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Abstract

Mobile eye-tracking and motion-capture techniques yield rich, precisely quantifiable data that can 

inform our understanding of the relationship between visual and motor processes during task 

performance. However, these systems are rarely used in combination, in part because of the 

significant time and human resources required for post-processing and analysis. Recent advances 

in computer vision have opened the door for more efficient processing and analysis solutions. We 

developed a post-processing pipeline to integrate mobile eye-tracking and full-body motion-

capture data. These systems were used simultaneously to measure visuomotor integration in an 

immersive virtual environment. Our approach enables calculation of a 3D gaze vector that can be 

mapped to the participant’s body position and objects in the virtual environment using a uniform 

coordinate system. This approach is generalizable to other configurations, and enables more 

efficient analysis of eye, head, and body movements together during visuomotor tasks 

administered in controlled, repeatable environments.
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1 INTRODUCTION

Eye-tracking technology has advanced considerably in the past decade, in part due to 

increased affordability and decreased size of high-speed cameras and mobile recording 

devices. Early studies required uncomfortable instrumentation and fixed-head tasks, neither 

of which lend themselves to naturalistic use of gaze. Mobile eye-tracking has enabled more 

naturalistic studies with free head and body movement, for example, during walking [Tomasi 

et al., 2016]. This approach has great potential to inform our understanding of how humans 

acquire and use visual information in the wild, but data processing and analysis techniques 

have failed to keep pace.

Eye-tracking research is limited by the time and human resources required to analyze video-

based data, particularly as tasks increase in complexity and duration. Many studies still use 

frame-by-frame coding of areas of interest (AOIs) or events (hit, miss) [Geruschat and 

Hassan, 2005] rather than capitalizing on the increased temporal and spatial precision now 

available [Diaz et al., 2013]. Software-based solutions often focus on increasing the speed or 

efficiency of manual coding [Benjamins et al., 2018] rather than on automated approaches. 

While a few researchers have attempted to leverage advances in computer vision algorithms 

for automated object detection with some success [Brone et al., 2011; De Beugher et al., 

2014], these solutions historically have not performed well under suboptimal task conditions 

or are not sufficiently flexible.

Data acquisition challenges still exist, particularly under circumstances involving (1) 

unconstrained head or body movement, (2) special populations (e.g., children; those with 

behavioral or physical differences), or (3) recording of eye-tracking data in conjunction with 

other measures (e.g., motion capture, neuroimaging) or in complex environments (e.g., 

virtual reality, video games). Combined, these challenges limit the efficacy and 

generalizability of eye-tracking, and must be addressed in order to broaden and refine the 

use of this technology.

1.1 Measuring Eye Movement in Challenging Contexts

Solutions for analysis of gaze during unconstrained head and body movement typically fall 

into two categories: (1) coordinate-based, requiring information about the location of the 

participant in the world relative to target objects, and (2) target-based, which can be trained 

to detect and label objects of interest. Coordinate-based solutions require information about 

the participant’s location relative to the visual world, such as a local coordinate system that 

plots the participant’s gaze point on a scene camera video, or a global coordinate system like 

a motion-capture volume. Target-based solutions require that objects of interest be visible in 

a point-of-view video of the visual environment. Both have inherent challenges; an optimal 

solution would enable analysis of unconstrained head and/or body movement data relative to 

both eye movements and the environment.

Eye-tracking can be challenging in special populations with behavioral, cognitive, physical, 

or developmental differences. Known issues exist with regard to whether calibration of 

mobile eye-tracking systems are robust to perturbation or slipping, and how often they must 
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be re-calibrated [Niehorster et al., 2020]. These concerns are particularly relevant to 

populations whose inhibitory control and/or sensory needs may result in frequent adjustment 

of wearables (e.g., children with Autism Spectrum Disorder, ASD). Other concerns include 

measurement of pathological eye movement in clinical populations, for example 

schizophrenia [Morita et al., 2019] or ASD [Brandes-Aitken et al., 2018], where there are 

known oculomotor differences that are difficult to accommodate using standard algorithms 

for detection and annotation of eye movement events. As such, there is a need for data 

processing pipelines that are robust to these issues.

1.2 Integrating Mobile Eye-Tracking with Motion-Capture & Virtual Reality

The data output from mobile eye-tracking systems is often recorded in a local coordinate 

system (with the exception of systems that have proprietary add-on packages for head 

tracking). As a result, there is a need for efficient, flexible solutions to transform data from 

multiple local coordinate systems to one global coordinate system, so that these data can be 

analyzed in combination rather than isolation. This will facilitate more precise use of eye-

movement data for both measurement of gaze characteristics in research and gaze-controlled 

commercial applications (e.g., gaming, adaptive technology). Particularly in the case of 

virtual reality technology, this is critical given the need for high fidelity to reduce 

cybersickness and increase user tolerance.

