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Summary.

Often, a community becomes alarmed when high rates of cancer are noticed, and residents suspect 

that the cancer cases could be caused by a known source of hazard. In response, the US Centers 

for Disease Control and Prevention recommend that departments of health perform a standardized 

incidence ratio (SIR) analysis to determine whether the observed cancer incidence is higher than 

expected. This approach has several limitations that are well documented in the existing literature. 

In this paper we propose a novel causal inference framework for cancer cluster investigations, 

rooted in the potential outcomes framework. Assuming that a source of hazard representing a 

potential cause of increased cancer rates in the community is identified a priori, we focus our 

approach on a causal inference estimand which we call the causal SIR (cSIR). The cSIR is a ratio 

defined as the expected cancer incidence in the exposed population divided by the expected cancer 

incidence for the same population under the (counterfactual) scenario of no exposure. To estimate 

the cSIR we need to overcome two main challenges: 1) identify unexposed populations that are as 

similar as possible to the exposed one to inform estimation of the expected cancer incidence under 

the counterfactual scenario of no exposure, and 2) publicly available data on cancer incidence for 

these unexposed populations are often available at a much higher level of spatial aggregation (e.g. 

county) than what is desired (e.g. census block group). We overcome the first challenge by relying 

on matching. We overcome the second challenge by building a Bayesian hierarchical model that 

borrows information from other sources to impute cancer incidence at the desired level of spatial 

aggregation. In simulations, our statistical approach was shown to provide dramatically improved 

results, i.e., less bias and better coverage, than the current approach to SIR analyses. We apply our 

proposed approach to investigate whether trichloroethylene vapor exposure has caused increased 

cancer incidence in Endicott, New York.
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1. Introduction

Across the United States, citizens routinely recognize higher than expected rates of cancer in 

their community and request that the local health department conduct an investigation, with 

hopes of identifying a common cause. According to a review by Goodman et al. (2012), at 

least 2,876 cancer cluster investigations were conducted by health departments in the US 

between 1990 and 2011, most of which were initiated in response to alarm in the 

community.

1.1. Cancer cluster investigation protocol

The US Centers for Disease Control and Prevention (CDC) have provided a protocol to 

guide health departments in responding to requests for cancer cluster investigations (Centers 

for Disease Control and Prevention, 2013). The first challenge in this process is that the 

definition of a cancer cluster is notoriously vague and contested. The CDC defines a cancer 

cluster as “a greater than expected number of cancer cases that occurs within a group of 

people in a geographic area over a defined period of time” (Centers for Disease Control and 

Prevention, 2013). They recommend that cancer cluster investigations proceed by first 

performing a standardized incidence ratio (SIR) analysis to determine whether the cancer 

incidence experienced by the community represents a statistically significant elevation 

compared to what would be expected. The SIR is estimated as the ratio of the observed 

cancer incidence to the expected incidence based on background rates, and uncertainties and 

p-values are computed (Sahai and Khurshid, 1993) to determine whether the SIR 

significantly exceeds the null value of 1.

If statistical significance is found, then the event constitutes a cancer cluster by their 

definition. Only if a cancer cluster is confirmed does the CDC recommend that health 

departments proceed to seek possible environmental causes. If the statistical evidence for a 

cancer cluster is strong and an epidemiological study to test for relationships between 

environmental factors and the cancer cases is deemed “warranted” and “feasible”, then the 

CDC suggests conducting such a study.

Although widely used, the protocol for cancer cluster analyses described above has been 

criticized on practical grounds, with objectors pointing to the fact that such analyses rarely 

lead to definitive identification of the cause(s) of the cluster (Goodman et al., 2012, 2014). 

With no conclusion about the cause(s) of a cluster, simply the identification of one provides 

no guidance for the concerned public in removing the cause or preventing future cases.

The most prominent statistical limitation is the silent multiple comparisons problem 

(SMCP), also known as the Texas Sharpshooter problem (Bender et al., 1995), which arises 

due to the use of observed cancer location data to inform the development of the statistical 

hypothesis. Fundamental statistical principles dictate that, occasionally, the locations of 
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cancer diagnoses will cluster together in space and time due to chance alone, i.e. not due to 

any common cause. Thus, we would expect, due only to chance, to occasionally encounter 

what appears to be an unusual excess of cancer cases within a small area. If we first evaluate 

the spatial distribution of the cancer cases and draw a boundary around a small area that 

appears to have a high cancer incidence, and then ask if that area is experiencing a higher 

cancer incidence than expected, we inflate the probability of finding a false positive. 

Standard multiple comparisons adjustment procedures are not equipped to handle the 

complexities of this setting. Another limitation of the current SIR analysis approach is the 

failure to sufficiently adjust for covariates that could explain differences in incidence rates.

There have been attempts to address the SMCP, including the introduction of Bayesian 

methodology (Coory et al., 2009) in which uncertainty arising from the multiple 

comparisons problem can be accounted for through the prior distribution. However, the 

presence of alternative approaches has failed to produce changes in the way cancer cluster 

analyses are carried out. In order to completely avoid the multiple comparison problem, it 

has also been suggested that cancer clusters investigations should abandon statistical 

analyses entirely (Coory and Jordan, 2013).

1.2. Causal inference approach to SIR analyses

We take the position that statistical analyses can provide important insights to cancer cluster 

investigations; however, both the protocol and the statistical procedures must be modified in 

order to produce useful and reliable inference. In this paper, we propose a number of 

changes to the cancer cluster investigation protocol in order to situate it within a causal 

inference framework. The most notable procedural change required is that a suspected cause 

of increased cancer incidence in the community, i.e. a putative source of hazard, must be 

identified prior to any statistical analyses. The CDC’s current approach is statistically 

backwards in that it tests for elevated cancer risk in a community prior to identifying 

potential sources of hazard that could be responsible for such elevation. Because no specific 

source(s) of exposure are postulated prior to analysis, the geographic region, time period, 

and disease types used to formulate the statistical hypothesis are at best defined arbitrarily, 

or at worst defined based on observed distributions of cancer outcomes, leading to the 

SMCP. By identifying putative source(s) of hazard a priori, we can investigate questions 

regarding the causal effect of exposure on cancer incidence, and the statistical hypotheses 

can be formed around the exposed population and time period, thus avoiding the pitfalls of 

the current approach.

