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Neuropeptide secretion from dense-core vesicles (DCVs) controls many brain functions. Several components of the DCV exo-
cytosis machinery have recently been identified, but the participation of a SEC1/MUNC18 (SM) protein has remained elusive.
Here, we tested the ability of the three exocytic SM proteins expressed in the mammalian brain, MUNC18-1/2/3, to support
neuropeptide secretion. We quantified DCV exocytosis at a single vesicle resolution on action potential (AP) train-stimulation
in mouse CNS neurons (of unknown sex) using pHluorin-tagged and/or mCherry-tagged neuropeptide Y (NPY) or brain-
derived neurotrophic factor (BDNF). Conditional inactivation of Munc18-1 abolished all DCV exocytosis. Expression of
MUNC18-1, but not MUNC18-2 or MUNC18-3, supported DCV exocytosis in Munc18-1 null neurons. Heterozygous (HZ)
inactivation of Munc18-1, as a model for reduced MUNC18-1 expression, impaired DCV exocytosis, especially during the ini-
tial phase of train-stimulation, when the release was maximal. These data show that neurons critically and selectively depend
on MUNC18-1 for neuropeptide secretion. Impaired neuropeptide secretion may explain aspects of the behavioral and neuro-
developmental phenotypes that were observed in Munc18-1 HZ mice.
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Significance Statement

Neuropeptide secretion from dense-core vesicles (DCVs) modulates synaptic transmission, sleep, appetite, cognition and
mood. However, the mechanisms of DCV exocytosis are poorly characterized. Here, we identify MUNC18-1 as an essential
component for neuropeptide secretion from DCVs. Paralogs MUNC18-2 or MUNC18-3 cannot compensate for MUNC18-1.
MUNC18-1 is the first protein identified to be essential for both neuropeptide secretion and synaptic transmission. In hetero-
zygous (HZ) Munc18-1 neurons, that have a 50% reduced MUNC18-1expression and model the human STXBP1 syndrome,
DCV exocytosis is impaired, especially during the initial phase of train-stimulation, when the release is maximal. These data
show that MUNC18-1 is essential for neuropeptide secretion and that impaired neuropeptide secretion on reduced MUNC18-
1expression may contribute to the symptoms of STXBP1 syndrome.

Introduction
Neuropeptides control diverse brain functions such as memory,
appetite, and mood (Cropper et al., 2018; Comeras et al., 2019;

Miranda et al., 2019), but the mechanisms that drive neuro-
peptide release from dense-core vesicles (DCVs) remain
poorly understood. The principles of secretory vesicle exo-
cytosis are well conserved and first characterized in yeast
(Novick and Schekman, 1979; Novick et al., 1980, 1981;
Aalto et al., 1993; Protopopov et al., 1993). Four canonical
components appear to be essential in all types of regulated
exocytosis: three SNARE proteins, of the (1) SNAP/SEC9
family; (2) the synaptobrevin/VAMP/SNC family; and (3)
the syntaxin/SSO1/2 family; and (4) a SEC1/MUNC18 (SM)
protein (Toonen and Verhage, 2003, 2007; Jahn and
Scheller, 2006; Südhof and Rothman, 2009; Südhof, 2013;
Kaeser and Regehr, 2014). While two of these canonical
components have recently been identified for DCV exocy-
tosis in mammalian neurons (Shimojo et al., 2015; Arora et
al., 2017; Hoogstraaten et al., 2020), the participation of an
SM protein has remained elusive.
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Table 1. Statistical analysis summary and experimental design

Measurement Condition
Value
(mean 6 SEM) n p value Statistical test (test value)

DCV exocytosis per cell;
Figure 1J

WT
Munc18-1null
(conditional)

41.46 24.9
0.4626 0.877

4 (21)
4 (13)

**p= 0.0024 Mann–Whitney test (53.5)

Neurite length;
Figure 2D

Munc18-1null
(1) 1 MUNC18-1
(2) 1 MUNC18-2
(3) 1 MUNC18-3

23776 160.4
24806 245.1
27206 324.2

4 (38)
4 (39)
4 (37)

n.s.: 1 vs 2, 1 vs 3,
2 vs 3

Kruskal–Wallis with Dunn’s
correction (0.040)

DCV exocytosis per cell;
Figure 2G

Munc18-1null
(1) 1 MUNC18-1
(2) 1 MUNC18-2
(3) 1 MUNC18-3

62.16 10.6
7.056 4.01
0.246 0.09

4 (38)
4 (39)
4 (37)

n.s.: 2 vs 3
***p, 0.001: 1 vs 2,
1 vs 3

Kruskal–Wallis with Dunn’s
correction (65.8)

