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Abstract

Objective: In machine learning, it is evident that the classification of the task performance 

increases if bootstrap aggregation (bagging) is applied. However, the bagging of deep neural 

networks takes tremendous amounts of computational resources and training time. The research 

question that we aimed to answer in this research is whether we could achieve higher task 

performance scores and accelerate the training by dividing a problem into sub-problems.

Materials and Methods: The data used in this study consist of free text from electronic cancer 

pathology reports. We applied bagging and partitioned data training using Multi-Task 
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Convolutional Neural Network (MT-CNN) and Multi-Task Hierarchical Convolutional Attention 

Network (MT-HCAN) classifiers. We split a big problem into 20 sub-problems, resampled the 

training cases 2,000 times, and trained the deep learning model for each bootstrap sample and each 

sub-problem—thus, generating up to 40,000 models. We performed the training of many models 

concurrently in a high-performance computing environment at Oak Ridge National Laboratory 

(ORNL).

Results: We demonstrated that aggregation of the models improves task performance compared 

with the single-model approach, which is consistent with other research studies; and we 

demonstrated that the two proposed partitioned bagging methods achieved higher classification 

accuracy scores on four tasks. Notably, the improvements were significant for the extraction of 

cancer histology data, which had more than 500 class labels in the task; these results show that 

data partition may alleviate the complexity of the task. On the contrary, the methods did not 

achieve superior scores for the tasks of site and subsite classification. Intrinsically, since data 

partitioning was based on the primary cancer site, the accuracy depended on the determination of 

the partitions, which needs further investigation and improvement.

Conclusion: Results in this research demonstrate that 1. The data partitioning and bagging 

strategy achieved higher performance scores. 2. We achieved faster training leveraged by the high-

performance Summit supercomputer at ORNL.
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Bootstrap aggregation; Data partitioning; Natural language processing; Convolutional neural 
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1. Introduction

Cancer constitutes a major public health concern, and its impact upon society cannot be 

overestimated. In 2018, global cancer statistics roughly calculated that every year, about 3.8 

million and 18.1 million people are diagnosed with cancers in the United States and across 

the world, respectively [1]. Accurate, timely, and comprehensive cancer surveillance are 

critical tasks, not only for assessing the world’s progress in the war against cancer, but also, 

for guiding the development of effective population cancer control policies and 

interventions.

Population-based cancer registries in the United States of America provide a reliable 

surveillance source because they collect case-level data from regional sources like hospitals, 

doctors’ offices, and diagnostic laboratories. To obtain timely, complete, and accurate data, 

cancer registries rely heavily on pathology reports received from those institutions to record 

histological evidence and the characteristics of the detected cancers, such as tumor type, 

histology, grade, stage at diagnosis, and type of surgery received. Such critical information 

resides in narrative text that not only is ungrammatical, fragmented, and marred with typos 

and abbreviations, but also exhibits tremendous linguistic variability even when pathologists 

are describing the same cancer type. Some samples can be found at [2–4].

Because of these challenges, information extraction from unstructured pathology reports still 

constitutes a heavily manual effort performed, by trained cancer abstractors/registrars, to 
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ensure high quality in the extracted information. However, with the growing complexity of 

cancer diagnoses, treatments, and key features such as biomarkers, cancer registries face 

challenges in scaling the manual effort to handle the rapidly increasing volumes of clinical 

reports that must be processed and the amount of essential information that needs to be 

captured per report [5]. Professional organizations and researchers are aware of these 

challenges. Currently, several clinical language processing and deep learning (DL) research 

efforts are under way to provide solutions to automate, simplify, and improve this complex 

task [6].

We studied and presented novel machine learning (ML) and DL-based approaches for 

extracting information by designing and training classifiers to read, extract features, and 

understand the contents of the documents in a clinical corpus [7–10]. Those studies 

demonstrated that artificial intelligence (AI) is an effective means of carrying out such tasks.