Existing literature provides several approaches for testing for relationships between cancer 

risk and a known point source of contamination, with the work of Diggle et al. (1997) and 

Wakefield and Morris (2001) being some of the most cited. These approaches use small 

areal units near the point source as the units of analysis and parametrically model the 

relationship between the units’ distance from the point source and cancer risk, with 

adjustment for covariates. While the a priori identification of a point source relieves 

concerns about the SMCP, we must assume that the form of the parametric models relied 

upon are known and correctly specified in order to interpret the results from these models as 

causal. In practice, such assumptions are generally not realistic.
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In this paper, we propose the use of a causal inference approach rooted in the potential 

outcomes framework (Rubin, 1974) to evaluate the strength of evidence that a given 

exposure caused increased cancer incidence in the exposed population and time period. We 

focus our efforts on a causal estimand which we call the causal standardized incidence ratio 

(cSIR). The cSIR is the following ratio: the expected cancer incidence in the exposed 

population divided by the expected cancer incidence in the same population under the 

counterfactual scenario of no exposure. In practice, our units of analysis will be areal units 

overlapping the exposed area rather than individuals in the exposed area, and thus the 

exposed population referenced in the cSIR definition is in fact the population of exposed 

areal units (and to avoid the ecological fallacy, inference should always be restricted to the 

level of areal units used in the analysis). Estimating causal effects with observational data 

requires rigorous approaches for eliminating confounding bias, and we explain our approach 

in the following section.

1.3. Case study and approach to cSIR estimation

To clarify our approach to cSIR estimation, we now introduce the cancer cluster 

investigation that will be used as a case study in this paper. However, the proposed approach 

applies to cancer cluster investigations more broadly. Endicott, New York (NY) was the 

home of the first IBM manufacturing complex. A spill of thousands of gallons of a mixture 

of chemicals by IBM in 1979 has plagued the town for decades. According to the NY State 

Department of Environmental Conservation (DEC) (2018), trichloroethylene (TCE), a metal 

degreaser and a known carcinogen, was the spilled contaminant that migrated the furthest 

outside the IBM plant and into the surrounding community, carried via groundwater. In 

2002, an investigation mandated by the DEC discovered that TCE that had migrated into the 

soil in residential areas was evaporating and the resultant vapors entering indoor air in 

homes at dangerous levels, a process known as vapor intrusion. How long prior to 2002 the 

community had been exposed to TCE vapor intrusion remains unknown. TCE exposure is 

known to cause kidney cancer, but evidence in human studies has also suggested 

associations with lymphomas and childhood leukemia and liver, biliary tract, bladder, 

esophageal, prostate, cervical, and breast cancers (Environmental Protection Agency, 2011).

In 2006, the NY State Department of Health (DOH) conducted an investigation of cancer 

rates in Endicott between 1980–2000 using a SIR analysis. They found rates of kidney and 

testicular cancer were significantly higher than background rates (New York State 

Department of Health, 2006). To our knowledge, no follow up investigation has been 

conducted to determine whether residential exposure to the TCE vapors, detected in 2002, 

after the end date of the DOH study, has led to increased cancer rates in the community. We 

wish to estimate the cSIR for kidney/renal pelvis cancer and for bladder cancer in the TCE-

exposed population of Endicott in order to investigate whether TCE exposure caused 

increased incidence of these cancers in Endicott during 2005–2009.

To estimate the cSIRs, we need information about what the incidence of these cancers in the 

TCE-exposed portion of Endicott would have been both with and without the TCE exposure. 

The observed cancer incidence in Endicott provides information about the former, since 

exposure to TCE was the observed scenario. To learn about what the cancer incidence might 
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have been in the counterfactual scenario of no exposure, we obtain cancer data from 

unexposed populations that are similar to the exposed population in Endicott in terms of 

potential confounders of the effect of TCE exposure on cancer. To identify these 

populations, we will rely on causal matching.

Matching is one of the most well established causal inference approaches for eliminating 

confounding in observational data (Rubin, 1973; Rubin and Thomas, 2000; Abadie and 

Imbens, 2006; Ho et al., 2007; Stuart, 2010; Abadie and Imbens, 2011; Iacus et al., 2011). 

Matching is nonparametric and requires fewer assumptions than parametric models, thus 

increasing the plausibility that results are causal. For each exposed unit in the data, matching 

methods identify a fixed number (M) of “matched control” units that are not exposed to the 

hazard but are as similar as possible to the exposed unit in terms of observed confounders. In 

the matched data, the distributions of confounders are similar in the exposed and unexposed 

groups, as under randomization. Matching is known as a “design phase method”, because it 

aims to remove confounding without invoking outcome data. Procedures applied 

subsequently using the outcomes to estimate causal effects are known as “analysis phase 

methods”. Matching was first applied to SIR analyses by Dominici et al. (2007).

We partition the exposed area (Endicott) into exposed sub-units (census block groups; 

CBGs), and these will be our units of analysis. For each of the exposed sub-units we assume 

that cancer incidences are known (in many cases, the exact locations of diagnoses will be 

reported by the concerned community) and that confounder data are publicly available. 

Figure 1 provides a map of the bladder cancer incidence by CBG in the exposed Endicott 

area (red lines) and the surrounding area. Our goal is to identify matched controls for the 

sub-units within the exposed area.

We perform this spatial partitioning for two reasons. First, matching on confounders for the 

sub-units (e.g. CBGs) is more likely to eliminate confounding bias than matching on 

confounders for the whole exposed area, as levels of the confounders may vary widely 

within the exposed area. Second, partitioning provides a larger sample of exposed units, 

allowing for the application of classic statistical models to the data.

Nation-wide confounder data (e.g., socioeconomic and demographic variables) at the CBG 

level are publicly released by the US Census Bureau. For many types of environmental 

hazard, relevant geocoded contaminant and toxic chemical use information is available from 

the Environmental Protection Agency (EPA) (see Section 4 for more information). Therefore 

we assume that exposure and confounder data are both available for all CBGs and similar 

small administrative units nation-wide. Obtaining small area cancer incidence data, on the 

other hand, is challenging.

Cancer registries in most states collect detailed data on nearly all patients at the time of 

diagnosis, including age, sex, address, and diagnosis codes. While improvements are being 

made in accessibility, privacy concerns mean that, even when aggregated over small 

geographic areas, these data may be inaccessible to researchers or the request and approval 

process may take many months, delaying time-sensitive work. The high degree of 

aggregation in most publicly available cancer incidence data often renders it too coarse to 
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perform the desired analyses. To make our methods as accessible as possible, they will rely 

solely on publicly available cancer incidence data.

