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Artificial intelligence has underdelivered in improving health care. In 1970, a New England 
Journal of Medicine Special Article projected that computer science would augment or 

replace many intellectual functions of physicians.(1) Over the past 50 years, surgical 

literature has been similarly optimistic despite a paucity of high-level supporting evidence. 

The corresponding author may be guilty of perpetuating this disproportionate optimism. 

This article seeks to balance the discussion surrounding artificial intelligence in surgical 

decision-making by describing major barriers and potential solutions toward safe, effective 

clinical adoption of artificial intelligence-enabled decision-support platforms in surgery.

Artificial intelligence decision-support in surgery has largely failed to emerge from the 

valley of death: the chasm between model development and effective, real-world 

implementation. Medical knowledge is projected to double every 73 days; artificial 

intelligence is lauded for its ability to produce and operationalize medical knowledge by 

parsing large datasets and generating clinically useful predictions and classifications. 

Investigators are racing to produce artificial intelligence-enabled clinical decision-support 

tools, but few are implemented clinically, and even fewer change health care delivery or 

human behavior.(2, 3) Experienced surgeons are appropriately wary of hyped, novel 

solutions that are unsubstantiated by academic rigor and evidence of performance 

advantages in clinical settings. Even when intelligent algorithms accurately predict salient 

clinical outcomes hours or days in advance, these predictions will remain ineffectual unless 

they 1) establish trust in their accuracy, 2) target risk-sensitive decisions, and 3) integrate 

with clinical workflows. The purpose of this article is to describe mechanisms for bridging 

the artificial intelligence valley of death toward improved surgical care, as illustrated in 

Figure 1.

Building Accurate, Trustworthy Models

Surgical literature regarding artificial intelligence decision-support focuses almost 

exclusively on predictive accuracy, typically using single-institution data for model training 
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and validation. Regrettably, direct comparisons between models are often hindered by 

heterogeneity in study design, patient populations, prediction windows, and performance 

metrics; adherence to reporting guidelines can address these challenges (e.g., SPIRIT-AI 

[Standard Protocol Items: Recommendations for Interventional Trials-Artificial 

Intelligence], CONSORT-AI [Consolidated Standards of Reporting Trials-Artificial 

Intelligence]). Most published literature does not compare model predictions with clinician 

predictions, but when they do, clinicians typically exhibit variable performance, while 

artificial intelligence models provide greater consistency and accuracy in risk assessments.

(4, 5) By complying with reporting guidelines and making real-world comparisons between 

model and clinician predictions, it may be possible to improve the predictive performance of 

artificial intelligence decision-support in surgery. It is equally important to ensure that model 

outputs are trustworthy.

“Black box” algorithms must earn the trust of patients, clinicians, and investigators. This can 

be accomplished with model interpretation mechanisms that convey the relative importance 

or weight of input variables in determining outputs, thus indicating how and why predictions 

were made. Trust is also built by validating models externally and prospectively. External 

validation is facilitated by common data models that map similar variables from different 

institutions onto a single, interoperable scheme. Prominent examples include the open-

source OMOP (Observational Medical Outcomes Partnership) common data model and the 

Fast Healthcare Interoperability Resource. Despite best intentions to maintain security in 

sharing data across institutions, all methods of data sharing risk privacy leakage and 

unintended discovery of protected health information. Alternatively, collaborative modeling 

without data sharing can be accomplished via federated learning, in which local models train 

separately and send gradients or coefficients to a global model. This approach optimizes data 

security and ensures generalizability across participating institutions.

Targeting Risk-sensitive Decisions

Model predictions are more likely to change patient and provider behavior when the risks 

and benefits of treatment options are complex, difficult to estimate, and evenly matched. For 

example, there is relative clinical equipoise in the decision for antibiotics alone versus 

operative source control of sepsis for an elderly patient with multiple comorbidities and non-

perforated appendicitis with extensive peri-cecal inflammation. The morbidity of a 

laparoscopic appendectomy is relatively low but appendectomy may not be feasible in the 

setting of extensive peri-cecal inflammation, the morbidity of an open ileocecectomy is 

substantially higher, and the morbidity of failed non-operative management resulting in 

appendiceal perforation and abscess formation is also high. In this scenario, a model that 

accurately predicts outcomes for operative versus nonoperative management could 

meaningfully affect decision-making by providing the patient and surgeon with objectivity 

in the face of uncertainty.

Integrating with Clinical Workflows

Clinical application of artificial intelligence-enabled decision-support in surgery should 

occur only when there is adequate evidence of its safety and efficacy. This could be 
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accomplished by subjecting the algorithms to technology readiness level assessments, 

similar to those adopted by the American National Aeronautics and Space Administration 

(NASA) after the space shuttle Challenger tragedy.(6) It is also necessary to estimate 

deployment costs, or the organizational effort and resources required for clinical 

implementation. Deployment costs, though difficult to estimate and rarely reported, tend to 

be low when a model improves efficiency for a single, digital workflow, and high when the 

model affects multiple, non-digital workflows without a clear improvement in efficiency.(7)

When the technology is ready for implementation and deployment costs are low, artificial 

intelligence decision-support can yield impressive results, as demonstrated in randomized 

trials. Wijnberge et al.(8, 9) used an artificial intelligence algorithm to predict intraoperative 

hypotension, prompting Anesthesiologists to act early, more often, and differently, resulting 

in fewer intraoperative hypotensive episodes and less time-weighted hypotension. 

Shimabukuro et al.(10) deployed a machine-learning based sepsis prediction tool in medical-

surgical ICUs, leading to shorter length of stay and decreased in-hospital mortality. Outside 

of clinical trial settings, successful implementation of artificial intelligence-enabled decision 

support requires not only integration with standard, digital workflows but defining and 

expanding the role of these workflows in surgical care.(11) Ideally, these algorithms would 

receive real-time electronic health record data inputs, including intraoperative data, and 

generate alerts and orders in an automated fashion.(12, 13)

Summary and Future Directions

If artificial intelligence-enabled decision support is to cross the valley of death and improve 

the lives of surgical patients and their caregivers, models must change human behavior and 

yield improved outcomes that outweigh model deployment costs. These goals are achievable 

by building accurate, reproducible models that target risk-sensitive decisions and integrate 

with digital workflows. Surgeons have a long, proud history of innovation and adoption of 

new technologies that offer performance advantages. Artificial intelligence in surgical 

decision-making must evolve and improve to earn its place in surgical care.
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Figure 1: 
To improve surgical care, artificial intelligence (AI)-enabled decision-support must 

overcome mistrust, low-utility predictions, and clinical time constraints.
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