Bootstrap aggregation (bagging) is an ML algorithm for obtaining an ensemble of models 

trained by resampled cases so as to achieve stability and avoid overfitting of models and thus 

boosting the task performance score. However, previous work [7,9] has shown that training 

such DL models with a large-volume training corpus takes both time and powerful hardware 

accelerators, which makes it challenging to apply bagging to DL models.

In this work, we address those challenges by experimenting with a data partitioning method 

along with bagging, wherein the partitions are determined based on primary cancer site 

categories. By doing so, the original scientific contributions we present in this paper are the 

following: 1. We reduced the training time of the DL models and mitigated the complexity 

of the information extraction tasks. 2. We demonstrate that bagging and partitioned data 

training with Multi-Task Convolutional Neural Network (MT-CNN) and Multi-Task 

Hierarchical Convolutional Attention Network (MT-HCAN) classifiers improve accuracy 

and classification performance. 3. Our results demonstrate that the use of high-performance 

computing decreased the time to build the bagging classifier and that the partitioned bagging 

model is well-suited for HPCs and supercomputers.

This paper is organized as follows. Section 2 presents an overview of related work. Section 3 

describes the data, methods, and approach. Section 4 presents our experimental results, the 

verification process, a discussion of our approach, pros and cons, and possible 

improvements. The conclusion is presented in Section 5.

2. Related work

Bagging [11] has been adopted to improve performance and accuracy during classification 

in DL applied to different types of data. It is often used either as part of an ensemble of 

classifiers or alone. Examples of the diversity of its application include the following: multi-

view vehicle surveillance [12], credit-risk management of payment data [13], online visual 

tracking [14], sentiment analysis [15], detection of artistic styles in painting [16], crude oil 

price forecasting [17], pattern recognition for binary classifiers [18], optimization of 

ensemble strategies for convolutional neural networks (CNNs) [19], and denoising of auto-

encoding-based deep neural networks [20], to name a few.
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Specifically, in published DL studies of health care data, bagging has been applied 

successfully to improve classification performance for imaging, electroencephalogram 

(EEG) signals and other areas, examples include the following:

• Studies applied to imaging include the estimation of glomerular filtration rates 

and chronic kidney disease [21], an automated detection of metastates in 

hematoxylin and eosin-stained whole-slide images of lymph node sections [22], 

the classification of prostate cancer lesions using 3D multiparametric magnetic 

resonance imaging data [23], implementation of an augmented image-enhanced 

bagging ensemble learning to tackle challenges in deficiency training samples 

and minor visual differences [24], and classification of histopathological biopsy 

images [25].

• Studies applied to electroencephalogram (EEG) signals include: epileptic seizure 

detection using EEG signals [26], emotion recognition in the human brain using 

feature selection of EEG signals [27].

• Other health care related studies include: the development of an enhanced 

implementation of bagging for the prediction and analysis of heart disease [28], 

the use of bagging for feature reduction for in-silico drug design [29], 

identification of personalized medicine problems in an outcome-weighted 

learning framework [30], the study of human activity recognition in a smart 

health-care environment that monitors patients using wearable sensor technology 

[31].

All of these studies reported performance improvements by using bagging in their 

approaches.

However, none of the examples cited mentioned the application of bagging in health care 

data within a high-performance computing (HPC) environment. A recent mini-track for Big-

Data on Health Care Applications, the proceedings of the 53rd Hawaii International 

Conference on System Sciences [32], compiles six papers [33–38], two of which described 

the use of bootstrap training to analyze big health care data [37,38] Buettner et al. developed 

ensemble approaches that include the utilization of random forests to study the data 

frequencies of EEG recording snippets to accurately diagnose sleep disorders and 

schizophrenia, respectively. Other models published recently that are related to natural 

language processing applied to biomedical data in HPC are ClinicalXLNet [39], ClinicalBert 

[40], and BioBERT, [41]. ClinicalXLNet, ClinicalBert, and BioBERT based their models on 

XLNet and BERT over a training layer based on specific bioclinical corpora. These models 

have demonstrated improvements in biomedical text mining, modeling, and prediction 

accuracy.

