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A Data-Driven Functional Mapping of the Anterior
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Although the anterior temporal lobe (ATL) comprises several anatomic and functional subdivisions, it is often reduced to a
homogeneous theoretical entity, such as a domain-general convergence zone, or “hub,” for semantic information.
Methodological limitations are largely to blame for the imprecise mapping of function to structure in the ATL. There are two
major obstacles to using fMRI to identify the precise functional organization of the ATL: the difficult choice of stimuli and
tasks to activate, and dissociate, specific regions within the ATL; and poor signal quality because of magnetic field distortions
near the sinuses. To circumvent these difficulties, we developed a data-driven parcellation routine using resting-state fMRI
data (24 females, 64 males) acquired using a sequence that was optimized to enhance signal in the ATL. Focusing on patterns
of functional connectivity between each ATL voxel and the rest of the brain, we found that the ATL comprises at least 34 dis-
tinct functional parcels that are arranged into bands along the lateral and ventral cortical surfaces, extending from the poste-
rior temporal lobes into the temporal poles. In addition, the anterior region of the fusiform gyrus, most often cited as the
location of the semantic hub, was found to be part of a domain-specific network associated with face and social processing,
rather than a domain-general semantic hub. These findings offer a fine-grained functional map of the ATL and offer an ini-
tial step toward using more precise language to describe the locations of functional responses in this heterogeneous region of
human cortex.
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The functional role of the anterior aspects of the temporal lobes (ATL) is a contentious issue. While it is likely that different
regions within the ATL subserve unique cognitive functions, most studies revert to vaguely referring to particular functional
regions as “the ATL,” and, thus, the mapping of function to anatomy remains unclear. We used resting-state fMRI connectiv-
ity patterns between the ATL and the rest of the brain to reveal that the ATL comprises at least 34 distinct functional parcels
that are organized into a three-level functional hierarchy. These results provide a detailed functional map of the anterior tem-
\poral lobes that can guide future research on how distinct regions within the ATL support diverse cognitive functions. /

Introduction regions within the ATL appear to support different functions,
although their precise anatomic locations remain to be deter-
mined. For example, the anterior aspects of the superior tempo-
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posterior to the poles (Mion et al., 2010), to its current location
in the anterior aspects of the fusiform gyri (Lambon Ralph, 2013;
Hoffman et al., 2014; Binney et al., 2016). Thus, while each of the
above studies suggests that different regions within the ATL may
subserve unique functions, they all revert to vaguely referring to
particular functional regions as the ATL, and the mapping of
function to anatomy remains unclear.

Although functional magnetic resonance imaging (fMRI)
provides adequately high spatial resolution for finding fine-
grained functional subdivisions within the ATL, two major
obstacles have hampered this effort. One obstacle is the poor
temporal signal-to-noise ratio (tSNR) in this area, particularly in
its most ventral and anterior aspects that lie adjacent to the sphe-
noidal sinuses (Devlin et al., 2000; De Panfilis and Schwarzbauer,
2005; Axelrod and Yovel, 2013). Indeed, previous attempts to use
resting-state fMRI (rs-fMRI) to find functional parcellations
across the whole brain leave the most ventral, medial, and ante-
rior parts of the temporal lobe ill defined because of poor tSNR
in this area (Power et al.,, 2011; Yeo et al., 2011; Glasser et al.,
2016). A second, but not lesser, problem is that we lack a clear
idea of which experimental paradigms, stimuli, and tasks will
evoke dissociable responses in the ATL. Indeed, the inconsisten-
cies found across the empirical findings that do suggest func-
tional dissociations within the ATL may be due, in part, to the
complex response profiles found in this area of the brain (Olson
et al., 2007; Simmons and Martin, 2009; Bonner and Price,
2013). Therefore, the challenge of eliciting dissociable functional
responses in the ATL is not one of poor signal quality alone, but
also of using the proper methods, tasks, and stimuli in fMRI
experiments.

A solution to the latter problem is to use rs-fMRI to reveal
functionally relevant patterns of activity covariance between
brain regions at rest. In this study, we developed a rigorous,
data-driven rs-fMRI approach to parcellate the ATL in 88 adult
participants. Our rs-fMRI approach combines an fMRI acquisi-
tion sequence that is optimized to enhance tSNR in the ATL
with a data-driven parcellation method that focuses on correla-
tions between voxels in the ATL with voxels in the rest of the
brain. Our approach intrinsically incorporates stability and repli-
cability of the parcellation by keeping only network distinctions
that agree across halves of the data over multiple random itera-
tions. After identifying distinct functional parcels within the
ATL, we examined the hierarchical organization of the parcels
and the distinct patterns of connectivity between each parcel and
whole-brain functional networks.

Materials and Methods
Experimental design

Participants. Eighty-eight individuals with no history of psychiatric
or neurologic disorders [mean (SD) age, 21.2 years (7.6 years); 24
females] participated in the experiment. Subsets of the resting-state data
from these individuals have been used in a number of our previous studies
(Gotts et al., 2012; Ramot et al., 2017; Jasmin et al., 2019; Power et al., 2019).
All participants gave informed consent under a National Institutes of
Health Institutional Review Board-approved protocol (10M-0027; clinical
trial #NCT01031407).

MRI data acquisition. Scanning was completed on a Signa HDxt 3.0
T scanner (GE Healthcare) at the National Institutes of Health Clinical
Center NMR Research Facility. For each participant, T2*-weighted blood
oxygen level-dependent images covering the whole brain were acquired
using an eight-channel receive-only head coil and a gradient echo single-
shot echoplanar imaging (EPI) sequence [repetition time (TR)= 3500 ms;
echo time = 27 ms; flip angle = 90° 42 axial contiguous interleaved slices per
volume; 3.0 mm slice thickness; field of view (FOV)=22cm; 128 x 128

J. Neurosci., July 14,2021 - 41(28):6038-6049 - 6039

acquisition matrix; single-voxel volume=1.7 x 1.7 x 3.0 mm°]. An acceler-
ation factor of 2 (ASSET) was used to reduce gradient coil heating during
the session. This acquisition has been used in a number of our previous
studies where we documented its success in imaging the ATL (Simmons et
al., 2010; Gotts et al., 2012). Indeed, when compared with data from a well
known resting-state parcellation (Yeo et al., 2011), this optimized acquisi-
tion resulted in significantly stronger tSNR in the anterior temporal lobes
(Fig. 1). In addition to the functional images, a high-resolution T1-weighted
anatomic image [magnetization-prepared rapid acquisition gradient echo
(MPRAGE)] was obtained (124 axial slices; 1.2 mm slice thickness;
FOV =24 cm; 224 x 224 acquisition matrix).