The most commonly used publicly available cancer incidence data are collected and 

published by the Surveillance, Epidemiology, and End Results (SEER) Program of the US 

National Cancer Institute (National Cancer Institute Surveillance, Epidemiology, and End 

Results Program, 2018). Today, SEER compiles cancer diagnosis records from 18 state and 

city cancer registries, each contributing data dating back to 2000 or prior. Each record in the 

SEER data provides demographic and diagnosis information, as well as the year and the 

county of residence at the time of diagnosis. Thus, the lowest available level of spatial 

aggregation for these data is the county level.

To our knowledge, only two states have made small area cancer data publicly available. 

Illinois provides zip code level cancer incidence data for 11 anatomic site groupings (Illinois 

State Cancer Registry, 2017); however kidney and bladder cancer incidences are combined 

with all other urinary tract cancers. NY provides CBG level cancer incidences for 23 

different anatomic sites, including kidney and bladder (separately), over the period 2005–

2009 (Boscoe et al., 2016). We refer to the set of regions from which we have either SEER 

data or relevant small area cancer incidence data as SEER+. For our Endicott case study, 

SEER+ includes all SEER-participating regions and all of NY state.

After partitioning the exposed area of Endicott into CBGs, we identify matched control 

CBGs within SEER+. In the matched dataset, we are faced with the challenge of having 

cancer incidence data for (some or all of) the matched controls at the county level while our 

analysis is carried out at the smaller CBG level. This problem is referred to as spatial over-

aggregation. Spatial data misalignment and the modifiable areal unit problem have received 

a good deal of attention in other contexts (Openshaw, 1984; Cressie, 1996; Gotway and 

Young, 2002), but to our knowledge previous literature has not addressed the spatial over-

aggregation of cancer incidence data. In this paper we construct a Bayesian model to be 

applied to the matched data that resolves the spatial over-aggregation and estimates the 

cSIR. This model jointly (1) imputes the cancer incidence in matched control CBGs by 

borrowing information from the publicly available small area NY cancer incidence data and 

(2) fits a log-linear model to the cancer incidences in the matched data, utilizing the imputed 

incidences for the matched controls, to estimate the cSIR.

In Section 2, we formally define the cSIR and lay out our proposed estimation procedure. In 

Section 3, we use simulations to compare our methods to the existing SIR analysis methods 

used in cancer cluster investigations. In Section 4, we describe the analysis and results of the 

Endicott case study. Finally, we discuss our findings and conclude in Section 5.

2. Methods

2.1. The potential outcomes framework and notation

The population of interest in this context is the population exposed to the source of hazard 

within the concerned community under scrutiny. Without loss of generality, we assume that, 

as in our case study, the exposed region is partitioned into its component CBGs. In defining 
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the cSIR and its identifying assumptions and formalizing the statistical models, CBGs are 

the units of analysis.

We now define notation that will be used to develop the estimand and methods. Causal 

inference methods are often situated within the potential outcomes framework, as defined by 

Rubin (1974), which we will now adapt to the cancer cluster analysis setting. We let 

subscript h = 1, …, H index the CBGs of the exposed region. Let Yh be a random variable 

representing the observed cancer incidence in CBG h during the time period of interest, h = 

1, …, H. We let Th denote an indicator of exposure status, with Th = 1 for all h = 1, …, H 
because each CBG in this set was exposed to source of hazard. Let Xh be a vector of 

observed confounder values for CBG h. Then the potential outcomes are Yh(T = 1), the 

cancer incidence that would have been observed in CBG h under exposure to the source of 

hazard, and Yh(T = 0), the cancer incidence that would have been observed in CBG h under 

no exposure.

The fundamental problem of causal inference is that, at most, only one of the two potential 

outcomes can ever be observed for a given unit, either its outcome under exposure or its 

outcome under no exposure. In this case, within the population of interest, we only observe 

outcomes under exposure to the source of hazard. The unobserved potential outcome is 

called the counterfactual. As in nearly all causal inference analyses, we invoke the stable 

unit treatment value assumption (SUTVA) in order to ensure the existence of the potential 

outcomes (Rubin, 1980). SUTVA requires that 1) the exposure be well-defined, i.e. that 

there is only a single “version” of exposure, and 2) that the exposure status of a given unit 

does not affect the outcome of other units. We note that both components of SUTVA may be 

strong assumptions in this context. The first could be violated if there are different degrees 

of exposure within the exposed units. The second could be violated if the cancer cases in one 

unit are caused by exposures its residents received while in a different unit (e.g., at work). 

See Section 5 for further consideration of the appropriateness of SUTVA in the cancer 

cluster setting.

2.2. The causal SIR and identifying assumptions

Using the potential outcomes, we now define the cSIR as:

cSIR = E[Y (T = 1) ∣ T = 1]
E[Y (T = 0) ∣ T = 1]

Again, we only wish to estimate the cSIR for the exposed population in the community 

under study. The cSIR is a ratio analogue to the average treatment effect on the treated, 

which is a commonly used causal inference estimand. As with the classic SIR analysis, we 

are interested in evaluating the strength of evidence that cSIR ≠ 1, with cSIR = 1 equivalent 

to E [Y (T = 1)|T = 1] = E [Y (T = 0)|T = 1], i.e., no causal effect of exposure in the exposed 

population (as we discuss in Section 1.2, in practice this is the population of exposed 

CBGs).

Now, drawing on additional data from populations unexposed to the same type of hazard as 

the population under study, the cSIR can be estimated under the following identification 
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assumptions. These assumptions are nearly identical to those needed to estimate the average 

treatment effect on the treated– ignorability and causal consistency. First, cSIR identification 

relies on the assumption of no unobserved confounding, stated mathematically as T ⫫ Y (T 
= 0)|X. Moreover, we must assume positivity, stated mathematically as P(T = 1|X) < 1. The 

assumption of positivity requires that every unit in the exposed area could feasibly have been 

unexposed. Together, the assumptions of no unobserved confounding and positivity are 

known as ignorability. Finally, the causal consistency assumption states that Y = Y (T = 1)

×T +Y (T = 0)×(1−T), i.e. the observed outcome is equal to the potential outcome under the 

observed exposure level.

By applying these assumptions, we can show that

E Y T = 1 T = 1 = EX E Y T = 1, X]]

and that

E Y T = 0 T = 1 = EX E Y T = 0, X]]

so that both the numerator and denominator of the cSIR are identifiable from the observed 

data. Proofs are provided in the Section 1 of the Supplemental Materials.

The assumption of no unobserved confounding is untestable, and its plausibility must be 

assessed based on subject matter knowledge. The plausibility of the positivity assumption 

can often be evaluated by determining whether suitable unexposed matches can be found for 

each exposed unit. If unexposed units exist that are otherwise similar to an exposed unit, 

then this provides evidence that the exposed unit could feasibly have been unexposed.