DCV poolsize;
Figure 2H

Munc18-1null
(1) 1 MUNC18-1
(2) 1 MUNC18-2
(3) 1 MUNC18-3

39716 327.7
35956 522.0
43816 558.4

4 (38)
4 (39)
4 (37)

n.s.: 1 vs 2, 1 vs 3,
2 vs 3

Kruskal–Wallis with Dunn’s
correction (2.15)

Release fraction;
Figure 2I

Munc18-1null
(1) 1 MUNC18-1
(2) 1 MUNC18-2
(3) 1 MUNC18-3

0.01916 0.0039
0.00306 0.0019
0.0006 0.000

4 (38)
4 (39)
4 (37)

n.s.: 2 vs 3
***p, 0.001: 1 vs 2,
1 vs 3

Kruskal–Wallis with Dunn’s
correction (65.3)

Early DCV exocytosis;
Figure 3D

WT
Munc18-1 HZ

0.2386 0.032
0.1176 0.026

3 (30)
3 (26)

**p= 0.0069 Mann–Whitney test
(225.5)

DCV exocytosis per cell;
Figure 3E

WT
Munc18-1 HZ

79.16 15.7
57.26 8.9

3 (30)
3 (26)

n.s. p= 0.502 Mann–Whitney test
(336.5)

DCV poolsize;
Figure 3F

WT
Munc18-1 HZ

36426 411.6
35286 432.2

3 (30)
3 (26)

n.s. p= 0.702 Mann–Whitney test (471)

Release fraction;
Figure 3G

WT
Munc18-1 HZ

0.03066 0.0070
0.02556 0.0058

3 (30)
3 (26)

n.s. p= 0.598 Mann–Whitney test (437)

DCV exocytosis delay;
Figure 3H

WT
Munc18-1 HZ

8.16 0.9
10.66 0.8

3 (30)
3 (26)

*p= 0.0438 Mann–Whitney test (427)

DCV exocytosis Stim. 1;
Figure 4C

WT
Munc18-1 HZ

1186 26.9
29.56 5.00

4 (35)
4 (41)

***p= 0.0003 Mann–Whitney test
(366.5)

DCV exocytosis delay;
Figure 4E

(1) WT 1st Stim.
(2) HZ 1st Stim.
(3) WT 2nd Stim.
(4) HZ 2nd Stim.

6.06 0.38
6.66 0.36
3.06 0.30
3.56 0.24

4 (35)
4 (40)
4 (35)
4 (39)

n.s.: 1 vs 2, 3 vs 4
***p, 0.001: 1 vs 3,
2 vs 4

Kruskal–Wallis with Dunn’s
correction (58.8)

DCV exocytosis Stim. 2;
Figure 4F

WT
Munc18-1 HZ

1056 35.7
33.96 5.44

4 (35)
4 (41)

**p= 0.0028 Mann–Whitney test
(430.5)

Potentiation;
Figure 4G

WT
Munc18-1 HZ

0.976 0.10
1.606 0.20

4 (35)
4 (41)

**p= 0.0077 Mann–Whitney test (423)

Poolsize;
Figure 4H

WT
Munc18-1 HZ

42246 339
38886 360

4 (35)
4 (41)

n.s. p= 0.223 Mann–Whitney test (600)

Release fraction Stim. 1;
Figure 4I

WT
Munc18-1 HZ

0.03486 0.0079
0.01046 0.0024

4 (35)
4 (41)

**p= 0.0028 Mann–Whitney test (430)

Release fraction Stim. 2;
Figure 4J

WT
Munc18-1 HZ

0.02846 0.0078
0.01206 0.0024

4 (35)
4 (41)

*p= 0.0416 Mann–Whitney test
(521.5)

DCV exocytosis meta-analy-
sis;

Figure 5C

WT
Munc18-1 HZ

86.76 15.5
31.56 3.88

7 (67)
7 (70)

***p= 0.0006 Mann–Whitney test (1551)

DCV poolsize meta-analysis;
Figure 5D

WT
Munc18-1 HZ

39466 265.0
37396 275.2

7 (67)
7 (70)

n.s. p= 0.338 Mann–Whitney test (2122)

Neurite length;
Figure 5E

WT
Munc18-1 HZ

25256 152.6
21856 134.3

7 (70)
7 (72)

n.s. p= 0.0631 Mann–Whitney test (2064)

Release fraction;
Figure 5F

WT
Munc18-1 HZ

0.02846 0.0049
0.01296 0.0022

7 (67)
7 (70)

**p= 0.0039 Mann–Whitney test (1675)

BDNF-pHluorin exocytosis
Stim. 1;