Procedure. During the resting scans, participants were instructed to
relax and keep their eyes fixated on a central cross. Each resting scan
lasted 8 min and 10 s for a total of 140 consecutive whole-brain volumes.
Independent measures of cardiac and respiratory cycles were recorded
during scanning for later artifact removal.

Data preprocessing. All data were preprocessed using the AFNT soft-
ware package (Cox, 1996). First, the initial three TRs from each EPI scan
were removed to allow for T1 equilibration. Next, 3dDespike was used
to bound outlying time points in each voxel within 4 SDs of the time se-
ries mean, and 3dTshift was used to adjust for slice acquisition time
within each volume (to #=0). 3dvolreg was then used to align each vol-
ume of the resting-state scan series to the first retained volume of the
scan. White matter and large ventricle masks were created from the
aligned MPRAGE scan using Freesurfer (Fischl et al, 2002). These
masks were then resampled to EPI resolution, eroded by 1 voxel to pre-
vent partial volume effects with gray matter voxels, and applied to the
volume-registered data to generate white matter and ventricle nuisance
regressors before spatial blurring. Scans were then spatially blurred by a
6 mm Gaussian kernel (full-width at half-maximum) and divided by the
voxelwise time series mean to yield units of percentage signal change.

The data were denoised using the ANATICOR preprocessing
approach (Jo et al.,, 2010). Nuisance regressors for each voxel included
the following: six head-position parameter time series (three translation,
three rotation), one average eroded ventricle time series, one “localized”
eroded white matter time series (averaging the time series of all white
matter voxels within a 15-mm-radius sphere), eight RETROICOR time
series (four cardiac, four respiration) calculated from the cardiac and re-
spiratory measures taken during the scan (Glover et al., 2000), and five
respiration volume per time series to minimize end-tidal CO, effects
from deep breaths (Birn et al., 2008). All regressors were detrended with
a fourth-order polynomial before denoising, and the same detrending
was applied during nuisance regression to the voxel time series. Finally,
the residual time series were spatially transformed to standard anatomic
space (Talairach-Tournoux) at both 2 and 6 mm? isotropic resolutions
for computational speed in later analyses.

Statistical analysis

Parcellation. Our goal was to parcellate the anterior temporal lobes
based on the connectivity patterns between ATL voxels and voxels in the
rest of the brain. To ensure that the boundaries between parcels were sta-
ble, we required that they replicate across halves of the data over several
random assignments. The overall approach of the data analysis involved
10 iterations of randomly splitting the participants into halves, calculat-
ing the average ATL-to-non-ATL functional connectivity matrices in
each group at a range of thresholds, then parcellating the matrices into
modules and quantifying the repeatability of the parcellations across the
groups at each threshold. The results from each iteration were then com-
bined, and the parcellation was evaluated. To accomplish this, we made
masks of the cortical ATL voxels, subcortical ATL voxels (i.e., the hippo-
campus and amygdala), and non-ATL voxels (all cortical voxels outside
of the ATL masks) using the Freesurfer cortical and subcortical segmen-
tations (Fig. 2A4; Filipek et al., 1994; Fischl et al., 2004). The cortical ATL
mask covered the anterior temporal lobe cortex from the anterior tip of
the temporal pole back to the Talairach coordinate, y = —35. The poste-
rior cutoff of y = —35 was chosen to ensure that our ATL mask included
the anterior portion of the fusiform gyrus that has been discussed as a
possible domain-general semantic hub (Mion et al, 2010; Lambon
Ralph, 2013). Voxels with poor tSNRs (<10) and prominent blood vessel
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Improved tSNR in the ATL and MTL masks. We compared the tSNR in our data (N'=88) to a representative subset of the data used in the Yeo et al. (2011) parcellation study

(N=100). To do so, we downloaded the data used by Yeo et al. (2011; i.e., from the FCON1000 dataset) and processed them in the same way that we did our data (i.e., using 3dDespike,
3dTshift, and 3dvolreg in AFNI). Next, in each dataset, we calculated the tSNR in each voxel (i.e., time series mean divided by time series SD). Finally, we warped the tSNR maps to Talairach
space and resampled the voxels to 2 mm?. A, The average tSNR in the ATL is stronger in our data (top) compared with that in the Yeo et al. (2011) study (bottom). The dashed rectangles out-
line the ATL region in both datasets. B, The average tSNR in each participant from the ATL and MTL masks, respectively, in both studies. The tSNR values in our data were significantly greater
than those in the Yeo et al. (2011) data in both masks. In the box plots, each circle is a datapoint and the outermost horizontal lines represent the minimum and maximum values. The center
line in each box plot represents the median, while the bottom and top lines of the boxes represent the 25th and 75th percentiles. The boundaries of the horizontal notches inside the 25th and

75th percentiles depict the 95% confidence limits of the median.

signal (identified from an SD map of the volume registered EPI data;
Kalcher et al., 2015) were removed from the masks. The cortical masks
(ATL and non-ATL) were then downsampled to 6-mm’-resolution to
speed up analysis run times, while the subcortical mask remained at 2
mm?, because of its much smaller starting volume.