2 METHOD

2.1 Participants

We compared eye-movement and body-movement data from two 7-year-old male children, 

one with ASD and one TD. These participants were selected from a sample obtained as part 

of a larger study (see Appendix B), for the purpose of demonstrating outcome measures 

obtained from our post-processing and analysis approach.

2.2 Apparatus

Testing was performed in an immersive virtual environment utilizing integrated mobile eye-

tracking (SMI ETG 2w) and motion-capture systems (Motion Analysis Corp.). Main 

specifications of the data collection systems, virtual environment, and tasks are described 

below; additional detail can be found elsewhere [Miller et al., 2017].

Mobile Eye-Tracking System: The SMI ETG 2.5w binocular eye-tracking glasses 

(SensoMotoric Instruments) have 3 digital cameras that record at a sampling rate of 60 Hz. 

The scene camera on the nose bridge of the glasses has a 60°horizontal × 46°vertical FOV 

and a 960 × 720 p resolution at 30 FPS. Two eye-tracking cameras on the bottom inner 

frame use pupil tracking with parallax compensation in a proprietary algorithm to yield a 3D 

gaze vector in a coordinate space relative to the scene camera. Data are recorded on a 

Samsung Galaxy S4 equipped with iView ETG data acquisition software. The glasses 

yielded real-time eye movement data for each eye independently and for a combined “gaze 

vector” with a spatial accuracy of 0.5°of visual angle. The glasses were calibrated using a 3-

point method for each participant, and calibration was verified using 13 targets in the virtual 

environment.
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The motion-capture system consisted of 12 Eagle-4 infrared cameras (Motion Analysis 

Corp.) that recorded the 3D coordinates (spatial accuracy = 0.5 mm) of 28 reflective markers 

placed on the participant’s body and the eye-tracking glasses at a sampling rate of 120 Hz. 

Data were streamed in real-time to a control computer equipped with the Cortex software 

suite (Motion Analysis Corp.), where they were visualized to ensure quality.

The Computer-Assisted Rehabilitation Environment Network (CAREN; Motek ForceLink) 

is an immersive virtual rehabilitation system used to generate virtual environments with 

static and dynamic targets and user-controlled objects. A battery of visuomotor integration 

tasks, described elsewhere [Miller et al., 2017], required participants to employ varying 

degrees of visuomotor integration depending on task complexity. The height of the virtual 

environment and objects in it was adjusted to the Y coordinate of a reflective marker located 

on the right top of the glasses frame to ensure that the visual experience was relatively 

uniform regardless of participant height.

2.3 Data Analysis

Eye-tracking Analysis: Automatic event-detection for most low-speed (< 240 Hz) eye-

tracking systems is based on a dispersion model with fixations, saccades and blinks as the 

primary events. In this model, saccades could include rapid pursuit eye movements. More 

sophisticated approaches are needed to analyze pursuit eye movement and subsequent gaze 

point in relation to the precise location and trajectory of objects (or their projected images) 

in the real world. For this reason, we are developing software to temporally and spatially 

align data captured by mobile eye-tracking with data from motion capture and visual 

projection systems.1

Temporal Alignment of Data: Alignment of data from motion-capture and the virtual 

environment with eye-tracking data could be achieved via manual annotation of the start of 

tasks in the eye-tracking scene camera videos. This approach is common, but inefficient, and 

introduces variable amounts of human error. Instead, we trained an algorithm to 

automatically identify objects of interest in videos, which we align with their presentation 

timing. We performed transfer learning on Inception V2 [Huang et al., 2017]. This neural 

network, originally trained on the COCO [Lin et al., 2015] image dataset, was fine-tuned to 

identify and generate bounding boxes for 24 objects, 12 of which are usable for temporal 

alignment with the VR presentation. Initially, we labeled approximately 2000 frames from 

the scene video using labelImg software [darrenl, 2021]. This included more than 150 

frames for each object used to automate temporal alignment. Images were split into 70% 

train and 30% test sets before transfer learning.

Spatial Alignment of Data: Objects in the virtual world are projected onto the inside of a 

half-cylinder screen, radius = 2.49m, with the participant at its axis, standing at global 

(motion-capture) coordinates (x,y,z)=(0,0,0). The virtual coordinate system is the same as 

the global system. We can easily compute the location of object projections (incidence on 

screen) given a point of view and the screen’s location, using just Pythagorean’s theorem. 

1We will make reusable components available to other researchers in a later stable version.
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Determining where the participant’s gaze is on the screen is more challenging. First, we 

have to learn an eye-tracking scene-camera model relative to three markers on the glasses. 

