-
mina, 15031048 Rev. E October 2013) described briefly 
as follows. To enrich for mRNA, 1 µg of total RNA was 
depleted of rRNA using Ribo-Zero Gold. The enriched 
mRNA was then subjected to a heat fragmentation step 
aimed at producing fragments between 130 and 290 
base pairs (average 185 base pairs). cDNA was synthe-
sised from the fragmented RNA using SuperScript II 
Reverse Transcriptase (Invitrogen, 18064014) and ran-
dom primers. The resulting cDNA was converted into 
dsDNA in the presence of dUTP to prevent subsequent 
amplification of the second strand and thus maintaining 
the ‘strandedness’ of the library. Following 3’ adenylation 
and adaptor ligation, libraries were subjected to 15 cycles 
of PCR to produce libraries ready for sequencing. The 
libraries were quantified on the Perkin Elmer LabChip 
GX with the DNA High Sensitivity Reagent kit (Perkin 
Elmer, CLS760672). Libraries were pooled in equimolar 
ratios, and the pool was quantified by qPCR using the 
KAPA Library Quantification Kit—Illumina/Universal 
(KAPA Biosystems, KK4824) in combination with the 
Life Technologies Viia 7 real time PCR instrument.

Bulk RNA-sequencing was performed using the Illu-
mina NextSeq500 (NextSeq control software v2.1.0/Real 
Time Analysis v2.4.11). The library pool was diluted and 
denatured according to the standard NextSeq proto-
col (Document # 15048776 v02) and sequenced to gen-
erate paired-end 76 base pair reads using a 150 cycle 
NextSeq500/550 High Output reagent Kit v2 (Illumina, 
FC-404-2002). After sequencing, fastq files were gener-
ated using the bcl2fastq2 (v2.18.0, demultiplexed option 
used, available from Illumina) and received from the 
Institute for Molecular Bioscience Sequencing Facil-
ity (University of Queensland). Salmon (v1.2.0; vali-
date mappings and gcBias options used) [8] was used 
for quantifying transcript abundance. The count data 
was loaded into R (v4.0.3) using tximeta (v1.8.3; default 
import option used) [9]. Differential gene expression 
analysis between Slc13a4+/− and wild-type samples was 
carried out in R using the DeSeq2 pipeline (v1.30.0; esti-
mate size factors and walt test options used) [10]. Gene 
expression levels between Slc13a4+/− and wild-type sam-
ples were compared using Wald test as implemented in 
the DESeq2 pipeline. p-values were corrected using Ben-
jamini–Hochberg adjustment. A statistically significant 
difference in gene expression between cohorts was rep-
resented by an adjusted p-value < 0.1. Furthermore, to 
stratify differentially expressed transcripts, a fold change 
cut-off of >  ± 1.2 was employed.

The data repositories where the work presented in this 
manuscript can be found are listed in Table  1. The raw 
sequencing files have also been lodged, and are avail-
able at GEO (Data set 1) [11]. Differential gene analysis 
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revealed 90 differentially regulated genes in the forebrain 
of Slc13a4+/− mice (Data file 2) [12]. Of these, 55 were 
upregulated, and 35 were down downregulated in com-
parison to controls (Data file 3) [13].

Limitations
This work complements our previously published work 
[5, 6] adding to our understanding of the critical path-
ways required during the postnatal period for normal 
brain development. Moreover we have attempted to 
identify those pathways functioning in the presence of 
elevated sulfate levels during this critical window dem-
onstrating an important role for this sulfate transporter 
SLC13A4 in regulating brain development. There are a 
number of limitations to this work, however. Firstly our 
analysis of the transcriptomic changes in the forebrain of 
Slc13a4+/− was only conducted at one postnatal age P20. 
Investigating consecutive ages during the early develop-
mental window would provide further context around 
the genetic landscape that requires elevated sulfate levels 
for brain genesis. In turn, this could highlight common 
genes/pathways that may be essential drivers of normal 
brain development throughout this period. Secondly, 
although the expression of SLC13A4 is predominantly 
within the choroid plexus and pia mater of the forebrain 
at this age [5], our design was not based on a cell spe-
cific approach. Performing single cell RNA-sequencing in 
future could circumvent this limitation to pinpoint at a 
cell specific level the gene requirements for elevated sul-
fate levels to maintain normal brain development over 
the postnatal period.

Abbreviations
SLC13A4: Solute Carrier Family 13 (Sodium/Sulphate Symporters) Member 4; 
RNA-Seq: RNA-Sequencing; P: Postnatal day; PCR: Polymerase chain reaction.
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