We searched for functional parcels within the ATL using the
InfoMap clustering algorithm (Rosvall and Bergstrom, 2008, 2011). On
each of 10 iterations, the 88 participants were randomly split in half and
group-average correlation matrices between ATL and non-ATL voxels
were calculated for each half of data (separately for the cortical ATL and
subcortical voxels with the non-ATL voxels). These matrices were made
square by correlating each column of the non-ATL x cortical ATL (or
subcortical ATL) matrix with themselves. The real-valued correlation
matrices were then thresholded into binary (0 or 1) undirected matrices
at a range of threshold values (top percentages of connections: 50, 60, 70,
80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, and 99.5%). The thresholded
matrices of each half were then clustered using the InfoMap algorithm
to form optimal two-level partitions (i.e., the optimal solution found on
100 searches). Parcels were counted as replicating across halves on each
iteration if the Dice coefficient, namely twice the volume of the intersec-
tion divided by the sum of the volumes in each half [(2*|XNY|)/(|X|+]|
Y|)], was >0.5, and the volume of the intersection was at least 2% of the
size of the cortical or subcortical ATL mask, respectively (retaining the
intersection of the two data halves). After repeating the above steps for
each of the 10 iterations, one average parcellation of the retained parcels
was formed, keeping voxels from any parcel that co-occurred in >50%
of the iterations. Agreement curves were constructed across thresholds,
and the threshold with the maximal split-half agreement and number of
detected parcels (separately for cortical and subcortical ATL) was identi-
fied. We found that the split-half agreement and the number of detected
parcels were jointly optimized at the 90% threshold in the cortical ATL
mask and at the 85% threshold for the subcortical ATL mask (Fig. 2B),

resulting in five cortical, and three subcortical, parcels. The detected par-
cels at the optimized thresholds in both the cortical and subcortical ATL
masks were then assigned to each voxel in the original 2 mm® ATL mask
(including both cortical and subcortical parcellations) using a best-
match criterion. Specifically, for each detected parcel, the average pattern
of functional connectivity in the non-ATL mask was calculated with the
corresponding ATL voxels. The pattern of functional connectivity
between each ATL voxel and the non-ATL voxels was then compared
with those of all of the detected parcels, assigning the parcel with the
most similar pattern (Pearson correlation) to that voxel, provided the
best match was within a threshold level of similarity (R* > 0.5; i.e., the
winning parcel pattern shared at least 50% of the variance with that of
the voxel).

Since the cortical and subcortical voxels were combined before
assigning a final parcel label to each voxel, cortical voxels could, in prin-
ciple, be labeled as belonging to a “subcortical” parcel, and vice versa,
according to the best-match criterion. The final parcellation contained
an additional parcel that corresponded to poor tSNR voxels in the most
ventral slice of the data acquisition. This presumed “noise” parcel was
removed from the parcellation before further data analyses. Next, we ran
a second iteration of the InfoMap algorithm on each of the eight parcels
separately (Fig. 2C). Refocusing the size of the parcellation space to treat
each of the eight initial parcels as smaller cohorts magnified the func-
tional differences within each parcel, thus allowing the parcellation algo-
rithm to detect more fine-grained differences between the voxels in each
ATL parcel (Rosvall and Bergstrom, 2008). Within each parcel, we com-
pleted the same split-half routine that was used on the entire ATL mask
in the first iteration and then combined the parcels in the same way
(described above). We did not run a third iteration of the parcellation
routine because the search space for each parcellation at this stage was
too small to obtain reliable results that survived our requirements for
replication across halves of the data. Therefore, the results from the
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The initial parcellation routine. A, The first iteration of the parcellation focused on the cortical (top) and subcortical (bottom) masks separately. The cortical mask extended from

the anterior tip of the temporal pole back to the Talairach coordinate, y = —35. The subcortical mask included the hippocampus and amygdala. B, The agreement curves were constructed
across thresholds, picking the threshold that maximized split-half agreement and the number of detected networks (separately for cortical and subcortical masks). After 10 iterations, one aver-
age parcellation of the retained networks was formed, keeping any network that occurred in at least 50% of iterations. The split-half agreement and number of detected networks were jointly
optimized at the 90% threshold in the cortical mask (top) and at the 85% threshold for the subcortical mask (bottom). The error in the line plots represents =1 SEM. , After the first pass of
the InfoMap algorithm, the ATL was divided into eight bilateral parcels (top). We then ran the same parcellation routine on each of the eight parcels, in tumn, to further fractionate each parcel

(middle and bottom).

second iteration of our parcellation represent the most fine-grained map
obtainable using our method with the current data.

ATL-to-whole-brain connectivity analysis. The connectivity between
a particular ATL parcel and each voxel across the whole brain was iden-
tified through correlation analyses and statistical comparisons. First, in
each participant, we correlated each voxel time series in the whole brain
with the average time series of each of the 34 ATL parcels. We then used
a winner-take-all approach, in which a voxel was labeled as preferentially
connected to an ATL parcel if (1) the correlation coefficient was greater
than the correlation between that voxel and all other parcels, (2) the
maximum correlation value was >0.25, and (3) the maximum correla-
tion was >2 SDs above the mean of all correlation values in that voxel.
Second, we compared the whole-brain connectivity patterns between
selected pairs of ATL parcels by calculating the correlation between the
time series from each parcel and whole-brain voxels across participants,
then by z scoring the correlation coefficients and using a paired-sample ¢
test across participants in each voxel. We then corrected each parcel con-
nectivity map for the number of whole-brain comparisons performed
using false discovery rate (FDR; g <0.001, p <0.001), resulting in a
whole-brain map of preferred connectivity to each parcel in the pair. See
Figure 5B for the results of a pairwise comparison of the connectivity
patterns from parcels that overlap the anterior and posterior hippo-
campi, respectively. We also compared a parcel that overlaps the bilateral
anterior fusiform gyrus at the MNI y-coordinates that have been
reported as candidate locations of the domain-general semantic hub in
the anterior fusiform gyrus [y = —26 (Mion et al, 2010); y = —21
(Binney et al., 2016)] with a parcel that overlaps the parahippocampal
gyrus. See Figure 6 for the results, which are displayed along with the
outlines of functionally defined face-selective and scene-selective cortical
regions of interest (ROIs). These ROIs were adopted from a previously
published study that used functional localizers and an algorithmic,
group-based method to define category-selective ROIs (Julian et al.,
2012).