2.3. Estimation of the cSIR: design phase

To estimate the cSIR, matching is used in the design phase to remove confounding, followed 

by a Bayesian estimation procedure in the analysis stage to appropriately account for all 

sources of uncertainty. We begin by describing the design phase of our approach below.

The goal of our matching procedure is to obtain a set of unexposed CBGs with confounder 

distributions as similar as possible to those of the exposed CBGs. We recommend utilizing 

the matching procedure that provides the best covariate balance between the exposed and 

unexposed regions, i.e. the smallest standardized differences in means (Stuart, 2010). 

Moreover, because small area cancer incidence rates are often unstable, we suggest applying 

ratio matching, i.e., multiple matched controls for each exposed unit, to obtain as much 

information as possible about the expected cancer incidence under no exposure.

2.4. Estimation of the cSIR: analysis phase

After matching, if the cancer incidence data for both exposed and matched control CBGs are 

available at the CBG level (in our case they are not, cancer incidence data for the matched 

control CBGs are over-aggregated at the county level), a loglinear modeling approach can be 

used to estimate the cSIR. For clarity, we first describe the model that would be applied in 
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this simplified setting. The model should be fit using data from both the exposed CBGs and 

the matched control CBGs and should include both exposure status and confounder variables 

as predictors. If matching procedures are entirely successful at removing all differences in 

confounder distributions between the exposed and unexposed, then adjustment for the 

confounders in the analysis phase is not needed. However, in practice, matching may not 

remove these differences entirely, thus adjustment for the confounders in analysis phase 

modeling is recommended (Ho et al., 2007). While analysis phase adjustment for 

confounders could lead to modest increases in variance, these concerns are likely to be 

outweighed by the need for bias reduction in observational data settings.

Let i (i = 1, …, N) index the matched dataset. The loglinear model has the form

log E Yi = α0 + Tiα1 + X′iα2 + log Pi

where Pi is the population size in CBG i, and log(Pi) is an offset term used to account for 

potential differences in population size across the CBGs. If the cancer incidence data are 

collected over different time periods for some of the matched control CBGs, the offset could 

represent persontime. Because the sample size for this model, N, will generally be small, a 

Bayesian approach to model fitting may provide more stable estimates than frequentist 

models. The cSIR estimate is exp(ˆα1), and uncertainties and confidence regions follow 

accordingly.

We now introduce our approach to estimate the cSIR when the cancer incidence data for 

some or all of the matched control CBGs are over-aggregated to the county level, as 

described in Section 1.3. We propose a two-stage Bayesian model that (1) predicts cancer 

incidence in the matched control CBGs and (2) using these predictions and the observed 

incidence data from the exposed CBGs, fits the loglinear model described above to estimate 

the cSIR.

2.4.1. Stage 1: prediction model—The goal of the prediction model is to use the 

publicly available NY CBG cancer incidence data to model relationships between CBG 

incidence and community characteristics and to apply that model to predict cancer 

incidences in the matched control CBGs, taking into account the additional information 

provided by the observed SEER county level cancer incidences. In order to account for the 

observed county level cancer incidences, our model must incorporate the constraint that the 

CBG predicted incidences within a given county should sum to the observed county 

incidence. Finally, because this model is fit only to NY data but is employed for prediction 

of CBG cancer incidences in other states, we must make an additional assumption that the 

results of this model are transportable, or equivalently, that the model has external validity 

(Singleton et al., 2014).

Subscript j = 1, …, J is used to index the set of all NY CBGs. Let Zj denote the vector of 

predictors to be included in the prediction stage for CBG j. The variables in Z should include 

all the confounders in X, but may include additional variables that are predictive of cancer 

incidence but are not believed to be confounders. We assume Yj ∼ Poisson(λj) and log(λj) = 

Zjβ+log(Pj), where Pj is the population size (or person-time, if needed). We denote by ψ(j) 
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the set of indices for all CBGs in the same county as CBG j, and Y ψ(j) the vector of all 

CBGs in the same county as CBG j. Then, it is a well-known property of independent 

Poisson random variables that

Y ψ(j) ∣ ∑
l ∈ ψ(j)

Yl = Kj ∼ Multinomial Kj, πψ(j)

with Kj the observed cancer incidence in the county containing CBG j (Kj is the same for all 

CBGs from the same county) and πψ(j) a vector whose elements are the proportions of the 

Kj cancer cases that fall into each of the county’s CBGs. Thus, in order to have our model 

account for the constraint that CBG incidence predictions should sum to their county’s 

observed incidence, we will develop the model around a multinomial likelihood. For each Yj 

we have corresponding multinomial distribution parameters Kj and πj, where πj is the 

proportion of the cancer incidence in its encompassing county that falls into CBG j. Note 

that, by the same distributional result given above,

πj =
λj

∑l ∈ ψ(j)λl

and this property dictates the form of the prediction model.

The prediction model is a loglinear model that includes a non-traditional offset that imposes 

the constraint that the estimated multinomial proportions must sum to one. It follows from 

the properties laid out above that the πj should have the following relationship to the 

predictors:

log πj = Zj′β + log Pj − log ∑
l ∈ ψ(j)

eZl′βPl

where the final term is an offset which imposes the constraint. Note that this implies that

πj =
eZj′βPj

∑l ∈ ψ(j)eZl′βPl

so that the CBG proportions within a county sum to one, as desired. This results in the 

following data likelihood:

L(β ∣ Y , Z) = ∏
j = 1

J
Kj! 1/ ∥ ψ(j) ∥ eZj′βPj

Y j

Y j! ∑l ∈ ψ(j)eZl′βPl
Y j

where ∥ψ(j)∥ denotes the cardinality of ψ(j). For more details on the likelihood derivation, 

see Section 5 of the Supplemental Materials. Using a Bayesian approach, we can fit this 
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model to the NY CBG cancer incidence data through the use of a simple Metropolis 

sampler. The resulting posterior summaries of β speak to the associations between a CBG’s 

features and the proportion of the cancer incidence of its larger county that it accounts for.

For any CBG in the SEER states, where Zj and Kj are observed, we can obtain posterior 

predictive samples of its cancer incidence from the corresponding multinomial distribution. 

We note that we only need posterior predictive samples from the matched control CBGs in 

order to do cSIR estimation. However, because the model relies on normalization of the 

CBG proportions within counties, in order to obtain the multinomial posterior predictive 

samples for any CBG we must utilize the predictor data from all the other CBGs in its 

encompassing county, as well as the observed SEER incidence for the county. For a given 

matched control CBG, we denote the posterior predictive samples of its cancer incidence as 

{Y(1), …, Y(B)}, where B is the number of samples, and these get passed into the estimation 

stage of the model.