Figure 6C

WT
Munc18-1 HZ

2336 31.0
1186 13.2

4 (45)
4 (41)

*p= 0.0230 Mann–Whitney test (659)

BDNF-pHluorin exocytosis
Stim. 2;

Figure 6D

WT
Munc18-1 HZ

1826 24.0
1276 16.3

4 (45)
4 (41)

n.s. p= 0.1336 Mann–Whitney test
(748.5)

Potentiation BDNF-pHluorin;
Figure 6E

WT
Munc18-1 HZ

0.8786 0.061
1.1756 0.108

4 (45)
4 (41)

*p= 0.0300 Mann–Whitney test (671)

(Table continues.)
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In mammals, seven SM proteins are expressed: mSly1,
mVPS33A, mVPS33B, mVPS45, MUNC18-1, MUNC18-2, and
MUNC18-3. The first four control internal membrane traffick-
ing, while the three MUNC18 proteins control exocytosis (for a
review, see Toonen and Verhage, 2003). MUNC18 proteins bind
syntaxins(Thurmond et al., 1998; Misura et al., 2000; Kauppi et
al., 2002; Dulubova et al., 2007; Burkhardt et al., 2008; Bin et al.,
2013), promote docking of secretory vesicles (Voets et al., 2001;
de Wit et al., 2009) and probably serve as a template for SNARE-
complex assembly, which drives exocytosis (Parisotto et al., 2014;
Sitarska et al., 2017; Jiao et al., 2018; Meijer et al., 2018; Wang et
al., 2019; André et al., 2020). MUNC18-2 acts in blood platelets,
cytotoxic T lymphocytes, natural killer cells and mast cells (Côte
et al., 2009; Hackmann et al., 2013; Gutierrez et al., 2018;
Cardenas et al., 2019); MUNC18-3 in adipocytes (Tamori et al.,
1998; Thurmond et al., 2000); and MUNC18-1 in chromaffin
cells and the posterior pituitary (Voets et al., 2001; Korteweg et
al., 2005) and in synaptic vesicle (SV) exocytosis in neurons
(Verhage et al., 2000). In other cell types, such as lung mucus
cells and pancreatic b -cells, multiple MUNC18 paralogs support
different phases of secretion in the same pathway (Oh and
Thurmond, 2009; Oh et al., 2012; Lam et al., 2013; Jaramillo
et al., 2019). In neurons, all three MUNC18 paralogs are
expressed, but MUNC18-1 has a;10-fold higher expression and
is the only paralog that supports neurotransmission (Verhage et
al., 2000; Yue et al., 2014; Zeisel et al., 2015; He et al., 2017;
Santos et al., 2017). Which SM-protein(s) support DCV exocyto-
sis is unknown.

To identify which SM protein(s) support DCV exocytosis in
neurons, we analyzed DCV fusion with single vesicle resolution
using three fluorescent DCV-fusion reporters in primary neu-
rons from homozygous and heterozygous (HZ) Munc18-1 null
mutant mice. We found that Munc18-1 inactivation abolished
neuropeptide release and that expression of MUNC18-2 or
MUNC18-3 did not restore DCV exocytosis. HZMunc18-1 inac-
tivation reduced DCV exocytosis. We conclude that neurons
critically and specifically depend on MUNC18-1 for neuropep-
tide secretion.

Materials and Methods
Animals
Animal housing and breeding was in line with institutional and Dutch
governmental guidelines and all procedures were approved by the ethical
committee of the Vrije Universiteit University/Vrije Universiteit Medical
Center (license number: DEC-FGA 11-03 and AVD112002017824).

Munc18-1lox/lox mice (Heeroma et al., 2004) and Munc18-1 null mice
[Munc18-1 knock-out (KO); Verhage et al., 2000; Toonen et al., 2006b]
were generated as described before. To obtain Munc18-1 conditional KO
(cKO) primary cultures, Munc18-1lox/lox mice were time-mated and P1
pups were used for dissection of the hippocampi. For Munc18-1 wild-
type (WT), Munc18-1 KO, and Munc18-1 HZ primary cultures,
Munc18-1 HZ mice were time-mated and embryonic day (E)18 pups
were collected via caesarean section, after which they were used for dis-
section of the hippocampi. All pups were genotyped before culturing and
were of unknown sex.

Neuron culture
Preparation of dissociated hippocampal neuron cultures was performed
as reported before (De Wit et al., 2009; Farina et al., 2015). In brief, iso-
lated hippocampi were digested with 0.25% trypsin (Life Technologies)
for 20min at 37°C in HBSS (Sigma) with 10 mM HEPES (Life
Technologies). After 3� washing and trituration, 1000–2000 neurons
were plated per well onto pregrown glia microislands. These were gener-
ated by stamping agarose coated 18 mm glass coverslips with a solution
of 0.5mg/ml poly-D-lysine (Sigma), 3.5mg/ml rat tail collagen (BD
Biosciences), and 17 mM acetic acid onto which 6.000 rat glia were plated
(Mennerick et al., 1995; Wierda et al., 2007).