Hierarchical clustering. Hierarchical relationships among the 34
detected parcels were examined using k-means cluster analyses with an
approach tantamount to an inversion of the parcellation procedure. The
average pattern of functional connectivity between each detected ATL
parcel and the non-ATL voxels was entered as a column in a parcel pro-
totype matrix (with rows as non-ATL voxels and detected parcels as col-
umns). This prototype matrix was then converted into a square 34 x 34
matrix by correlating it with itself, thus representing the correlation
among all possible combinations of parcel prototypes. The square

prototype correlation matrix was iteratively analyzed with k-means clus-
ter analysis at progressively larger numbers of clusters (k), and each
choice of k was repeated 100 times for stability. The above k-means clus-
tering routine was first performed on randomly assigned halves of the
data over 10 iterations to generate an agreement curve across k clusters.
The split-half agreement was used to identify local maxima in the agree-
ment across halves. Next, we ran the k-means clustering routine again
on the full dataset and evaluated the clustering at the points of local max-
ima (i.e., k=8) in the split-half agreement curve. We then compared the
k clustering to the results from the first iteration of the InfoMap parcella-
tion, which resulted in eight parcels, to determine the structure of the hi-
erarchy in the ATL parcels. Since the k=8 solution was consistent with
the results from the first iteration of our parcellation routine (see
Results), we treated that parcellation as the intermediate level of the hier-
archy. We then ran the k-means clustering routine on the eight clusters
of the intermediate level to obtain the upper level of the hierarchy.
Specifically, we entered the average pattern of functional connectivity
between each of the eight clusters and the non-ATL voxels as a column
in a cluster prototype matrix (with rows as non-ATL voxels and clusters
as columns). This prototype matrix was then converted into a square
8 x 8 matrix by correlating it with itself. The square prototype correla-
tion matrix was iteratively analyzed with k-means cluster analysis at pro-
gressively larger numbers of clusters, and each choice of k was repeated
100 times for stability. In addition to the k-means approach, we eval-
uated the 8 x 8 matrix using hierarchical clustering. To do so, the square
network prototype correlation matrix was converted to Euclidean dis-
tances using the MATLAB pdist function and then submitted to hier-
archical clustering analysis using the MATLAB linkage function. Results
were then viewed as dendrograms. We first confirmed that the hierarchi-
cal clustering solution was stable by splitting the data in half and com-
paring the dendrograms from each random half. After confirming that
the dendrogram was indeed stable across the halves of data, we created a
dendrogram using the full dataset (which matched the results of the indi-
vidual halves).

The connectivity patterns between the upper levels of the hierarchy
(i.e., clusters) and voxels across the whole brain were identified using a
partial correlation analysis. In each participant, we calculated the correla-
tion between each voxel time series in the whole brain and the average
time series from each ATL cluster in a particular level of the hierarchy,
while partialling time series from the remaining clusters at the same
level. This resulted in all voxels being given a connectivity value for each
cluster that reflected the unique variance explained by each cluster. We
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Figure 3.  The parcellation of the ATL results in 34 distinct functional parcels. The ATL was
divided into 34 parcels based on the patterns of functional connectivity between voxels in
the ATL and the rest of the brain. The flat maps in the bottom panel are labeled to orient
the reader. V1, primary visual cortex; A1, primary auditory cortex; Pole, temporal pole.

then transformed the coefficients using the Fisher z transform and used
paired-sample ¢ tests to compare the connectivity value of each cluster
against zero in each voxel across participants. We then corrected each
cluster connectivity map using the FDR (g < 0.001, p < 0.001). Finally,
the thresholded whole-brain maps for each cluster were directly com-
pared with each other using paired t tests. A voxel was labeled as selec-
tively connected to the cluster that explained significantly more variance
than all of the other clusters in that voxel (FDR: g < 0.001, p < 0.001 for
all comparisons).

Data availability
Data and code used to parcellate the ATL are publicly available online at
Figshare.

Results

The resting-state parcellation of the ATL reveals 34 distinct
functional regions

The first step in our analysis was to identify the highest number
of unique functional parcels within the ATL based on the intrin-
sic connectivity between voxels in the ATL and voxels in the rest
of the brain. After optimizing the split-half agreement and the
number of detected parcels in the subcortical and cortical ATL
masks separately (Fig. 2B), we identified eight large bilateral
functional parcels (Fig. 2C). Next, we treated each parcel as a
smaller unique cohort of voxels and repeated the parcellation
scheme on each of the eight parcels separately (Fig. 2C). We
again optimized the split-half agreement and the number of
detected parcels in each of the eight original parcels separately to
ensure that the boundaries between the new parcels were stable.
All together, we identified 34 distinct functional parcels within
the ATL cortex, hippocampus, and amygdala (Fig. 3). Since each
ATL parcel was identified by its unique pattern of connectivity
to voxels outside of the ATL, examining these patterns of con-
nectivity can provide a more complete picture of how the ATL
parcels are situated within functional networks and thus provide
a clue to the function of each parcel. Therefore, we examined the
functional connectivity between each of the 34 ATL parcels and
voxels across the whole brain using a winner-take-all approach.
The whole-brain connectivity map displays an orderly mosaic of
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Figure 4.  Connectivity between the ATL parcels and the rest of the brain. The whole-brain
connectivity map was derived from the winner-take-all analysis, in which the 34 ATL parcels
(outlined in black) were treated as seeds and each voxel across the brain was labeled as pref-
erentially connected to an ATL parcel if (1) the correlation coefficient was greater than the
correlation between that voxel and all other parcels, (2) the maximum correlation value was
>(0.25, and (3) the maximum correlation was >2 SDs above the mean of all correlation val-
ues in that voxel.

functional networks across the cortex (Fig. 4). In the next section,
we present an analysis that focuses on the connectivity between
particular parcels and the rest of the brain.