In an attempt to boost and advance insights, we conducted a study with the objectives of 

documenting our results and observations related to task performance scores and 

accelerating training time by dividing a problem into sub-problems using the Summit 

supercomputer at the Oak Ridge Leadership Computing Facility (OLCF).
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3. Materials and methods

3.1. Datasets

The dataset for this study consists of unstructured text in pathology reports from four cancer 

registries: the Louisiana Tumor Registry (LTR), Kentucky Cancer Registry (KCR), Utah 

Cancer Registry (UCR), and New Jersey State Cancer Registry (NJSCR). These registries 

belong to the National Cancer Institute’s (NCI) Surveillance, Epidemiology, and End 

Results (SEER) program. The study was executed in accordance with the institutional 

review board protocol DOE000152.

Certified tumor registrars manually coded the ground truth labels associated with each 

unique case based on free text from the corresponding pathology reports, according to the 

SEER program coding and staging manual. We consider the International Classification of 

Diseases for Oncology, Third Edition (ICD-O-3) coding convention for labeling the cases. 

We extracted the following six data fields from the cancer reports: (1) cancer site (70 

classes), (2) subsite (320 classes), (3) laterality (7 classes), (4) histology (571 classes), (5) 

behavior (4 classes), and (6) tumor grade (9 classes). Table 1 lists the number of pathology 

reports from the four registries. Note that we renamed the registries in the table for security 

purposes.

We chose reports with specimens collected in or after 2017 as testing data, and specimens 

collected in or before 2016 as training data. We randomly selected and reserved 10% of the 

training data for validation of the model training. We determined truth labels of the 

pathology reports based on the Cancer/Tumor/Case (CTC), which stores all diagnostic, 

staging, and treatment data for a reportable neoplasm in the SEER Data Management 

System (SEER*DMS). Note that there are possible differences between the information in 

the cancer pathology reports and CTC because various diagnoses and surgery determine the 

topography, histology, and behavior codes in the CTC. To mitigate the discrepancy, we only 

considered cases for which there was less than a 10-day difference between the date of 

diagnosis and either the specimen collection date or the date of surgery. The 10-day time 

difference was determined based on an analysis of the pathology report submissions. The 

vast majority of reports and addenda fell within that time frame.

We applied standard text preprocessing techniques to clean the corpus, as described in 

previous studies. Cancer pathology reports were represented as one-dimensional vectors of 

word token indices in integer numbers. Different lengths of cancer pathology reports were 

accommodated by specifying a fixed length of L = 1500 words for all reports. Documents 

longer than L were truncated, and documents shorter than L were padded. Note that 95% of 

the pathology reports in our dataset contained fewer than 1500 words.

3.2. Multi-task learning classifiers

Multi-task learning (MTL) is a training mechanism in which one classification model trains 

multiple related tasks simultaneously to leverage knowledge across the tasks. These related 

tasks can be learned using the same or different datasets. MTL was successfully used to train 

a word-level CNN model to simultaneously extract five different data elements from cancer 
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pathology reports. In this approach, each data element of interest was modeled as a separate 

output layer for each task.

3.2.1. Multi-task convolutional neural network—The MT-CNN [10] is an extension 

of the CNN for sentence classification [7,42], tailored to extract information from a cancer 

pathology data corpus. The model consists of three parts: word embedding, 1D convolution, 

and a task-specific fully-connected layer. Word embedding is a learned representation of 

terms to map a set of words onto vectors of numerical values that have the same semantic 

meaning and have a similar observation. The convolution layer has a series of one-

dimensional convolution filters that have latent representations to capture the features from 

the word vectors of documents. These features are passed to the fully connected softmax 

layer to decide on the tasks. We added six independent fully connected layers for extracting 

six tasks. Details of the model and the determination of hyper-parameters can be found at 

[10]. Note that, in our experiments, we did not use word embedding training techniques such 

as word2vec [43]. We recognized that such learned vectors are meant to capture the syntactic 

meaning of the words, but they were not always beneficial to our information extraction 

tasks. Instead, we randomly initialized the word vectors and let the training of the model 

determine the meaningful representations. Source code of the MT-CNN model is available at 

https://github.com/ECP-CANDLE/Benchmarks/tree/master/Pilot3/P3B3.

