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Abstract

We describe cross-reactive human antibodies recognizing influenza B viruses spanning nearly 80 

years of antigenic drift. Structures show that they engage the receptor-binding site (RBS) of the 

viral hemagglutinin with strong similarities to their influenza A counterparts, despite structural 

differences between the RBS of influenza A and B. Our data show that these antibodies readily 

cross-react with both influenza B Victoria and Yamagata lineages. We also note that all antibodies 

are encoded by IGHV3-9/IGK1-33. Future research will provide insight into the prevalence of 

these antibodies in the human population.
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The substantial morbidity and mortality from influenza viral infections have prompted 

intensive efforts to design more broadly effective vaccines.1 Two influenza A subtypes, 

H1N1 and H3N2, and two influenza B lineages, Victoria and Yamagata, currently 

cocirculate in the human population.2 Influenza B viruses derive from a common ancestral 

strain that evolved into two antigenically distinct lineages in the 1980s.3 Influenza B 

infections have recently increased and now surpass those by H1N1 influenza A viruses, 

especially in infants.4 Traditional vaccine approaches have historically centered on the 

circulating H1 and H3 influenza A strains, but influenza B viruses now elicit almost equal 

attention.

Influenza hemagglutinin (HA) is both the attachment protein recognizing sialic acid on host 

cells and the viral fusogen;5,6 it is the more abundant of the two glycoproteins on the virion 

surface.7 The characterization of B-cell responses to HAs of influenza A has identified 

conserved epitopes on the viral glycoprotein—the receptor-binding site (RBS), the head 

interface, and the membrane-proximal stem—and has yielded antibodies, the so-called 

broadly protective antibodies (bpAbs), that recognize a wide range of strains.8–15 We, and 

others, have identified bpAbs that target the receptor-binding site (RBS)12,13,15 or the head 

interface epitope on influenza A HA.8,9,14 For the former class, we showed that these Abs 

mimic the HA receptor, sialic acid, by providing a critical dipeptide on the tip of their heavy-

chain complementarity determining region 3 (HCDR3). For the latter class, we have found 

diverse ways to recognize a core epitope in the 220-loop of HA. Comparably detailed 

structural analyses of RBS-directed antibodies against influenza B virus HA have not yet 

been reported.
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We examined paired heavy- and light-chain antibody sequences from plasmablasts of human 

donors administered trivalent, inactivated seasonal vaccines from 2007 to 2008 (H1 

Solomon Islands/03/2006, H3 Wisconsin/67/2005, and B/Malaysia/06/2004) or 2008 to 

2009 (H1 Brisbane/59/2007, H3 Uruguay/716/2007, and B/Florida/04/2006). We previously 

reported influenza A-reactive antibodies from donors in this cohort.16,17 From these donors, 

we identified antibodies that bind HAs from both the Yamagata and Victoria influenza B 

lineages (Figures 1A and S1). Using vaccine HA components B/Malaysia/06/2004 and B/

Florida/04/2006, we identified a three-membered antibody lineage “1261” comprising 

antibodies H1207, H1209, and H1235 (Figure 1C) as well as two “orphan” Abs H1272 and 

H2365. We selected one 1261 lineage member and the two orphan Abs for further 

biochemical characterization. We expressed and purified Fabs (to avoid any avidity effects) 

and measured affinities to monomeric HA1 “heads” using biolayer interferometry (BLI). All 

three Fabs cross-reacted with B/Yamagata and B/Victoria lineages and bound all HAs tested 

with variable affinities ranging from low nM to μM (Figures 1B and S2).

The isolated antibodies provide exceptional breadth by recognizing historical HAs from the 

1940s to today. Both the lineage and orphan Abs have relatively long, 20-residue HCDR3s, 

with a central dipeptide motif of a hydrophobic and an acidic residue at its tip (Figure 1C). 

As in the case of influenza A RBS-directed Abs, this dipeptide would likely make RBS 

contacts that mimic those made by sialic acid. We therefore tested the impact on affinity to 

HA by replacing the hydrophobic (Met) or acidic (Asp) residues in H2365 with alanine 

(Figure 1D). Both substitutions lowered the affinity (i.e., increased overall KD) by 

accelerating the dissociation rate, indicating that both the hydrophobic and the acidic 

moieties in the HCDR3 are necessary for strong binding to the HA RBS. The Asp 

substitution had a more pronounced effect than the hydrophobic change.