This model is a straightforward extension of a log-linear model; yet, we are not aware of 

other papers that use this type of model to predict small area disease counts in areas where 

only larger-area counts are observed. However, the motivation for this model is similar to 

that of benchmarking approaches in the survey sampling literature. From survey data, 

investigators often produce modeled estimates of small area features (for which direct survey 

estimates would be unstable) but rely on direct estimates of the same features for larger 

areas. Without model constraints, these two sets of estimates may be incompatible. 

Benchmarking (Datta et al., 2011; Bell et al., 2012; Molina et al., 2014) is used to constrain 

the model-based small area estimates within a given larger area so that they agree with the 

direct estimate for the larger area. In contrast, here we are building a model to predict 

disease counts in small areas where no data are observed, by utilizing information on risk 

factors in the small areas and larger-area observed counts.

2.4.2. Stage 2: estimation model—Using the observed incidences in the exposed 

CBGs and the posterior predictive samples of the incidence in the matched control CBGs, 

we estimate the cSIR in the second stage of the model. As at the beginning of Section 2.4, 

we employ a Bayesian loglinear model, now integrating in the sampled outcomes for the 

controls at each iteration of the sampler. By including the full distribution of predicted 

cancer incidences in the estimation stage, rather than a single summarized predicted value, 

our cSIR estimate will capture the additional variability generated by the use of predicted 

cancer incidences for the matched controls.

Now utilizing only the matched data, let

Y i
(b) =

Yi, if Ti = 1

Yi
(b), if Ti = 0

i = 1, …, N. Then in each iteration of the Metropolis sampler for the estimation model, we 

plug in a different Y i
(b) sample, i.e. for b = 1, … B we collect a posterior sample of {α0, α1, 

α2} from
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log E Y i
(b) = α0 + Tiα1 + Xi′α2 + log Pi .

The cSIR and its uncertainties can be estimated as described above.

As presented here, both stages of the model rely on the Poisson distribution. The 

appropriateness of this assumption should be assessed in the real data. Moreover, cancer 

incidence prediction models based on publicly available data have not yet been validated and 

the results and model fit should be evaluated on a case-by-case basis. We provide model fit 

information and study predictive accuracy for the kidney and bladder cancer models used 

here (see the Supplemental Materials), but broader validation of these models is an 

important topic for future work.

3. Simulations

In this section, simulations are conducted to compare the CDC’s SIR analysis to our 

proposed method. Our intent is to demonstrate how the use of matched controls and 

Bayesian estimation methods, under the assumptions laid out above, leads to stable and 

unbiased estimation of the effect of an exposure on cancer incidence. All simulations are 

carried out in R statistical software (R Core Team, 2018), and code is available at https://

github.com/rachelnethery/causalSIR.

3.1. Simulation structure

The simulations are constructed using real confounder data from the SEER states to ensure 

that the simulated data reflect the complexity of real data. For each CBG in the SEER areas, 

we obtain the following variables (in parentheses, the names used hereafter): percent of the 

population age 65+ (P65+), percent of the population male (PMale), percent of the 

population white (PWhite), percent of the adult population unemployed (Unemploy), 

average commute time (Commute), median household income (Income), dollars spent on 

smoking products as a portion of per capita income (MoneySmoke), and percent of total 

dollars spent on food that was spent on food outside the home (MoneyFood). All variables 

come from ESRI Business Analyst (ESRI, 2018).

Let X denote a matrix of these confounders for each CBG in the SEER states, P denote a 

vector of the population in each CBG, T denote the vector of exposure indicators for each 

CBG, and Y denote the vector of cancer incidences for each CBG. We generate T and Y 
from the models

logit(P (T = 1)) = γ0 + Xγ1

log(E[Y ]) = α0 + T α1 + Xα2 + log(P )
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using different specifications of the parameter values to obtain different simulated 

conditions. Through these specifications, we produce the following four simulation 

structures:

1. no exposure effect (T ↛ Y) and no confounding (X ↛ T, X ↛ Y)

2. no exposure effect (T ↛ Y) and confounding (X → T, X → Y)

3. exposure effect (T → Y) and no confounding (X ↛ T, X → Y)

4. exposure effect (T → Y) and confounding (X → T, X → Y)

See Section 2 of the Supplemental Materials for the parameter values used to construct each 

simulation. Within each of the simulation scenarios, we generate 5,000 datasets, with T ∼ 
Bernoulli(P(T = 1|X)) held fixed across simulations but a different Y ∼ Poisson(E [Y |X, T]) 

simulated in each. Ten exposed CBGs (T = 1) are randomly selected to represent the 

exposed population of interest, and these are also fixed across simulations.

3.2. Methods compared

We analyze the simulated data using three different methods: CDC’s recommended SIR 

analysis (abbreviated as CDC), a variant of the CDC’s method that employs Poisson 

regression modeling (abbreviated as PR), and our proposed cSIR analysis (abbreviated as 

cSIR). We formalize the CDC’s SIR analysis here. Let D represent the observed cancer 

incidence in the concerned community during the relevant time period. An expected number 

of cancer cases E is computed for the community based on the incidence in a background 

population. Then, the SIR is estimated asS = D
E . Using the assumption that D ∼ Poisson(S × 

E), where S is the true relative risk, confidence intervals are computed by invoking the 

relationship between the Poisson and Chi-Square distributions (Sahai and Khurshid, 1993).

Note that our proposed method and the CDC’s protocol for SIR estimation differ in their 

approach to identifying the population and time period under study. Our method investigates 

the population/time period exposed to a pre-specified source of hazard. The CDC protocol 

studies the population/time period in which high cancer incidence is reported. In practice, 

these populations/time periods would likely differ, but in our simulations we study the same 

one with each method for comparability (i.e., the ten exposed CBGs selected as described 

above).