3.2.2. Multi-task-hierarchical convolutional attention network—The MT-HCAN 

[8,44] is a hierarchical classification model that uses a self-attention mechanism to overcome 

challenges associated with cancer pathology report classification. In the model, document 

embedding is generated in a hierarchical fashion. In the lower level of the hierarchy, we 

considered words composing lines and, in the upper level, lines composing the complete 

document. The decision to separate the document into lines rather than sentences was based 

on the typical syntax of cancer pathology reports, which may employ phrases and non-

standard punctuation in place of complete sentences.

The self-attention mechanism within each level of the hierarchy compares a sequence of 

embeddings with itself to find a relationship between the components of the sequence. For 

the lower hierarchy, line embedding represents the content of each line in terms of the most 

important word embeddings included in that line. Similarly, the upper hierarchy constructs 

document embedding, which represents a complete pathology report based on the line 

embeddings, which are most important in the lower level of the hierarchy. In sum, the 

hierarchical model maintains the crucial advantage of self-attention—being able to find 

relationships among the entries in a sequence regardless of how far apart they are in that 

sequence—while still leveraging the syntactic organization of the document. From this 

shared document embedding, we carried out classification for the six information extraction 

tasks using the multi-task approach network. Fig. 1 illustrates hierarchical structure of 

attention mechanism. Source code of the MT-HCAN model is available at https://

github.com/ECP-CANDLE/Benchmarks/tree/master/Pilot3/P3B4.
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3.3. Data partitioning

Since the amount of the training data increased and the number of tasks and number of 

classes of the task was enormously large (e.g., histology had 300+ labels), the training time 

for the MTL classifiers was significantly longer. Consequently, we proposed a data 

partitioning technique: we split the problem into multiple independent sub-problems, 

developed the classifiers for each sub-problem, and combined answers from the multiple 

classifiers of sub-problems to conclude a final solution. We expected two advantages from 

this approach. First, we could reduce the training time for developing a classification system. 

The size of the training set for each classifier would be decreased by the factor of the 

number of partitions, so we could reduce the time by training multiple classifiers 

simultaneously. Second, since the sub-problems contained fewer class labels of cancer sites 

and subsites, we could mitigate the complexity of problems. However, this approach raised a 

contradiction—somehow, we defeated the purpose of the MTL mechanism, which we 

expected to increase the accuracy and stability of the classifier by introducing multiple tasks 

in a single training to achieve generalizability of the features captured by the DL classifiers. 

We examined how this discrepancy might affect the classification accuracy by a series of 

experiments.

In this study, we applied a simple rule for partitioning data into groups of sub-problems as 

follows: our rule determines group association in incremental order of the cancer main site 

codes, and it settles to keep the number of training samples in the group not to exceed 1/20 

of the training samples’ total number. We divided one problem into 20 sub-problems having 

a similar number of cases per each problem, but we kept the same label for the main cancer 

site in one group; for example, we kept the C50 (breast cancer) cases in one bucket, even 

though the number of C50 cases was greater than the size of the partition. Table 2 lists the 

main site labels for each group and the number of cases of the associated group.