Viruses
All constructs were generated with sequence verification, cloned
into a pLenti vector containing a Synapsin promotor. To obtain
Munc18-1 cKO and control neurons, Cre recombinase and defec-
tive Cre (deltaCre; Kaeser et al., 2011; Persoon et al., 2019) were
delivered into Munc18-1lox/lox neurons via lenti-virus particles at
day in vitro (DIV)8. Imaging was performed at DIV15, when synap-
tic transmission was absent, but before neuronal degeneration
occurred. Lentiviral neuropeptide Y (NPY)-mCherry was used as a
marker for neuropeptide release as reported before (van de
Bospoort et al., 2012; Persoon et al., 2018) and Synaptophysin-
pHluorin as a marker for synaptic transmission (Granseth et al.,
2006).

To rescue Munc18-1 KO neurons with the paralogs MUNC18-1,
MUNC18-2, or MUNC18-3, we used previously described
MUNC18-1, MUNC18-2, and MUNC18-3 plasmids (Toonen et al.,
2006b; He et al., 2017; Santos et al., 2017) with Cre-EGFP co-
expressed via a T2A cleavage-peptide sequence. Cre-EGFP fluores-
cence is confined to the nucleus and therefore does not preclude
pHluorin-based DCV exocytosis analysis. Munc18-1 KO neurons
were infected with these paralogs at DIV0 to ensure neuronal sur-
vival and viral concentrations were adjusted until similar survival
rates were observed between conditions. For Munc18-1 KO rescue
experiments and Munc18-1 HZ experiments, NPY-pHluorin and
brain-derived neurotrophic factor (BDNF)-pHluorin were used as
described before (De Wit et al., 2009; van de Bospoort et al., 2012;
Farina et al., 2015; Persoon et al., 2018, 2019).

Table 1. Continued

Measurement Condition
Value
(mean 6 SEM) n p value Statistical test (test value)

BDNF-pHluorin exocytosis
delay;

Figure 6G

(1) WT 1st Stim.
(2) HZ 1st Stim.
(3) WT 2nd Stim.
(4) HZ 2nd Stim.

4.76 0.2
5.26 0.3
2.56 0.1
2.86 0.2

4 (45)
4 (41)
4 (45)
4 (40)

n.s.: 1 vs 2, 3 vs 4
***p, 0.001: 1 vs
3, 2 vs 4

Kruskal–Wallis with Dunn’s
correction (83)

DCV poolsize BDNF-pHluorin;
Figure 6H

WT
Munc18-1 HZ

39476 275.1
35146 236.7

4 (45)
4 (41)

n.s. p= 0.2895 Mann–Whitney test
(669.5)

BDNF-pHluorin release
fraction Stim. 1;

Figure 6I

WT
Munc18-1 HZ

0.05866 0.0066
0.03726 0.0043

4 (45)
4 (41)

*p= 0.0449 Mann–Whitney test (690)

BDNF-pHluorin release
fraction Stim. 2;

Figure 6J

WT
Munc18-1 HZ

0.04666 0.0055
0.03836 0.0046

4 (45)
4 (41)

n.s. p= 0.3920 Mann–Whitney test (823)

The conditions, values, sample sizes, p values, and statistical test are represented for each measurement. n = number of independent experiments (number of cells); n.s. = non-significant, p values were calculated in
GraphPad prism
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Western blotting
Munc18-1 null (KO) neurons were infected at
DIV0 with Munc18-1, Munc18-2, or Munc18-
3 containing lentiviral particles and harvested
by scraping in ice-cold PBS at DIV14. Samples
were centrifuged (12,000 rpm, 5min) and lysed
in Laemmni sample buffer containing 2%
SDS (VWR chemicals, M107), 10% glycerol
(Merck, 818709), 0.26 M b -mercaptoethanol
(Sigma, M3148), 60mMTris-HCl (Serva,
37180) pH 6.8, and 0.01% bromophenol
blue (Applichem, A3640). E18 brains from
Munc18-1 KO and WT littermate and the
spleen from an E18 WT embryo were tritu-
rated in ice-cold PBS before lysis in Laemmni
sample buffer. Lysates were separated on 8%
SDS-polyacrylamide gels. Proteins were trans-
ferred overnight at 150mA and 4°C via wet-
blot transfer. Blocking was done with 2% BSA
(Acros Organics, 268131000) in PBS with 0.1%
Tween 20 for 4 h at room temperature (RT).
Blots were incubated with polyconal Munc18-1
(SySy 116003; Cijsouw et al., 2014; 1:1000),
Munc18-2 (SySy 116102; 1:500), or Munc18-3
(Sigma HPA027255; 1:500) antibodies. Mouse
monoclonal g -Tubulin antibody (Sigma; T5326;
1:1000) was used as control for total protein lev-
els. After washing with PBS1 0.1% Tween 20,
the blots were incubated with secondary antibod-
ies (goat anti-mouse or anti-rabbit alkaline
phosphatase-conjugated secondary antibodies
1:10,000; Jackson immunoresearch' in PBS with
2% BSA and 0.1% Tween 20 for 45min at 4°C.
After washing, blots were incubated with Atto-
Phos substrate for 5min, scanned on a Fujifilm
FLA-5000 Reader and analyzed with ImageJ
software.