In addition to the cortical ATL mask, we also included the
amygdala and hippocampus in our parcellation (Fig. 2A). In
addition to the contribution of these medial temporal masks
to our parcellation of the cortex, we were able to identify func-
tional parcels within the medial temporal structures themselves.
Specifically, five parcels overlapped the amygdala and hippocam-
pus. These five parcels separated the amygdala from the hippo-
campus and further divided the hippocampus into tail, body,
and head (Fig. 5A). The divisions within the hippocampus are
consistent with an anterior-to-posterior functional gradient
within the hippocampus, often referred to as “long-axis speciali-
zation” (Fanselow and Dong, 2010; Ranganath and Ritchey,
2012; Nadel et al.,, 2013; Poppenk et al., 2013; Sekeres et al., 2018;
Grady, 2020).

Differential connectivity between specific ATL parcels

To further examine how the parcels relate to known functional
brain networks, we compared the connectivity patterns between
two pairs of parcels in turn. The first pair of parcels we chose to
compare are bilateral and overlap the anterior (i.e., head) and
posterior (ie., tail) hippocampus, respectively (Fig. 5A). We
chose these parcels to serve as a proof of concept for using this
analysis strategy to understand the functions of particular parcels
because functional dissociations between the anterior and poste-
rior hippocampi have been widely reported in prior studies (for
review, see Fanselow and Dong, 2010; Ranganath and Ritchey,
2012; Nadel et al.,, 2013; Poppenk et al., 2013; Sekeres et al., 2018;
Grady, 2020). Consistent with prior research, we found that the
anterior hippocampus is more connected to regions involved in
social and emotional processing (Fanselow and Dong, 2010;
Gotts et al.,, 2012), such as the amygdala (Adolphs, 2010), the
medial and ventromedial prefrontal cortices (Carmichael and
Price, 1995; Frith, 2007), and the anterior aspects of the superior
and middle temporal gyri (Olson et al., 2007; Saleem et al., 2008;
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Parcellation of the hippocampus and amygdala. A, The parcellation within the medial temporal masks separated the amygdala (purple) from the hippocampus and further divided

the hippocampus into head (orange), body (magenta), and tail (pink). The brown parcel overlaps mostly rhinal cortex and inferolateral hippocampus. B, The differential connectivity patterns
from the head (orange) and tail (pink) of the hippocampus displayed on the inflated cortical surface (the parcels are visible in the volume in A).

Simmons and Martin, 2009; Simmons et al., 2010; Mellem et al.,
2016; Fig. 5B, orange). By contrast, the posterior hippocampus is
more connected to regions that represent specific episodic
details, such as people, actions, places, and objects (Gilmore et
al.,, 2021a,b; Grady, 2020). Such regions are often referred to as
“high-level visual cortex” and are located in the ventral and lat-
eral occipitotemporal cortex and the posterior parietal cortex
(Culham and Valyear, 2006; Martin, 2007, 2016; Kanwisher and
Dilks, 2013; Fig. 5B, pink). The pattern of differential connectiv-
ity between the anterior and posterior hippocampal parcels
is also consistent with an anterior-to-posterior gradient from
coarse (gist) to fine-grained representations of spatial details
(Poppenk et al., 2013; Brunec et al., 2018; Sekeres et al., 2018).
Therefore, the differential connectivity patterns between the an-
terior and posterior hippocampal parcels are consistent with the
large body of existing research on the anterior-to-posterior func-
tional gradient within the hippocampus, thus demonstrating the
potential utility of our method for uncovering the functions of
particular parcels in anterior temporal cortex.

Next, we used the same pairwise comparison method to test
the following two competing theories about the function of the
anterior fusiform gyrus: one theory claims that a functional
region overlapping the anterior fusiform gyrus is a domain-spe-
cific face processor for representing individual identity (e.g., rec-
ognizing famous faces; Sergent et al., 1992; Moscovitch et al.,
1997; Kuskowski and Pardo, 1999; Collins and Olson, 2014;
Duchaine and Yovel, 2015); while the other theory claims that
the bilateral anterior fusiform gyrus is a domain-general seman-
tic hub (Mion et al., 2010; Lambon Ralph, 2013; Hoffman et al.,
2014; Binney et al., 2016). Specifically, we compared the connec-
tivity patterns between the parcel that overlaps the bilateral ante-
rior fusiform gyrus and another that overlaps the bilateral
posterior parahippocampal gyrus (Fig. 6). We chose to contrast
the anterior fusiform gyrus with the parahippocampal parcel
because parahippocampal cortex is known to be scene selective
(Aguirre et al., 1998; Epstein and Kanwisher, 1998). If the ante-
rior fusiform gyrus is a domain-general semantic hub, then this
region should show massive connectivity throughout the cortex
to support the claim of a convergence zone for all semantic infor-
mation—especially to modality-specific regions (as predicted by
the hub and spoke model; Patterson et al., 2007; Lambon Ralph
et al., 2010; Pobric et al., 2010; Hoffman and Lambon Ralph,
2011). In contrast, if the anterior fusiform is a domain-specific
face processor, then it should be preferentially connected to face-
selective regions and likely to the social cognition network as
well when compared with the parahippocampal parcel. By con-
trast, the parahippocampal parcel should be preferentially

connected to the visual scene-processing system. Consistent with
the anterior fusiform gyrus being a domain-specific face proces-
sor, we found that it is indeed preferentially connected to regions
involved in face processing, such as the fusiform face area (FFA)
and occipital face area (OFA; Kanwisher and Barton, 2011;
Duchaine and Yovel, 2015; Ramot et al., 2019), and social cogni-
tion, such as the medial and ventromedial prefrontal cortex
and the anterior aspects of the superior and middle temporal
gyri (Frith and Frith, 2007; Olson et al., 2007; Adolphs, 2010;
Simmons et al., 2010; Gotts et al., 2012; Fig. 6B,C, teal). Also as
predicted, the parahippocampal parcel is preferentially con-
nected to regions that overlap with the scene-selective cortical
(Baldassano et al., 2013; Epstein and Baker, 2019), such as the
parahippocampal place area& (PPA), retrosplenial complex
(RSC), also known as the middle place area (Silson et al., 2016),
and occipital place area (OPA; Fig. 6B,C, purple). These results
suggest that the anterior fusiform gyrus is a domain-specific face
processor rather than a domain-general semantic hub.