Note that we trained 20 classifiers for 20 groups of sub-problems, so we obtained 20 

answers from the classifiers. Therefore, we needed a way to combine those 20 answers to 

obtain one final answer. We studied two approaches. First, we introduced one preclassifier to 

predict which sub-problem a given case was associated with. We applied a single-task CNN 

with 20 softmax output. This was a straightforward and intuitive approach, but it implied 

that the accuracy of the cancer site classification greatly depended on the quality of the 

preclassifier. Also, to a certain extent, it defeated the purpose of partitioning the data to save 

training time, for training the preclassifier involves the entire dataset, which takes longer 

than training a preclassifier with a sub-problem. Second, we applied an abstention 

mechanism to the sub-problem classifiers. We introduced an “other” class label, which 

consisted of 10,000 randomly selected training cases from other sub-problems. Thus, we 

expected the classifier would predict whether the input sample was associated with the sub-

problem. The class association of the problem is determined by the majority vote of every 

classifier in the model. If the multiple classes received the same amount of votes, we chose 

the class association randomly between the highest votes. The additional “other” class might 

increase the training time of the sub-problem classifiers, but it would increase the time less 

than preparing a preclassifier would.

Yoon et al. Page 7

J Biomed Inform. Author manuscript; available in PMC 2021 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.4. Bootstrap aggregation

Even though bagging has a long history [11], the concept has not been actively applied to 

DL-related training and evaluation, because it requires a tremendous amount of training 

time. We ran the experiments on the Summit supercomputer at the OLCF to accelerate the 

training time by taking advantage of its parallel computing capabilities. Because the training 

of each bootstrap sample is independent, the training of the bagging DL classifier is 

embarrassingly parallel, maximizing the utility of the multi-node, multi-GPU capacity. We 

developed a bagging training workflow under the CANcer Distributed Learning 

Environment (CANDLE) software stack. The fundamental question remains: how many 

bootstrap samples would be sufficient to yield reliable results? We present experimental 

results for this issue in Section 4.2.1.

3.5. Implementation

The MT-CNN classifier was implemented with the Keras and TensorFlow backend, and the 

MT-HCAN classifier was implemented using the TensorFlow platform. Development 

environments and packages are within the IBM Watson Machine Learning (WML) 

framework, the community edition version 1.6.2. Note that the partitioned and tokenized 

pathology report dataset occupied about 300 megabytes (=1500 [number of tokens] × 4 (32-

bit integer[× 50,000 [average number of ePath Report documents]). That size was 

sufficiently handled by the AC922 node on the Summit supercomputer with 512 GB. We set 

the stopping criteria for the classifier training so that it waited for up to ten subsequent 

epochs to evaluate if it approached the minimum validation loss and restored the best model. 

We set the maximum number of iterations for the training classifiers as 100 epochs.

4. Experimental results

We designed a series of experiments for evaluating the feasibility of the bagging technique 

for information extraction tasks based on the DL-based MTL algorithms, demonstrating 

whether data partitioning reduces the training time in HPC environments, and exploring the 

proper way of implementing bagging and data partitioning methods to achieve better 

classification task performance.

4.1. Experimental setup

We examined the following four models described down below. Illustration of those four 

models are in Fig. 2.

4.1.1. Single model—The single model is the traditional approach to MT-CNN and MT-

HCAN classifiers: one model extracts all the tasks and labels. We applied all the training and 

validation samples to train a model. For MT-CNN, an average of 843 s was required for the 

first training epoch, and an average 835 s per epoch for the rest of the training. For MT-

HCAN, 5299.2 s was required for the first epoch and 5294.2 s for the remaining epochs. 

Note that the training and optimization of DL models are stochastic, which implies that 

uncertainty and randomness are involved in the trained model. In this experiment, we 

repeated the training 2000 times and obtained the average scores.
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4.1.2. Bagging model—We performed training of independent MT-CNN and MT-

HCAN models with 2000 bootstrap samples for the training and validation sets. The 

decision was made with an aggregation of decisions from 2000 DL models. We tested three 

options: (1) MT-CNN only, (2) MT-HCAN only, and (3) a combination of MT-CNN and 

MT-HCAN.