Live imaging
All live imaging experiments were performed
between DIV14 and DIV18 at RT (21–26°C).
We used a custom-built set-up including an
inverted microscope (IX81; Olympus) with an
MT20 light source (Olympus), the appropriate
filter sets (Semrock), a 40� oil objective (NA
1.3), an EM charge-coupled device camera
(EMCCD; C9100-02; Hamamatsu Photonics)
and Xcellence RT imaging software (Olympus).
Electrical stimulation was delivered by parallel
platinum electrodes placed around the glia-
island, conducting 30mA, 1-ms pulses controlled
by a Master 8 system (AMPI) and a stimulus
generator (A385RC, World Precision Ins-
truments). A total of 16 or eight trains of 50
action potentials (APs) were generated at 50Hz
with 0.5-s interval after 30 s of baseline recording.
Imaging acquisition rate was 2Hz.

Coverslips were perfused with Tyrode’s so-
lution (2 mM CaCl2, 2.5 mMKCl, 119 mM NaCl,
2 mM MgCl2, 30 mM glucose, and 25 mM

HEPES; pH 7.4). pHluorin-based DCV exocy-
tosis assays ended with a 10 s NH4

1 perfusion
(Tyrode’s solution with 50 mM NH4Cl, replac-
ing 50 mM NaCl), delivered via a gravity flow
system with a capillary placed above the neu-
ron, to de-quench pHluorin in all DCVs.

Analysis
In ImageJ (NIH), 2� 2 pixel regions were
placed on NPY-mCherry DCV exocytosis
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Figure 1. Munc18-1 is essential for DCV exocytosis in neurons. A, Schematic representation of a primary mouse hippo-
campal neuron grown on a glia microisland. B, The kymograph shows NPY-mCherry fluorescence in an axonal stretch over
time. During high-frequency train-stimulation indicated by blue bars (16 trains of 50 APs at 50 Hz), NPY-mCherry release
events are visible as an abrupt termination of the line, marked by arrowheads. Below, Schematic model of an NPY-mCherry
release event. C, Disappearance of a NPY-mCherry punctum visualized by two still frames: one before and one after the indi-
cated exocytosis event (red arrowhead, same event as in B). The typical trace shows the change in fluorescence (DF) over
time measured from the indicated exocytosis event. D, Isolated Munc18-1cKO and WT (control) neurons infected at DIV8
with Cre-EGFP were tested for viability (1 = viable, – = non-viable) and for SV exocytosis using Synaptophysin-pHluorin
(SypHy). E, Typical Ca21 traces during high-frequency burst-stimulation (16 trains of 50 APs at 50 Hz, blue bars), obtained
using Fluo5-AM, which increases fluorescence on Ca21 binding, in DIV14–DIV15 Munc18-1cKO (1 Cre-EGFP) and WT
(– Cre-EGFP) neurons. F, SV exocytosis assessed using SypHy in Munc18-1 cKO (1 Cre-EGFP) and WT (– Cre-EGFP) neurons.
Fluorescence intensity increase reports SV exocytosis. NH4

1 is superfused at second 85 (indicated by gray shading) to
dequench SypHy fluorescence in all SVs. G, Quantification of F: DFMax/D NH4