The hierarchical organization within the ATL

The initial parcellation of the ATL resulted in eight parcels that
were then further fractionated into 34 functional parcels; thus,
we asked whether functional areas in the ATL are hierarchically
organized into at least two levels. We confirmed that the initial 8
parcels represent an upper level of a functional hierarchy in the
ATL, while the 34 parcels are the bottom of the hierarchy, using
k-means clustering and a split-half analysis approach similar to
the one described above. Specifically, we split the data in half
across 10 random assignments and created a 34 x 34 correlation
matrix based on the connectivity profiles from the 34 parcels to
the rest of the brain in each half of the data. We then compared
the k-means solution in each half of the data and found a local
maximum of agreement in the k-means curves at k=8 clusters
(Fig. 7A). Next, we examined the full dataset using k-means and
found that the k=8 cluster solution explained ~90% of the var-
iance and that it agreed well with the original eight parcels found
in the first iteration of the parcellation algorithm (i.e., 85% of the
parcels (29 of 34) from the k-means solution were clustered in
accordance with the original eight parcels). Therefore, we con-
cluded that the eight parcels from the first iteration of our parcel-
lation routine correspond to an upper level of a functional
hierarchy in the ATL.

Next, we asked whether the eight functional parcels can be
further clustered into larger functional units. We used k-means
to directly cluster the eight parcels of the upper level of the hier-
archy in the full dataset. A trade-off of cluster number and var-
iance explained by k-means clustering in the 8 x 8 correlation
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Figure 6.

Differential connectivity between the anterior fusiform gyrus and parahippocampal gyrus. 4, A coronal view in the volume (y = —35) of the parcels that overlap the anterior fusi-

form gyrus (FG; teal) and parahippocampal gyrus (PHG; purple), respectively. B, The differential connectivity patterns from the FG and PHG displayed on the inflated cortical surface (the parcels
are outlined with dotted lines and labeled). C, The connectivity patterns from each parcel displayed on the flattened cortex with face-selective and scene-selective regions outlined in solid black
(the ATL parcels are outlined with dotted lines). The connectivity pattern from the FG parcel overlapped with face-selective ROls, while the connectivity pattern from the PHG parcel overlapped
scene-selective ROIs. The category-selective ROIs were defined in a separate study using functional localizers and an algorithmic, group-based method for defining regions of interest (Julian et

al,, 2012).

matrix of the eight parcels revealed a prominent “elbow” at the
choice of k=4 clusters, with ~80% of the variance explained
(Fig. 7B). Together, these results indicate that the ATL is organ-
ized hierarchically into at least three levels (Fig. 7C).

Finally, we examined how the upper levels of the hierarchy
(four and eight clusters) are situated within functional networks
across the whole brain (Fig. 8). To do so, we measured the
unique variance explained by each cluster across the whole
brain by calculating the partial correlation between average
time series of each ATL cluster and the time series of each
voxel in the whole brain, while removing the contribution of
the remaining parcels. We then FDR corrected (p <0.001,
q <0.001) the connectivity map for each cluster and com-
bined the cluster maps using a winner-take-all approach in
each voxel. A voxel was labeled as selectively connected to
the cluster that explained significantly more variance than
each of the other clusters in that voxel (FDR: ¢<0.001,
p <<0.001 for all comparisons). Reducing the dimensionality
of the ATL to eight and four clusters, respectively, reveals a
pattern of connectivity across the brain that approximates
known large-scale functional systems (Power et al., 2011;
Yeo et al., 2011), such as the default-mode network (Fig. 8,
red; Raichle et al., 2001); frontoparietal attention networks
(Fig. 8, green; Fox et al., 2006; Ptak, 2012); visuospatial, spa-
tial memory, and navigation systems (Fig. 8, pink; Sheldon et
al., 2016; Epstein et al., 2017); and sensory and motor areas (Fig.
8, blue). The functional connectivity profiles of parcels in the ATL
at each level of the hierarchy are consistent with involvement in spe-
cialized brain systems. When viewed as a whole, the hierarchical or-
ganization of the ATL and the connectivity between functional
parcels in the ATL and the rest of the brain reveal 34 distinct func-
tional parcels (Fig. 3) that are arranged into bands that extend from

the posterior temporal lobe to the most anterior portions of the
temporal pole (Fig. 8).

Relationships among ATL parcels

Our final analysis focused on how the 34 parcels are related to
one another at different levels of the functional hierarchy.
Specifically, we asked whether the parcellation of the ATL
reflected a region composed of discrete functional regions or the
presence of continuous functional gradients that peak and/or
overlap at different point in the cortex. To test these competing
possibilities, we investigated the full ATL voxel x voxel correla-
tion matrix (Fig. 9A) and asked how well voxels from different
parcels clustered with one another using a principal component
analysis (PCA) to visualize their relative similarities in a more
continuous fashion. We first used PCA to visualize the voxels
from the four parcels that make up the blue cluster in the middle
level of the hierarchy. We then ran PCA again on four parcels
from different mid-level functional clusters. First, visual inspec-
tion of the correlation matrix in Figure 9A shows stronger corre-
lations among voxels from the same parcel compared with
correlations between voxels from different clusters (i.e., the cor-
relations within parcels on the diagonal are stronger than corre-
lations across parcels off of the diagonal midline), and this
discontinuous structure of the correlation matrix reflects the par-
cellation at all three levels of the hierarchy (e.g., the 34 parcels
are visible as warm-colored squares along the diagonal, which
are contained in eight larger squares; Fig. 7, colored outlines
match the color scheme of the hierarchical clustering results).
Furthermore, the PCA resulted in sharp separations of voxels
from different parcels, rather than “fuzzy” transitions across the
parcels (Fig. 9B). While some degree of overlap across the parcels
is expected because of the spatial blurring applied to the data and
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The hierarchical organization of the ATL. A, The k-means clustering on separate halves of the data over multiple random assignments revealed a local maximum of agreement in