The CDC method is implemented by using the simulated cancer incidences from all the 

SEER CBGs outside the community of interest to compute the expected incidence (i.e., 

background rate). The PR variant of the CDC’s method does make some effort at adjustment 

for confounding–a frequentist Poisson regression model is fitted to the data from all the 

CBGs, using the confounding variables as covariates, but estimating the SIR as the 

exponentiated parameter estimate corresponding to an indicator of inclusion in the 

community of interest, rather than the true exposure indicator. Finally, we implement cSIR, 

assuming appropriate spatial aggregation of the cancer incidence data. We identify matched 

controls for each exposed CBG using 20:1 mahalanobis distance nearest neighbor ratio 

matching, then fit the Bayesian loglinear model.
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3.3. Simulation results

The main results of the simulations are given in Table 1, which provides for each method the 

bias in the point estimate, the coverage rate of the true SIR for 95% confidence/credible 

intervals, and the width of the 95% confidence/credible intervals. For simulations 3 and 4, 

Table 1 shows results with the true SIR=1.5. We performed additional simulations with other 

strengths of exposure effect (true SIR ranging from 1.1–2), and those results are consistent 

with the ones shown here and are provided in Section 2 of the Supplemental Materials. In 

the Supplemental Materials, we also study the power of each method to detect non-null 

exposure effects, an important consideration given that the number of CBGs containing the 

exposed population is generally small (i.e., ten or fewer).

In all the simulations, cSIR gives results with small and stable bias close to 0. The other two 

methods estimate the SIR with bias often exceeding 0.5. Because the true SIR is 1 or 1.5 in 

these simulations, this magnitude of bias is large. The poor performance of PR, even in the 

simplest settings with no exposure effect and no confounding, seems to be attributable to 

instability in the model due to the small number of exposed units in the data.

cSIR’s 95% confidence interval has a stable approximately 95% coverage rate of the true 

SIR across all simulations. Due to high bias, CDC often gives low coverage of the true SIR, 

in some cases lower than 50%. PR, on the other hand, is unstable as discussed above, and 

this instability leads to extraordinarily wide confidence intervals and, therefore, highly 

conservative coverage rates.

In summary, the simulations demonstrate that our approach provides more reliable and 

stable results than existing alternative cancer cluster investigation procedures. We note that 

the structure of these simulations is favorable to CDC’s method because we have assumed 

that the CDC’s method is studying the true exposed population and time period, when in fact 

the CDC’s protocol does not consider exposures when structuring the SIR analysis and 

therefore would be unlikely to analyze the appropriate population. Moreover, our simulation 

structure is also favorable to the Poisson regression method, as all the associations in the 

simulations are linear. In the presence of non-linear relationships, we expect even greater 

gains in our method compared to others, because matching automatically resolves even non-

linear confounding effects. Yet, even in these conditions favorable to CDC and PR, the 

improvements offered by our proposed approach are clear.

4. An investigation of kidney and bladder cancer incidence in Endicott, NY

We define the boundaries of the exposed area in Endicott based on the work of previous NY 

state investigations, which determined the boundaries of the area affected by TCE vapor 

intrusion (New York State Department of Health, 2006). We use in our analysis all CBGs 

fully or partially overlapping the exposed area. This leads to eight exposed CBGs, as shown 

in Figure 1. We rely on the NY data to obtain cancer incidences for the CBGs in Endicott, 

and some CBGs are merged in the NY data to protect privacy. Two of the Endicott CBGs are 

merged so that we can only obtain their combined incidence. Thus, we treat these two CBGs 

as one in our analysis, leading to seven exposed CBGs in Endicott.
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TCE vapor exposure is only known to have affected Endicott in/after 2002, it is unclear 

when it began affecting the community; therefore, the appropriate time period to study is not 

obvious. Such uncertainties are likely to plague any cancer cluster investigation. The time 

period under study here, 2005–2009, was chosen primarily based on cancer data availability. 

Because urinary tract cancer latency periods are relatively short compared to other cancers 

(Yuan et al., 2010), any effects of TCE vapor exposure from the early 2000s or prior may 

already be detectable during this time period.

4.1. Data

We use the SEER+ cancer incidence data described in Section 1.3 for the years 2005–2009. 

In the US, a common set of codes provided in the third edition of the International 

Classification of Diseases for Oncology (ICD-O-3) is used across health care providers to 

systematically classify cancer types (World Health Organization, 2000). ICD-O-3 codes are 

recorded for all cancers in both SEER and the NY cancer data, and we use these codes to 

define the cancer types under investigation. For kidney/renal pelvis cancer incidence, we use 

all diagnoses during 2005–2009 with ICD-O-3 codes C649 and C659, and for bladder 

cancer incidence we use ICD-O-3 codes C670-C679. We obtained potential TCE exposure 

information for SEER+ areas from the EPA’s publicly available Toxics Release Inventory 

(TRI) data (Environmental Protection Agency, 2018b) and Superfund site data 

(Environmental Protection Agency, 2018a). The use of over 650 toxic chemicals, including 

TCE, is tracked by the EPA. Businesses manufacturing or using more than a specified 

threshold amount of any of these chemicals (and meeting certain other criteria) are required 

to submit yearly release reports to the EPA. Current and historic information about the 

location of these businesses, as well as the chemical types and amounts used by each, is 

provided to the public via the TRI data. The geocoded locations of all the Superfund 

hazardous waste sites, many of which have been contaminated by TCE, are also available 

through the EPA.

We employed the TRI and Superfund site location data to create a binary indicator of 

potential TCE exposure, around or before the time of Endicott’s TCE vapor exposure, for 

each CBG in SEER+. We classify a CBG as potentially exposed to TCE if (a) a facility 

using TCE in or before 2000 or a Superfund site is/was located within its boundaries or (b) a 

facility using TCE in or before 2000 or a Superfund site is/was located within 2 miles of its 

centroid. We allow a CBG to serve as a potential matched control for the Endicott CBGs if it 

is classified as having no potential for exposure to TCE.

Finally, for each CBG in SEER+, we have collected data from ESRI Business Analyst 

(ESRI, 2018) on the following potential confounders of the association between TCE 

exposure and cancer incidence (many overlap with those used to construct simulations): 

percent of the population age 65+ (P65+), percent of the population male (PMale), percent 

of the population white (PWhite), rural indicator (Rural), percent of the adult population 

unemployed (Unemploy), average commute time (Commute), median household income 

(Income), total dollars spent on smoking products as a portion of per capita income 

(MoneySmoke), percent of total dollars spent on food that was spent on food outside the 

home (MoneyFood), percent of the population that reports exercising at least 2 times per 
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week (Exercise), and percent of the population working in the agriculture, mining, 

construction, or manufacturing industries (Industry). A similar dataset could be constructed 

from US Census or American Community Survey data, if exclusively public data sources are 

desired. Because confounders should precede exposure, these confounder data come from 

the year 2000, just prior to the time that TCE vapor exposure was detected in Endicott.

4.2. CBG cancer incidence prediction and cSIR estimation

R code for the analysis is available at https://github.com/rachelnethery/causalSIR. Our first 

step in estimating the cSIR is to identify M matched control CBGs from SEER+ for each of 

the Endicott CBGs. We test different approaches to matching in search of a method that 

provides a reasonable compromise between our desire for (1) good confounder balance 

across exposure groups and (2) a substantial number of controls to stabilize the estimation. 