1 of SypHy in Munc18-1 cKO and WT neurons.
H, Histogram of the average number of DCV exocytosis events over time from non-silent Munc18-1 cKO neurons infected
with DCre (WT) or Cre (cKO). The blue bars indicate the stimulation paradigm. Sample size excluding silent neurons is visual-
ized as n/N. I, Cumulative representation of the data in D. Error bars are SEM. J, The Tukey/scatter plot shows that the total
number of DCV exocytosis events per cell is severely reduced in Munc18-1 cKO neurons (sample size is visualized as n/N).
Mann–Whitney U test: **p, 0.01.
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events and 3� 3 pixel regions were placed on NPY-pHluorin or BDNF-
pHluorin events. The ROI intensity measures were loaded into a custom
written MATLAB (MathWorks) script for semi-automatic analysis,
where each was plotted as change in fluorescence (DF) compared with
baseline fluorescence (F0, average fluorescence during the first 10
frames). An exocytosis event was detected when DF was at least 2 SDs
below or above F0 for respectively NPY-mCherry and NPY/BDNF-
pHluorin-labeled DCVs. Somatic events were excluded because of high
background signal. Histograms and cumulative plots were generated in
MATLAB. Further analysis including statistical tests and generation of
Tukey/scatter plots was conducted in GraphPad Prism. The onset delay
in DCV exocytosis was calculated for each neuron by subtracting the
time point of the start of the simulation from the time point where 50%
of the events have occurred.

To calculate the neurite length and total number of DCVs (poolsize)
per neuron, the highest-intensity frame during NH4 perfusion was taken
for pHluorin based assays and further analyzed using the MATLAB pro-
gram SynD(Schmitz et al., 2011; van de Bospoort et al., 2012).
Parameters were optimized for detection of DCVs and the number of
detected DCVs was adjusted for intensity by dividing by the mode
intensity.

Experimental design and statistical analysis
Statistical analysis was performed in GraphPad Prism (summarized
in Table 1, which also includes experimental design). Shapiro-
Wilk normality test was used to test for normal distributions and
Levene’s to test for homogeneity of variances. In all datasets at
least one group was not normally distributed. Therefore, a Mann–
Whitney U test for data with two conditions and multiple compari-
sons were tested using a Kruskal–Wallis test followed by a Dunn’s
multiple comparisons post hoc test.

Results
Munc18-1 is essential for DCV exocytosis in neurons
To test which SM protein(s) drives DCV exocytosis in mam-
malian neurons, we used hippocampal neurons from condi-
tional Munc18-1 null (cKO) mice grown on prepatterned
glia microislands, each containing a single neuron infected
with NPY-mCherry as a DCV exocytosis reporter (De Wit
et al., 2009; Farina et al., 2015; Persoon et al., 2018; Fig. 1A).
Neurons were infected with EGFP-tagged Cre-recombinase
at DIV8 to induce Munc18-1 null, or with ineffective
deltaCre (WT) as control. DCV exocytosis was triggered by
high-frequency burst-stimulation (16� 50 APs at 50 Hz;
Fig. 1B) and individual release events, marked as sudden
disappearance of mCherry fluorescence, were quantified
over time (Fig. 1C).

As MUNC18-1 is essential for SV exocytosis (Verhage et
al., 2000), we used the fluorescent SV exocytosis reporter
Synaptophysin-pHluorin(Granseth et al., 2006) to assess the Cre-
dependent loss of MUNC18-1 protein in Munc18-1 cKO

neurons. SV exocytosis was marked as an increase in fluores-
cence during burst stimulation in control neurons at DIV15 and
was blocked in Munc18-1 cKO neurons that were infected 7 d
earlier with Cre-EGFP, while calcium influx during stimulation
was not significantly affected (Fig. 1D–G). In sister cultures at
DIV15, control neurons showed NPY-mCherry release events
throughout the 50Hz burst stimulation, with the highest rate
during the first few bursts, as shown before (Fig. 1H,I; Farina et
al., 2015; Persoon et al., 2018, 2019). In contrast, virtually no
NPY-mCherry release events occurred in Munc18-1 cKO neu-
rons (Fig. 1H–J). Not a single release event was observed in 75%
of these neurons (Fig. 1J). Hence, MUNC18-1 is essential for
neuronal DCV exocytosis.

Expression of MUNC18-1, but not MUNC18-2 or MUNC18-
3, supports DCV exocytosis inMunc18-1 null neurons
For independent confirmation of the DCV exocytosis defect
in Munc18-1 cKO neurons, we next used a different DCV
exocytosis reporter in classical Munc18-1 null neurons. The
pH-sensitive DCV exocytosis reporter NPY-pHluorin,
which has low basal fluorescence because of quenching at
the low pH inside DCVs, and detects DCV fusion pore
opening (van de Bospoort et al., 2012; Farina et al., 2015;
Persoon et al., 2018). During high-frequency burst-stimula-
tion, NPY-pHluorin marks DCV exocytosis events by a sud-
den increase in fluorescence on DCV fusion with the
plasma membrane, followed by an immediate decrease
(transient events representing fusion pore closure and vesi-
cle reacidification or full cargo release) or delayed decrease
(persistent events representing delayed reacidification or
extracellular cargo deposition; Fig. 2A,B). To visualize the
total DCV pool, neurons were superfused with NH4

1 at the
end of each recording, de-quenching NPY-pHluorin in
acidified compartments (Fig. 2A,B).