4.1.3. Partitioned bagging model A - abstention classifiers—We conducted 

training of 2000 DL models for each data partition. Therefore, we trained up to 40,000 MT-

CNN models and 40,000 MT-HCAN models to set up the bagging model. We introduced an 

abstention mechanism for each model by adding 10,000 samples to a class named “other”, 

which we randomly chose from other partitions. As we did for the bagging model, we tested 

the following: (1) MT-CNN only, (2) MT-HCAN only, and (3) an aggregation of the MT-

CNN and MT-HCAN models.

4.1.4. Partitioned bagging model B - additive preclassification—We included an 

additional bagging CNN model as a preclassification to determine to which data partition the 

given input would be assigned. The preclassifier took 1500 s per epoch for training. It was 

the most expensive model in this study. As before, we also tested (1) MT-CNN, (2) MT-

HCAN, and (3) an aggregation of MT-CNN and MT-HCAN.

4.2. Results

4.2.1. Number of bootstrapping samples—The number of bootstrap samples that is 

sufficient to achieve reliable accuracy is highly dependent on the complexity of the problem 

and the number of training samples; therefore, it was determined by trials. Training the 

models for information extraction for six tasks and many class labels with a 1 million natural 

language text corpus requires several hours with a decent DL accelerator. With NVIDIA’s 

V100 GPU installed on an AC922 node, which is the Summit compute node, an average of 

184 min is required to train a MT-CNN model with one bootstrap sample. Properly choosing 

the number of bootstrap samples is critical to the realization of the bagging classification 

system.

We experimented with various numbers of bootstrap samples and observed micro- and 

macro-averaged F1 scores of the classifications of cancer subsites and histologies from the 

testing sets; micro- and macro-F1 scores are illustrated in Fig. 3. We chose to observe cancer 

subsite and histology out of six tasks because those tasks are the most difficult ones, 

possessing more than 100 class labels. We observed that the F1 scores fluctuated if we 

applied a small number of bootstrap samples, and scores became stable if more than 1000 

bootstrap samples were used. With one exception in Fig. 3(d) MT-CNN histology macro-F1, 

bagging classifiers achieved optimal scores when trained by more than 1000 bootstrap 

samples. Thus we concluded that the application of 2000 bootstrap samples was sufficiently 

stable to achieve optimal clinical task performance scores from all six tasks.

4.2.2. Scalability—As we elaborated in Section 3.5, the training of one MT-CNN model 

or one MT-HCAN model can be done with a single GPU accelerator. The memory 

requirement for holding 1 million electronic pathology reports as a tokenized dataset is 6 GB 
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(= 1500 [length of a document] × 4 [32-bit integer] × 1,000,000). Thus, a tokenized dataset 

can reside in the memory of a Summit compute node; consequently, it does not cause 

overhead to the storage devices, except during the initialization and saving checkpoints for 

each training epoch. This model is appropriate to execute training jobs in an embarrassingly 

parallel manner.

It took 2.32 h to train one MT-CNN classifier. To build up a bagging classifier with 2000 

bootstrap samples, we had to spend 4658 h with one V100 GPU accelerator. However, using 

the Summit supercomputer, which provides 4608 nodes and 27,648 V100 GPUs, we needed 

only 2.32 h to finish training the bagging model. If we divided the training set into 20 sub-

problems, it took only 14 min to finish training a model for one sub-problem; and the total 

training time for the partitioned bagging model took only 30 min. The partitioned bagging 

model is well-suited for HPCs and supercomputers. Table 4 lists the total node hours that we 

consumed to train the models and the actual wall-time hours spent to train the models on the 

Summit supercomputer.

4.2.3. Clinical task performance—Clinical task performance scores in micro- and 

macro-averaged F1 scores are listed in Table 3. The Bagging Model resulted in higher 

performance scores than the single Model in every task, which accords with many studies of 

bagging techniques [16,21,25]. However, the aggregation of MT-CNN and MT-HCAN 

(reported as Combo in Table 3) of the Bagging Model produced little improvement. We also 

observed that, in the Bagging Model, the MT-HCAN classifiers awarded slightly higher 

scores than the MT-CNN ones, but not decisively.