the k-means curves at approximately k=8 clusters (left). The graph on the right displays the same data represented as the difference between the actual and shuffled data. The dotted line in
each graph highlights the local maximum at k= 8. B, We then ran k-means and hierarchical clustering on the eight parcels and found that they could be further grouped into four clusters.
The dendrogram shows the relationships of the clusters at the upper levels of the hierarchy. C, The k-means analysis revealed a three-level functional hierarchy in the ATL. At the top of the hi-
erarchy, the ATL is separated into four functional networks. These four networks are divided into eight networks at the intermediate level, which then further divide into 34 parcels. The colors

in the hierarchical tree correspond to the colors used in the brain maps for all figures.

Four
clusters

Eight
clusters

Figure 8.

Connectivity between the upper levels of the ATL hierarchy and the rest of the brain. The whole-brain functional connectivity maps for the upper levels of the hierarchy (four and

eight clusters) show how the ATL clusters (outlined in black) are situated within whole-brain functional networks. The brain maps were created using a partial correlation analysis and paired-
sample t tests to compare the connectivity value of each cluster against zero in each voxel at the group level (FDR: ¢ << 0.001, p << 0.001). The thresholded maps for each cluster were then
directly compared with each other using paired ¢ tests, and a voxel was labeled as selectively connected to the cluster that explained significantly more variance than each of the other clusters

in that voxel (FDR: ¢ < 0.001, p << 0.001 for all comparisons).

the group averaging, the central tendencies of the parcels are clearly
distinct, with the highest densities of points covering distinct parts
of the PCA space. As expected, the separation of the parcels is even
more apparent in the across-cluster analysis compared with the
within-cluster analysis, which seems to reflect the hierarchical orga-
nization uncovered in the parcellation. Together, these results sug-
gest that the ATL comprises distinct functional regions rather than
ones that differ continuously along functional gradients.

Discussion

We developed a data-driven parcellation scheme that used rest-
ing-state fMRI data and focused specifically on the ATL. Our
scheme addressed methodological issues, such as poor tSNR in

the most ventral and anterior aspects of the temporal lobes
(Power et al., 2011; Yeo et al.,, 2011; Glasser et al., 2016), and thus
provides the most precise functional connectivity profile of the
temporal lobes to date, especially in the temporal poles. We
found 34 distinct functional parcels that represent the bottom
level of a functional hierarchy and are organized into eight and
then four clusters at the upper levels. At these upper levels of the
hierarchy, the parcels are organized into long bands that span
the ATL from the posterior edge of our mask into the temporal
pole. Together, our parcellation of the ATL is inconsistent with a
brain region that subserves a singular cognitive function, such as
a domain-general semantic hub, and highlights the importance
of adopting more precise methods and language when studying
functional divisions within the ATL.
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Our parcellation of the ATL into
many distinct functional regions is con-
sistent with prior task-based studies that
report a wide range of cognitive functions
localized to the ATL (Grabowski et al,,
2001; Olson et al., 2007; Patterson et al.,
2007; Simmons et al., 2010; Peelen and
Caramazza, 2012; Mesulam et al., 2013;
Lambon Ralph, 2013; Malone et al., 2016;
Mellem et al,, 2016; Wang et al., 2017).
However, while many of these studies
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report peak coordinates for a particular
cognitive function, they all ultimately
refer to the functional region as “the
ATL.” Our parcellation is at odds with
this way of using the moniker ATL to
refer to a functional region of cortex.
Instead, future studies should be more
specific when referring to the localization
of neural activation, so that we can better
map function to structure within the
ATL. Each of the parcels found here is
effectively a candidate functional region
of interest for future studies and, given
arguments that long-range connectivity is responsible for func-
tional selectivity (Mahon and Caramazza, 2011; Plaut and
Behrmann, 2011; Stevens et al., 2015; Saygin et al., 2016; Murty
et al., 2020), the pattern of connectivity between each parcel and
the rest of the brain may provide important clues to its function.
The pairwise comparison of functional connectivity patterns
between parcels that overlap the anterior fusiform and parahip-
pocampal gyrus, respectively, is a specific example of how exam-
ining the connectivity patterns of ATL parcels can advance our
understanding of their functions. Prior studies have identified
the anterior fusiform gyrus as a candidate location of a domain-
general semantic hub (Mion et al,, 2010; Hoffman et al., 2014;
Lambon Ralph, 2013; Binney et al,, 2016). However, when we
directly compared the connectivity patterns of a parcel that over-
laps the anterior fusiform gyrus with another that overlaps the
parahippocampal gyrus, we found that the anterior fusiform
gyrus is connected to face-selective cortices, including the FFA
and OFA in the ventral face stream (Duchaine and Yovel, 2015)
and regions in the social cognitive network (Gotts et al., 2012),
rather than to diverse functional and sensory systems across the
brain (i.e., the spokes), while the parcel overlapping the parahip-
pocampal gyrus is preferentially connected to regions that are
involved in scene processing, including the PPA, OPA, and RSC
(Epstein and Baker, 2019). Another recent study reported a lat-
eral-to-medial organization in a region overlapping the left ante-
rior fusiform gyrus, with successful decoding of animals in a
lateral region and successful decoding of tools in a medial region
(Malone et al., 2016). Thus, rather than the anterior fusiform
gyrus being a domain-general semantic hub, patterns of connec-
tivity between it and the rest of the brain suggest that it is more
likely a continuation of the domain-specific ventral visual path-
way that begins in early visual cortex and continues into occipi-
totemporal cortex, potentially terminating in the temporal poles
(Anzellotti et al., 2011; Skipper et al., 2011; Kravitz et al., 2013).
Our results are also inconsistent with the broader claim that
the ATL semantic hub is a convergence zone of functional gra-
dients that represents multiple sensory modalities and categories
of knowledge (Binney et al., 2012; Rice et al., 2015) for several
reasons. First, as mentioned above, such a region should show

Figure 9.