Munc18-1 null neurons degenerate in vitro and in vivo, which
can be delayed by the trophic factors insulin and BDNF
(Verhage et al., 2000; Heeroma et al., 2004). Viral expression of
MUNC18-1, or its paralogs MUNC18-2 or MUNC18-3 com-
pletely rescues cell viability (He et al., 2017; Santos et al., 2017).
To test which paralogs support DCV exocytosis, we expressed
each paralog separately inMunc18-1 null neurons and quantified
DCV exocytosis with NPY-pHluorin. All MUNC18 paralogs
were detected on Western-blot, supported normal viability and
neurons expressing any of these paralogs had a normal morphol-
ogy, as reported before (Fig. 2C,D). Re-expression of MUNC18-1
inMunc18-1 null neurons resulted in robust DCV exocytosis on
high-frequency burst-stimulation (Fig. 2E–G), comparable to
WT neurons (see below). However, DCV exocytosis was severely
impaired on expression of MUNC18-2 or MUNC18-3 (Fig. 2E–
G). Not a single fusion event was observed in 56% (MUNC18-2)
and 81% (MUNC18-3) of the neurons (Fig. 2G). The total num-
ber of DCVs per neuron (DCV poolsize) was similar in all three
conditions (Fig. 2H). DCV exocytosis normalized to the poolsize
(release fraction) was normal in Munc18-1 null neurons re-
expressing MUNC18-1, but severely impaired in Munc18-1 null
neurons expressing MUNC18-2 or MUNC18-3 (Fig. 2I). These
data show that MUNC18-1 re-expression supports stimulus-
evoked DCV exocytosis in Munc18-1 null neurons and that
MUNC18-2 and MUNC18-3 do not support DCV exocytosis. In
addition, MUNC18-1, MUNC18-2, and MUNC18-3 all support
normal morphology and DCV biogenesis in Munc18-1 null
neurons.

/

MUNC18-1 (black), MUNC18-2 (green), or MUNC18-3 (brown). Sample size is indicated per
condition as n/N. The blue bars indicate the stimulation paradigm. Error bars are SEM. F,
Cumulative representation of the data in D. Error bars are SEM. G, The Tukey/scatter
plot shows that Munc18-1 null neurons rescued with MUNC18-2 or MUNC18-3 have a
strong reduction in the total number of DCV exocytosis events per cell compared with
MUNC18-1 rescued neurons. Kruskal–Wallis with Dunn’s correction: ***p, 0.001. n.s.
= non-significant, p. 0.05. H, The Tukey/scatter plot shows that the total pool of
DCVs per cell, revealed by NH4 application, is similar in Munc18-1 null neurons rescued
with MUNC18-1, MUNC18-2, or MUNC18-3. Kruskal–Wallis with Dunn’s correction: n.s.
= non-significant. I, The Tukey/scatter plot shows that in MUNC18-2 or MUNC18-3 res-
cued neurons, the number of DCV exocytosis events normalized by the poolsize (indi-
cated as release fraction) is strongly reduced. Kruskal–Wallis with Dunn’s correction:
***p, 0.001, n.s. = non-significant.
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Reduced expression inMunc18-1HZ
neurons leads to decreased DCV
exocytosis
To characterize the role of MUNC18-1 in
DCV exocytosis further, we quantified
exocytosis events of NPY-pHluorin-la-
beled DCVs under conditions of reduced
expression in Munc18-1 HZ neurons,
which are shown to have ;50% reduced
MUNC18-1 expression levels (Toonen et
al., 2006b; Kovacevic et al., 2018). First,
Munc18-1 WT and Munc18-1 HZ neu-
rons were stimulated with a high-fre-
quency burst-stimulation (16� 50 APs at
50Hz). Munc18-1 HZ neurons showed a
trend toward reduced DCV exocytosis,
especially during the first two bursts
(2� 50 APs; Fig. 3A,B). Post hoc analysis
of this initial phase indicated a 61%
reduction in initial DCV exocytosis in
Munc18-1 HZ neurons (Fig. 3C,D). The
median DCV exocytosis onset delay,
defined as the duration from the start of
the stimulation until 50% of the DCV
exocytosis events have occurred, was
increased in Munc18-1 HZ (Fig. 3E). The
total number of exocytosis events, the
total DCV pool and release fraction were
all not altered (Fig. 3F–H).