We determined the crystal structures of all three antibodies in complex with HA (Figure 

2C,E,G, Table S1). The Abs engage the viral RBS, converging on a mode of molecular 

recognition similar to the modes of their influenza A counterparts (compare Figure 2C,E,G 

with Figure 2A). The central recognition element is a crucial dipeptide at the tip of HCDR3 

that mimics many of the sialic acid contacts (Figures 2D,F,H and S4). The antigen-

combining site includes additional contacts between HCDR2 and the HA 190-helix and 

between LCDR3 and the HA 150-loop (Figure S3). In the critical dipeptide, Asp supplies 

hydrogen bonds to the conserved Ser140 and to Gln239, thus mimicking the carboxylic acid 

moiety of sialic acid (Figure 2B), while the hydrophobic residue Met or Trp of the antibody 

contacts the conserved Trp158 at the base of the RBS, mimicking the –CH3 of the sialic acid 

acetamido group (Figure 2D,F,H). A noted difference in the influenza B HA RBS is a Phe at 

position 95 (Figure 2D,F,H) instead of the Tyr conserved in influenza A. B HAs thus contain 

one less hydrogen bond donor in their RBS. This evolutionarily conserved substitution 

reduces the affinity for the sialic acid receptor.18 Our study suggests this has no effect on 

eliciting the RBS-directed antibodies.

It is worth noting that the contemporary B Victoria lineage viruses evolved during the 

2016/2017 season to incorporate two (K162/N163) or three (K162/N163/D164) amino acid 

deletions. Recent studies showed that these viruses are antigenically distinct from each other 

and from the progenitor virus that lacks the deletions.19 One representative virus of the 
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K162/N163 cluster is the B/Florida/84/2017 isolate (Figure S5A). All antibodies tested in 

this study preserve binding to that isolate (Figure 1B) indicating that individuals with such 

antibodies would most likely still be protected against the current B Victoria strains. Another 

feature of this strain is a putative N-linked glycosylation site at position 197 (Figure S5A) 

that could potentially interfere with antibody binding (Figure S5B). The historical HAs used 

in this study do not have a glycosite at that position, but the structures presented here 

indicate that, even if that particular site were glycosylated, it would most likely not impede 

the binding of our antibodies. For reference, we found that a previously characterized 

Crucell antibody CR8033 failed to bind the B/Florida/84/2017 HA (Figure S5C).

All 5 antibodies identified in this study derive from the VH3-9 gene recombined with JH6. 

We also note that, in all cases, the antibody heavy-chains pair with the same light kappa-

chain IGK1-33. We speculate that the potential germline bias stems from two principal 

requirements: (1) engagement of the 190-helix through VH3-9 encoded HCDR2 and (2) the 

length of the HCDR3 provided by the JH6 gene segment. Further studies on much larger 

donor cohorts are necessary to corroborate these speculations.

Our study identifies the molecular signatures of human antibodies that engage influenza B 

HA by receptor mimicry and suggests a therapeutic potential for such RBS-directed 

antibodies. We also raise the possibility of a “universal” vaccine that elicits RBS-directed 

antibodies against both A and B influenza viruses.

METHODS

Expression and Purification of HA.

Influenza B HA1 “head” constructs were cloned into a pFastBac vector for insect cell 

expression (Hi5 cells) as previously described.13,20 Of note, these insect cell produced HAs 

do not contain sialic acids on their N-linked glycans and are therefore better mimics of HAs 

on flu viruses than would be the case had they been expressed in mammalian cells. All 

constructs were confirmed by DNA sequencing at the DNA Sequencing Core Facility at the 

Dana Farber Cancer Institute. For biolayer interferometry (BLI) and crystallography, the 

HA1 head constructs contained an HRV 3C-cleavable C-terminal 6xHis tag. All constructs 

were purified from the supernatants by passage over Co2+-NTA TALON resin (Takara) 

followed by gel filtration chromatography on a Superdex 200 Increase (GE Healthcare) in 10 

mM Tris-HCl and 150 mM NaCl at pH 7.5. For BLI and crystallography, the tags were 

removed using HRV 3C protease (ThermoScientific) and the protein was repurified using the 

Co2+-NTA TALON resin to remove the protease, tag, and noncleaved protein.

Fab Expression and Purification.

For Fab production, the genes for the heavy- and light-chain variable domains were 

synthesized and codon optimized by Integrated DNA Technologies and subcloned into 

pVRC protein expression vectors containing human heavy- and light-chain constant 

domains, as previously described.13,20 Heavy-chain constructs for Fab production contained 

an HRV 3C-cleavable 6xHis tag. Constructs were confirmed by sequencing at the DNA 

Sequencing Core Facility at the Dana Farber Cancer Institute. Fabs were produced by 
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transient transfection in a suspension of 293F cells using polyethylenamine (PEI, 

Polysciences). Supernatants were harvested 4–5 days later and clarified by centrifugation. 

Fabs were purified using Co2+-NTA TALON resin (Takara) followed by gel filtration 

chromatography on a Superdex 200 Increase (GE Healthcare) in 10 mM Tris-HCl and 150 

mM NaCl at pH 7.5. For BLI and crystallography, the tags were removed using HRV 3C 

protease (ThermoScientific) and the protein was repurified using Co2+-NTA TALON resin to 

remove the protease, tag, and noncleaved protein.