We define a glasses coordinate system, which includes those three markers, the camera’s 

scene viewpoint, and its orientation. The camera’s viewpoint and orientation are unknown 

and must be fit to the data collected.

We use a least squares method with the error (residual) between the virtual objects’ actual 

projection locations and their perceived locations computed based on their location in the 

scene-camera’s captured image and the (in-progress) learned camera model. We can 

compute the perceived projection locations by applying rigid-body transformation [Arun et 

al., 1987] and coordinate translation to the camera model based on the three glasses 

markers’ locations. This determines the point on the screen corresponding to the center pixel 

in our image and the image’s orientation. The screen location corresponding to other pixels 

is determined by the camera’s image resolution (960 × 720 pixels) and field of view (60 × 

46 degrees). Once the camera model is learned, we can easily determine where a 

participant’s gaze strikes the screen based on transformation of the camera model, as before, 

followed by computing the relative gaze angle given the recorded gaze pixel. This allows us 

to compute metrics to compare a participant’s gaze and a target location. (See Appendix A 

for an approach to derive relevant equations.)

3 RESULTS

3.1 Object Detection, Temporal Alignment, & Spatial Alignment Performance

The object detector’s recall on the test set was 97.4% for the fixation cross which appears 

between trials. (True positives are defined as correctly labeled bounding boxes where the 

intersection with the gold-standard bounds over their union (IoU) is 0.75+.) In each task, 

there are at least 14 cross presentations; so the probability of missing at least 50% of crosses 

on their first frame is 0.0267 < 10−12. Thus, the probability that we fail to detect a sufficient 

number of object appearances for temporal alignment is essentially zero. To perform 

effective spatial alignment, we only need a fraction of the thousands of image frames with 

target balls. Therefore, we filter out the detections that violate the symmetry of balls – the 

smaller of width or height must be at least 95% of the larger. The root mean squared error on 

the detected objects is 3.7 pixels, but the error is gaussian, so the simple mean error was 0.2 

pixels in our sample. The latter error is more relevant, since the alignment seeks a least 

squared error fit, allowing for accurate spatial alignment from the detected object locations. 

Using a Nvidia K80 GPU, it takes around 13.5 minutes to label five minutes of video (30 

FPS; 9000 frames). While time consuming, this requires no manual annotation and runs 

unattended. By contrast, manual labeling would take several hours.

3.2 Visuomotor Performance Metrics

Our approach yields a wide array of metrics designed to analyze and mine spatial and 

temporal patterns of gaze behavior during naturalistic tasks requiring visuomotor 

integration. Figure 1 presents a visualization of one such metric, distance-to-target, across a 

single trial for an interception task, which required the participant to move their body to 

position a user-controlled object in the path of an oncoming target object. In this task, 
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although average reaction time over trials was similar for participants (TD = 257 ms, ASD = 

234 ms), the average time-to-target was notably lower for the TD participant (483 ms) than 

for the participant with ASD (770 ms).

4 DISCUSSION

Our novel post-processing data integration pipeline is generalizable to other configurations 

using a head-mounted scene camera and 3D coordinate data for objects of interest in real or 

virtual environments. We were able to successfully demonstrate its efficacy as an approach 

for generating precise visuomotor performance metrics with a lower cost of time and human 

resources typically required for manual coding of eye-tracking data. We also demonstrated 

the value of this approach for use with challenging populations (e.g., children, ASD), where 

unconstrained head and body movement may make manual temporal alignment and coding 

of areas of interest difficult or impossible. We presented participant data here for the 

purposes of illustrating the rich temporal and spatial performance metrics that can be 

automatically generated, rather than for the purpose of evaluating clinically-significant 

differences. However, it is clear that our approach is useful for examining differences 

between typical and pathological visuomotor task performance.

This approach has the potential to serve as a tool to improve efficiency of data analysis for 

other researchers interested in maximizing the temporal and spatial resolution of mobile eye-

tracking solutions in combination with other technologies such as motion-capture and virtual 

reality. Future directions include refinement of our object detection approach to include edge 

detection, enabling more precise analysis of spatial accuracy, and use of this approach to 

automatically detect visuomotor biomarkers in clinical populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CCS CONCEPTS

• Human-centered computing; • General and reference; • Computing methodologies;
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Figure 1: 
Distance from gaze point to the target object (solid line) and the user-controlled object 

(UCO, dashed line) are shown during a single trial of the intercept task for a TD child (top 

panel) and a child with ASD (bottom panel). Vertical lines in the top panel correspond to 

images showing the target object (red ball), the UCO (blue ball), and gaze (yellow circle).
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