Comparing the Partitioned Bagging Models A and B with the Bagging Model yielded mixed 

results. The MT-CNN’s of Partitioned Bagging Models A and B achieved higher task 

performance scores than MT-CNN’s of the Bagging Model in every task except the main 

cancer site classification. Notably, the substantially higher macro-F1 scores for the subsite 

and histology classifications. This result hints that the data partitioning approach mitigated 

the complexity of the problem, thus helping boost the clinical task performance. However, 

the results from MT-HCAN’s of Partitioned Bagging Models A and B were not higher than 

the MT-HCAN’s from the Bagging Model. That is, the data partitioning approach may not 

have benefited from the richness and generalizability of features, whereas the MT-HCAN 

approach may have taken advantage of those characteristics.

Also, note that the primary cancer site classification scores of the Partitioned Bagging 

Models A and B were substantially lower than those of the Bagging Model. Those results 

were due to the weaker performance of abstention classifiers in the Partitioned Bagging 

Model A and the additive preclassifiers in the Partitioned Bagging Model B, which needs 

further investigation to improve the accuracy. Note also that the aggregation of MT-CNN 

and MT-HCAN classifiers for the Partitioned Bagging Models A and B did not always yield 

higher scores in most cases.

Applying preclassifiers in the Partitioned Bagging Model B resulted in higher primary 

cancer site classification scores than were obtained with the Partitioned Bagging Model A, 

which also resulted in boosting other task performance scores. The results suggest that 
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determining the associated partition is the first and essential step of the partitioned bagging 

classifiers.

5. Conclusions

In this paper, we applied the bootstrap aggregation to the DL models for the information 

extraction tasks with one million cancer pathology reports on HPC systems. We introduced a 

data partitioning scheme to the bagging model to maximize the utility of compute nodes on 

HPC systems, thus reducing the training time required as well as boosting performance. We 

evaluated the feasibility of the proposed system in both scalability and clinical task 

performance. The experimental results demonstrated that the proposed data partitioning 

alleviated the complexity of the information extraction tasks and improved both micro- and 

macro-averaged F1 scores. The bagging model with data partitioning completed the training 

of the model as quickly as or more quickly than the single model did.

Specifically, the classification task of cancer histology is the one that showed superior 

performance by the bagging and the partitioned bagging models. The histology task included 

more than 500 class labels, and many of the labels were underrepresented classes. Data 

partitioning made it possible to divide this single large, imbalanced problem into several 

easier sub-problems. Higher scores on the macro-F1 score are an indication that the model 

was useful in classifying minor labels. Such a trend was consistent with the classification 

tasks of laterality, behavior, and grade.

Relatively low clinical task performances on primary cancer site and subsite classifications 

remain as outstanding research questions. We have experimented with an ensemble of 

models: first, abstention mechanisms, and second, preclassification layers. The former needs 

further investigation to determine an adequate number of samples for the “other” class. 

Intuitively, more samples may result in higher task performance, but they also will increase 

training time, which is not desirable. The latter model scored higher in site and subsite 

classification than did the former, but its scores were nonetheless lower than the scores of 

the standard bagging model. Our next research steps will be the implementation of better 

ensembling of partitioned models; optimal data partitioning for both higher scalability and 

task performance; and evaluation of portability to the next generation of OLCF 

supercomputers, Frontier.
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Fig. 1. 
Architecture of hierarchical convolutional attention network.
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Fig. 2. 
Experimental setup of four models (a) Single Model, (b) Bagging Model, (c) Partitioned 

Bagging Model A - abstention classifiers, and (d) Partitioned Bagging Model B - additive 

preclassification.
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Fig. 3. 
Micro and macro-averaged F1 scores per number of bootstrap samples being aggregated. (a) 