Some of these approaches involve the propensity score, the probability of exposure 

conditional on observed confounders, ei = P(Ti = 1|Xi). The distributions of the observed 

confounders in the exposed and unexposed groups are identical conditional on ei, making it 

a convenient one-dimensional measure that can be matched on to eliminate confounding 

(Rosenbaum and Rubin, 1983; Austin, 2011). In practice, the propensity score is unknown 

and must be estimated. We apply both 3:1 and 5:1 nearest neighbor matching to our data and 

for each ratio, 3 different distance metrics are tested: mahalanobis distance, distance in 

propensity scores estimated via logistic regression with linear terms, and distance in 

propensity scores estimated via logistic regression with splines (a generalized additive 

model). The logistic regressions have the form logit P Ti = 1 = γ0 + Xi
∗′γ1, where Xi

∗ is the 

usual vector of confounders in the linear version and a vector of penalized spline bases for 

each confounder in the generalized additive model. We focus on lower matching ratios here 

than in the simulations because large ratios like 20:1 do not provide the desired balance in 

these data.

Figure 2 shows the balance of each confounder before matching and after application of 

each of these matching methods (Rural, a binary variable, is not shown in the figure but is 

matched on exactly). The matching procedures dramatically improve the balance in most 

confounders. The different methods provide comparable results, and, for our analysis, we 

choose to use the matched data from the 5:1 matching on propensity scores estimated via 

linear model. Although the standardized differences in means after matching are not all less 

than the commonly recommended (but arbitrary) threshold of 0.2 (Linden and Samuels, 

2013), we are not concerned about these minor deviations from perfect balance, because we 

are also adjusting for the confounders in the analysis phase modeling. Note that 5:1 

matching produces a matched dataset with N = 42, i.e., seven exposed CBGs and 35 

unexposed CBGs.

Due to the spatial over-aggregation of the SEER data, the next step in the analysis is to apply 

the joint Bayesian model to predict the CBG kidney cancer and bladder cancer incidence for 

the matched controls outside NY (note that we utilize observed incidences for matched 

control CBGs within NY) and fit the loglinear model for cSIR estimation. We fit the 

prediction models using the CBG cancer incidence data from NY and the confounder 

variables described above as predictors. We exclude all the CBGs in the same county as 
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Endicott from the prediction model, because residents of nearby unexposed CBGs may be 

likely to work in the TCE-exposed areas (and thereby receive exposure). We also hold out 

data from six other NY counties to serve as a test set to evaluate the model’s out-of-sample 

predictive performance. In Section 3 of the Supplemental Materials, we provide the details 

of the model fitting, e.g. prior distribution choices and convergence checks, and the resulting 

point estimates and uncertainties, and we also study the in- and out-of-sample predictive 

performance of the models and compare them with a competing ad-hoc prediction method. 

We find that our models generally perform favorably to the competitor and produce 

reasonably accurate out-of-sample predictions. We use these models to collect posterior 

predictive samples of the kidney and bladder cancer incidence for the non-NY matched 

control CBGs. Figure 3 shows the posterior means and 95% credible intervals for the 

predicted incidences in the non-NY matched controls and the observed incidences in the 

Endicott CBGs and NY matched controls.

In the cSIR estimation models, all confounders are included besides Rural, because all 

CBGs in the matched dataset are non-rural. Details of the model fitting and results are 

provided in Section 4 of the Supplemental Materials, along with the descriptions and results 

of two sensitivity analyses. The cSIR estimate and 95% credible interval for kidney cancer 

are 0.75 (0.30, 1.50). Using the other 5 matching methods/ratios considered above, the 

kidney cancer cSIR estimates range from 0.61 to 0.87. None are statistically significant. We 

also applied the CDC’s SIR analysis as described in Section 3.2 to estimate the SIR for 

kidney cancer in the TCE-exposed area of Endicott, using all of NY state as the background 

population to compute the expected kidney cancer incidence. The resulting SIR and 95% 

confidence interval are 0.63 (0.17, 1.61).

For bladder cancer, the cSIR and 95% credible interval are 1.57 (0.89, 2.68). The estimates 

produced by the other 5 matching methods/ratios range from 1.24 to 1.54, with none 

statistically significant. Using the CDC’s method, the bladder cancer SIR estimate and 95% 

confidence interval are 1.63 (0.93, 2.65).

If we are willing to make the assumptions of SUTVA, ignorability, and causal consistency 

described in Section 2.2, then our results have a causal interpretation. The assumption of no 

unobserved confounding could be violated in this analysis. As in most studies, we do not 

have information about potentially important confounders such as diet, accessibility of 

health care, and exposure to other sources of pollution/contamination. To interpret our 

results as causal, we must assume that these factors are not confounders of the TCE 

exposure-kidney/bladder cancer relationship.

5. Discussion

In this paper, we have introduced a causal inference framework for cancer cluster analyses, 

which relies on a priori identification of sources of hazard that could cause increased cancer 

incidence. By constructing statistical analyses around exposure hypotheses rather than 

observed cancer outcomes, the SMCP associated with the traditional approach to cancer 

cluster investigations is resolved so that statistically valid results are possible. Moreover, this 
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approach allows us to directly ask and answer the question of interest– whether exposure to 

a specific hazard caused increased cancer incidence in a community.

We focus our analysis on a causal inference estimand, the causal SIR, and provide 

identifying assumptions. We propose a two-stage Bayesian model that resolves the problem 

of spatial over-aggregation in cancer incidence data. This model, applied to a matched 

dataset, allows the cSIR to be estimated from publicly available data. In simulations, our 

statistical approach was shown to provide dramatically improved results, i.e., less bias and 

better coverage, than the current approach to SIR analyses. Finally, we demonstrated the use 

of our method by applying it to investigate whether TCE vapor exposure, resulting from a 

chemical spill dating back the the 1970s, caused increased kidney or bladder cancer 

incidence in Endicott, NY during 2005–2009. Our method did not produce any statistically 

significant cSIR estimates. We note that the cSIRs estimated here should be interpreted as 

effects in the exposed CBGs, and due to the modifiable areal unit problem, results could 

change under different choices of areal units.