Relationships between ATL parcels. 4, The full ATL voxel x voxel correlation matrix shows stronger correlations
between voxels from the same parcel compared with correlations between voxels from different clusters (i.e., the correlations
on the diagonal are stronger than the off-diagonal). The colored square outlines around the eight mid-level clusters match
the color scheme of the hierarchical parcellation result in Figure 7. B, PCA performed on the correlation matrix of voxels from
parcels all from the same (left) or different (right) cluster s one level up in the hierarchy. On the left, the four “within-cluster”
parcels make up the blue square in the top left comer of the correlation matrix in A. Parcels from the same functional cluster
one level up in the hierarchy are separated by sharp boundaries rather than fuzzy transitions between the clusters. The sharp
differentiation of parcels is even more apparent when using PCA to cluster parcels from different functional clusters (right).
The color scheme for the parcels in B are arbitrary and do not relate to the colors in Figure 7. The points in the scatterplot
are a randomly chosen group of 25% of the voxels from each parcel.

widespread connectivity across the brain to diverse functional
and sensory systems (i.e., the spokes). However, we do not find
such a massively connected parcel in the ATL. Second, our find-
ing that adjacent parcels in the anterior fusiform and parahippo-
campal gyri were connected to separate category-selective
networks suggests a sharp boundary between functional regions
rather than two points along a functional continuum.
Furthermore, using PCA, the voxels from each parcel clustered
into clearly separable groups rather than gradually transitioning
from one parcel to the next. Together, these results suggest that
the ATL comprises discrete regions with dissociable functions
rather than being a graded semantic hub.

While the results of our parcellation are similar to previous
resting-state parcellations that focused on the entire cortex
(Power et al., 2011; Yeo et al., 2011; Glasser et al., 2016), our use
of a scan sequence that was optimized to enhance tSNR in the
temporal poles and our decision to focus specifically on the ATL
resulted in important new information about the functional or-
ganization of the ATL. First, the most apparent difference
between our parcellation and prior attempts is in the temporal
poles, where signal dropout is usually a problem. For example,
while the Yeo et al. (2011) 17-network solution partitions a large
portion of the temporal pole (anterior to y = —10 and ventral to
z = —20) into only two diffuse parcels, our approach found that
the temporal pole fractionated into several parcels, even at the
upper levels of the functional hierarchy. Second, our decision to
treat the voxels in the ATL as a cohort separate from the rest of
the cortex had the effect of enhancing the functional differences
within the ATL (Rosvall and Bergstrom, 2008). The combina-
tion of these two analysis choices resulted in an improved par-
cellation of the ATL with the most apparent differences in the
temporal poles, where the boundaries of our parcellation seem
to better approximate those of cytoarchitectonic subregions
(Ding et al., 2009; Pascual et al., 2015). Additionally, our data-
driven approach allowed us to uncover functional regions
within the ATL, instead of relying on predefined regions of in-
terest to examine the functional connectivity of particular
regions in the ATL (e.g., Jackson et al., 2016).

Another recent study that used rs-fMRI to parcellate the full
temporal lobe came to a different solution than the one we report
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here (Jackson et al., 2018). In that study, the temporal lobe was
parcellated into two functional clusters: a posterior parcel that
included the superior temporal, inferior temporal, and posterior
fusiform gyri, and an anterior parcel that included a large portion
of the ventrolateral anterior temporal lobe and the medial tem-
poral gyrus. The discrepancy between this parcellation and our
results stems mainly from the authors” decision to force the tem-
poral lobe to have a low-dimensional structure by using a spec-
tral reordering technique (Johansen-Berg et al, 2004). The
authors then probed these clusters and concluded that the pri-
mary axis of functional organization in the temporal lobe is from
“modality-specific” processes supported by posterior regions to
“modality-general” processes in anterior regions. By contrast,
two findings from our analyses suggest that such a posterior-to-
anterior distinction is not the primary axis of functional organi-
zation in the temporal lobe. First, the cluster organization is or-
thogonal to the anterior-posterior axis at the upper levels of the
functional hierarchy. Specifically, both the four- and eight-cluster
solutions, and the connectivity between each ATL cluster and the
rest of the brain, show the temporal lobe functionally organized
into bands that extend from the posterior temporal lobe into the
temporal pole (Fig. 8). These bands are coarsely aligned with
the sulci and gyri and are organized from dorsal to ventral along
the lateral surface and from medial to lateral on the ventral sur-
face of the temporal lobes. Second, the pairwise comparison
between parcels that overlap the anterior fusiform gyrus and
parahippocampal gyrus, respectively, resulted in connectivity
profiles that extend back into the posterior temporal and occipi-
tal cortex and overlap category-selective functional regions (Fig.
6B,C), thus suggesting that modality-specific and category-spe-
cific processing influences the organization of both posterior and
anterior regions in the temporal lobe. Understanding the func-
tional properties that influence the organization of the temporal
lobes will require further research.

In conclusion, our parcellation reveals a fine-grained map of
functional parcels within the ATL and shows how these parcels
are organized into a three-level functional hierarchy. Together,
our results uncover a complex topology of functionally distinct
regions within the ATL and provide a roadmap for better under-
standing the functional organization of the anterior portions of
the temporal lobes (Martin et al., 2014). But, perhaps most
importantly, the results presented here are compelling evidence
that the term ATL does not actually refer to a functional region
of cortex and thus should not be referred to as a locus of cogni-
tive processing in our cognitive theories.
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