MT-CNN subsite micro-F1, (b) MT-CNN subsite macro-F1, (c) MT-CNN histology micro-

F1, (d) MT-CNN histology macro-F1, (e) MT-HCAN subsite micro-F1, (f) MT-HCAN 

subsite macro-F1, (g) MT-HCAN histology micro-F1, and (h) MT-HCAN histology macro 

F1. Except in (d), we observed that the F1-scores were stable if more than 1000 bootstrap 

samples were applied.
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Table 1

Number of training and test cases of cancer pathology reports from the four SEER registries for which the 

number of days between the specimen collection and diagnosis or surgery dates was less than or equal to 10.

A B C D Total

Train 135,995 87,230 279,222 311,783 814,230

Test 2468 21,594 60,118 53,434 137,614
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Table 3

Classification task performance of the information extraction models: simple model, bagging model, and two 

partitioned bagging models. We adopted both micro- and macro-averaged F1 scores as a performance metric; 

micro F1 weighs on individual cases and macro F1 considers a balance of the classes.

Site Subsite Laterality

Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1

Single model

MT-CNN 0.9082 0.6312 0.6523 0.2483 0.8923 0.5087

MT-HCAN 0.9138 0.6533 0.6632 0.2614 0.8983 0.5006

Bagging model

MT-CNN 0.9127 0.6402 0.6681 0.2612 0.8980 0.5172

MT-HCAN 0.9168 0.6618 0.6724 0.2716 0.9015 0.5089

Combo 0.9177 0.6660 0.6774 0.2701 0.9022 0.5176

Partitioned bagging model A - abstention classifiers

MT-CNN 0.8992 0.6104 0.6690 0.2976 0.8982 0.5223

MT-HCAN 0.8992 0.6048 0.6595 0.2565 0.8967 0.5119

Combo 0.9034 0.6117 0.6708 0.2814 0.8992 0.5211

Partitioned bagging model B - additive preclassification

MT-CNN 0.9042 0.6301 0.6750 0.3098 0.9004 0.5349

MT-HCAN 0.9036 0.6385 0.6656 0.2677 0.8997 0.5239

Combo 0.9047 0.6317 0.6745 0.2946 0.9007 0.5326

Histology Behavior Grade

Single model

MT-CNN 0.7645 0.2601 0.9753 0.8660 0.7599 0.6274

MT-HCAN 0.7684 0.2824 0.9765 0.8713 0.7637 0.6637

Bagging model

MT-CNN 0.7754 0.2724 0.9776 0.8684 0.7727 0.6390

MT-HCAN 0.7748 0.2934 0.9779 0.8692 0.7717 0.6726

Combo 0.7815 0.2925 0.9791 0.8807 0.7787 0.6677

Partitioned bagging model A - abstention classifiers

MT-CNN 0.7793 0.3651 0.9807 0.9096 0.7857 0.6384

MT-HCAN 0.7686 0.2935 0.9777 0.8872 0.7752 0.6491

Combo 0.7821 0.3474 0.9806 0.9129 0.7869 0.6488

Partitioned bagging model B - additive preclassification

MT-CNN 0.7817 0.3664 0.9809 0.9130 0.7864 0.6482

MT-HCAN 0.7704 0.2989 0.9777 0.8852 0.7752 0.6305

Combo 0.7828 0.3488 0.9806 0.9127 0.7870 0.6419
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Table 4

Hours required to train MT-CNN and MT-HCAN models. A node hour is the total time budget spent to train 

the models on Summit nodes, and Wall time is the actual time from the start of training the models to the end.

Single Bagging Partitioned 1 Partitioned 2

MT-CNN
Node hours 2.32 776.39 1601.85 1361.39

Wall time Hours 2.32 2.33 0.48 2.08

MT-HCAN
Node hours 11.01 3668.98 12,120.37 11,514.35

Wall time hours 11.01 11.01 3.64 12.45
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