A direct comparison of our approach here and existing methods for testing for relationships 

between a point source and cancer risk, such as those of Diggle et al. (1997) and Wakefield 

and Morris (2001), is warranted. We first note that the previous literature on this topic does 

not take a causal inference approach, thus our work is the first to formally pursue a causal 

estimand and lay out causal identifying assumptions in this context. As noted in Section 1.2, 

one advantage of our methods compared to existing ones is that they provide flexible 

confounding adjustment and therefore strong parametric modeling assumptions are not 

required to achieve a causal interpretation. Another advantage is that our approach allows for 

cancer data from control areas to be spatially over-aggregated and can therefore be 

implemented using publicly available data. On the other hand, the approaches of Diggle et 

al. (1997) and Wakefield and Morris (2001) allow for the relationship between cancer risk 

and the point source to be modeled as a function of the distance between each unit and the 

point source. This may provide more information than our method, which dichotomizes 

exposure, in settings where exposure decreases monotonically as distance from a point 

source increases. However, in settings with diffuse contamination or when exposure does not 

decrease monotonically as distance from a point source grows, our approach may be more 

likely to detect relationships.

A possible concern about our proposed approach is related to the appropriateness of the 

SUTVA assumptions in this setting. One requirement of SUTVA is that there is only one 

“version” of exposure. In many investigations, some CBGs in the exposed area will be more 

highly exposed than others, leading to multiple different versions of exposure. Another 

requirement of SUTVA, referred to as “no interference”, is that the treatment status of one 

unit cannot affect the outcome of another unit. This assumption also may be dubious in 

many cancer cluster analyses, because within the exposed community, some people may live 

in one exposed CBG and work in another exposed CBG. Chronic exposure in one’s 

workplace may be just as likely to cause cancer as exposure in the home; therefore, the 

exposure status of the workplace CBG may impact the cancer incidence in the CBG of 

residence. This would be a violation of SUTVA. In such a setting, our method can still be 

used to evaluate associations between exposure and cancer incidence, but the results may not 
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be causal. Recently developed methods to handle multiple exposure classes (VanderWeele 

and Hernan, 2013; Yang et al., 2016; Lopez et al., 2017) and interference (Barkley et al., 

2017; Papadogeorgou et al., 2017) could be integrated into the causal SIR framework in 

future work.

While our method provides an improvement over existing methods for cancer cluster 

investigation, it has numerous limitations. First, although it avoids the SMCP and provides 

rigorous adjustment for confounding, other complicated issues that affect all cancer cluster 

investigations such as population migration are not directly addressed by this method. If 

substantial population migration has occurred in the community under study between the 

time of exposure and the time that cancer outcomes are investigated, then the results from 

this method may not be reliable and should not be interpreted as causal. Second, we rely 

heavily on the assumption that the results of our cancer incidence prediction models, fit on 

data from NY, are transportable to the SEER-covered areas. While we study the models’ 

predictive performance in the Supplemental Materials, broader validation is needed and, 

ideally, more small area cancer incidence data will soon be made public and can be used to 

build increasingly accurate prediction models. Moreover, our prediction model relies on a 

Poisson likelihood and should be extended to handle zero-inflation (for rare cancer types) 

and extra-Poisson variation (Ghosh et al., 2006; Özmen and Demirhan, 2010; Liu and 

Powers, 2012). More work is also needed to adapt this framework to the setting in which 

multiple exposures affecting a community may have synergistic effects on cancer incidence. 

In some contexts, small sample size of the matched data and a potentially large number of 

confounders may mean that causal methods for p > N need to be integrated into this 

approach.

Likely the most challenging aspects of applying these methods in real cancer cluster 

investigations will be (1) determining the population and time period exposed to a given 

source and (2) collecting reliable data. With regards to the former, we remark that the 

exposure hypotheses on which analyses are based do not have to be perfect nor unanimously 

agreed upon. First, multiple different potential exposures can be considered and analyzed 

(separately), i.e., a single exposure for investigation need not be settled on from the 

beginning. Moreover, while some research should be done regarding the area, time period, 

and cancer types reasonably associated with a given exposure, these determinations need not 

be set in stone in order to proceed with statistical analyses. Different reasonable 

specifications of population, time period, and cancer types could be tested and the results 

multiple comparisons adjusted accordingly, using standard multiple comparisons corrections 

like Bonferroni (Dunn, 1961).

Obtaining reliable data to carry out these analyses is a less forgiving endeavor. While a good 

deal of confounder data is readily available from the census, cancer incidence and exposure 

data are more limited. As described here, a few states are beginning to take the lead in public 

release of small area cancer incidence data. If this movement spreads, it stands to deliver 

huge improvements to the efficiency and reliability of cancer cluster investigations. 

Exposure data may be difficult to obtain for certain types of hazard, and its reliability is 

often dubious. For instance, the TRI data only represent businesses using large amounts of 

certain chemicals, and businesses self-report usage to the TRI database. Moreover, the TRI 
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data do not capture events like spills of chemicals that may put communities at highest risk. 

In order to carry out cancer cluster investigations with maximal rigor, more work is needed 

both to collect better data and to make the data more easily accessible.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Bladder cancer incidence rate per 100,000 population 2005–2009 by census block group for 

the TCE-exposed area of Endicott (red borders) and surrounding area.
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Fig. 2. 
Balance before matching and after 3:1 and 5:1 ratio matching on (a) the mahalanobis 

distance, (b) propensity scores estimated via linear model, and (c) propensity scores 

estimated via generalized additive model. Covariates are considered well-balanced if the 

absolute standardized difference in means is less than 0.2 (marked by the dashed line).
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Fig. 3. 
Predicted (a) kidney cancer incidence and (b) bladder cancer incidence and 95% credible 

intervals for matched control CBGs outside NY and observed incidences for Endicott CBGs 

and matched controls within NY.
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Table 1.

Simulation results comparing the proposed cSIR method with the standard cancer cluster SIR estimation 

method (CDC) and a similar Poisson regression approach (PR). Shown are the bias in the point estimate, the 

coverage rate of the true SIR for 95% confidence/credible intervals (Coverage), and the width of the 95% 

confidence/credible intervals (CI Width).

True SIR Method Bias Coverage CI Width

Simulation 1 1

CDC −0.00 0.96 0.70

PR 0.20 0.99 4.81

cSIR −0.02 0.94 0.66

Simulation 2 1

CDC 0.55 0.13 0.79

PR −0.27 0.99 5.86

cSIR −0.00 0.95 0.50

Simulation 3 1.5

CDC −0.54 0.09 0.58

PR 1.23 1.00 49.08

cSIR −0.05 0.94 0.87

Simulation 4 1.5

CDC 0.51 0.26 0.83

PR 3.76 0.99 112.96

CSIR −0.01 0.94 0.62
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