Interferometry Binding Experiments.

Interferometry experiments were performed using a BLItz instrument (fortéBIO Pall 

Corporation). Histidine-tagged HA heads or full-length HAs were immobilized on a Ni2+-

NTA biosensor, and cleaved Fabs were then applied to obtain binding affinities. Single-hit 

concentrations were tested at 20 μM for binding. All measurements were repeated in 

independent experiments. KD was obtained through local fit of the curves by applying a 1:1 

binding isotherm model using vendor-supplied software. All experiments were performed in 

10 mM Tris-HCl and 150 mM NaCl at pH 7.5 and at room temperature.

Crystallization and Data Collection.

Influenza B HA1 heads and Fabs were incubated at a 1:1.5 molar ratio, respectively. The 

complex was isolated by size exclusion chromatography using a 24 mL Superdex Increase 

equilibrated in 10 mM Tris-HCl and 150 mM NaCl. Crystallization was achieved at 15–18 

mg/mL of the complex by hanging drop vapor diffusion at 18 °C. Crystals were grown as 

follows: the H1209 complex in 200 mM sodium citrate, pH 7.0, with 20% (wt/vol) PEG 

3350; the H2365 complex in 100 mM HEPES, pH 7.5, with 25% (wt/vol) PEG 3350; the 

H2365 complex in 100 mM bis-Tris, pH 6.5, with 20% PEG MME 5000. Crystals were 

cryoprotected in mother liquor supplemented with 25% (v/v) glycerol and flash-frozen in 

liquid nitrogen. Data were collected at 0.999 Å with a rotation of 1° per image on the 8.2.2 

beamline, Advanced Light Source, at Berkley National Laboratory or on the beamline 

ID-24-C at the Advanced Photon Source (Argonne National Laboratory).

Structure Determination and Analysis.

X-ray diffraction data were processed using XDS.21 While CC1/2 (at 0.1% significance 

level) was used to select the resolution cutoff for all data sets, unusually high R factors were 

noted for the H1209 antibody complex. Indeed, the data processing and structure refinement 

statistics become poor at resolutions better than 5 Å. The sequence and the structure 

similarity with the H2365 complex, for which the diffraction data were of better quality, 

however, make us confident about the structural analyses and the conclusions we draw from 

such analyses. We calculated the composite annealed omit maps for the H2365 and the 

H1209 complexes (Figure S2) to illustrate the confidence of tracing the Fab HCDR3 loops 

in the electron density. The structures were determined by molecular replacement using 

PHASER22,23 with the B/Florida/4/2006 HA1 head (PDB ID: 4FQJ) and Fab CR8033 (PDB 

ID: 4FQL) as search models.24 Refinement was performed using PHENIX.25 Model 

building was done in COOT26 and assessed with MolProbity.27 N-Linked glycan 

stereochemistry was assessed with Privateer.28 Figures were generated using the PyMOL 

Molecular Graphics System (v2.4.0; Schrödinger LLC).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Influenza B hemagglutinin phylogeny and cross-lineage binding antibodies. (A) 

Phylogenetic tree of influenza B viruses rooted on the ancestral B/Lee/1940 sequence. The 

divergent, cocirculating lineages Victoria and Yamagata are highlighted in purple and green, 

respectively. At the tips of the branches, highlighted with red circles, are the influenza B 

seasonal strains whose recombinant HA proteins were tested for binding with the antibodies. 

(B) Affinity measurements of the Fab to monomeric HA heads. The “heatmap” color 

scheme is an arbitrary visualization aid. Warm colors are high affinity and cool colors, low 

affinity. The calculated KD values are reported in μM. (C) Sequence alignment of the 

antibody heavy complementarity determining region 3 (HCDR3) loops of the 5 antibodies 

isolated from 2 donors. The critical dipeptide motif is highlighted. (D) Biolayer 

interferometry binding isotherms for the H2365 wild-type (WT) and its mutants Met102Ala 

(M → A) and Asp103Ala (D → A) binding to the B/Phuket/3073/2013 HA head.
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Figure 2. 
Structural analyses of the antibody–hemagglutinin complexes. CH67 Fabs in complex with 

an influenza A HA head (PDB ID 4HKX) is shown for reference in (A). Antibody receptor 

mimicry through the critical dipeptide motif is made in comparison with a sialic acid bound 

HA structure of B/Hong Kong/8/1973 (PDB ID: 2RFU) shown in (B). Overall structures of 

the H2365 (C), H1209 (E), and H1272 (G) Fabs in complex with influenza B HA heads. 

Essential HCDR3 amino acid contacts are detailed in (D), (F), and (H). The orientation of 

the structures in (D), (F), and (H) is as looking from the left, i.e., from the 190-helix in (C), 

(E), and (G), respectively. Essential HA residues are underlined.
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