To seek independent confirmation of
these effects, we stimulated Munc18-1
WT and HZ neurons in a new series of
experiments with half the number of
bursts (eight instead of 16), the same
number of APs per burst (50) and the
same frequency (50Hz), followed by the
same pattern 30 s later. DCV exocytosis
in Munc18-1 HZ neurons was reduced
throughout the first 8-burst train-stimu-
lation, by 79% (Fig. 4A–C; Movies 1, 2).
During this first 8-burst train-stimula-
tion, the onset of exocytosis events was
unaltered inMunc18-1 HZ neurons com-
pared with WT neurons (Fig. 4A,B,D,
E). During the subsequent (second)
eight-burst train-stimulation, both
Munc18-1 WT and HZ neurons
showed acceleration of DCV exocytosis
compared with the first train-stimula-
tion, indicated by a strong reduction in
the median delay of DCV exocytosis
relative to the start of the train-stimu-
lation (Fig. 4A,B,D,E). DCV exocytosis
was again reduced in HZ neurons dur-
ing the second stimulation, with a
smaller effect size than during the first
stimulation (60% reduction; Fig. 4A,B,
F; Movies 1, 2), resulting in a median
reduction of 69% over the two eight-
trains. As a measure for potentiation of
DCV exocytosis, the number of exocyto-
sis events during the second stimulation
was divided by the number of events
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during the first stimulation. DCV exocytosis in Munc18-1 HZ
neurons showed a potentiation effect during the second train-
stimulation, whereas this was absent in WT neurons (Fig. 4G).
The total DCV pool was similar between genotypes (Fig. 4H).
Consequently, DCV exocytosis normalized by the poolsize was
significantly reduced during both stimulations in Munc18-1 HZ
neurons (Fig. 4I,J).

To assess the overall effect of reduced MUNC18-1 expression
on DCV exocytosis in both datasets (Figs. 3, 4), we performed a
meta-analysis combining the data of the first eight bursts of 50
APs from both experiments. This analysis revealed that DCV
exocytosis was reduced by 56% during the first eight bursts of
high-frequency stimulation (Fig. 5A–C). The total number of
DCVs and the total neurite length were not altered, and as a con-
sequence, DCV exocytosis normalized to the total DCV pool was
reduced by 56% (Fig. 5D–F). Taken together, these data show
that HZ inactivation of Munc18-1 decreased DCV exocytosis,
with a relatively stronger effect during the first stimulation, while
acceleration of DCV exocytosis during the second stimulation
stayed intact.

Finally, to test whether the reduction of DCV exocytosis in
Munc18-1 HZ neurons generalizes to different DCV cargo types,
we used the neurotrophin release reporter BDNF-pHluorin as an
alternative DCV cargo. The total number of BDNF-pHluorin
exocytosis events in both genotypes was at least twice as high as
with NPY-pHluorin (Figs. 4A,B,C,F, 6A–D). Munc18-1 HZ neu-
rons expressing BDNF-pHluorin and stimulated with two epi-
sodes of eight-burst train-stimulation of 50 APs at 50Hz showed
a 36% reduced DCV exocytosis during the first stimulation, with
a similar, albeit smaller, effect during the second stimulation
(Fig. 6A–D), resulting in a median reduction of 43% over the two
eight-trains compared with WT. Exocytosis in Munc18-1 HZ
neurons was potentiated during the second train-stimulation,
whereas this effect was absent in WT neurons (Fig. 6E). The
acceleration of release during the second eight-train was similar
to the previous experiment using NPY-pHluorin and similar for
both genotypes (Fig. 6F,G). The total DCV pool was again simi-
lar between experimental groups and consequently DCV exocy-
tosis normalized to the total pool was reduced during the first
stimulation, but less pronounced during the second stimulation
(Fig. 6H–J). Hence, HZ inactivation of Munc18-1 and a 50%
reduced protein level decreased DCV exocytosis substantially, in-
dependent of DCV cargo, with a relatively stronger effect during
the first stimulation.

Discussion
Here, we report that MUNC18-1 is essential for DCV exocytosis
in hippocampal neurons. Live imaging of fluorescent reporters
showed that Munc18-1 inactivation abolished neuropeptide
release. Expression of paralogs MUNC18-2 or MUNC18-3 did
restore cell viability but not DCV exocytosis. Furthermore,
Munc18-1 HZ inactivation impaired DCV exocytosis. Hence,
neurons critically and selectively depend on MUNC18-1 for
DCV exocytosis.

We previously showed that neurotransmitter secretion crit-
ically depends onMUNC18-1 (Verhage et al., 2000). Our current
data demonstrates that this is also true for neuropeptide secre-
tion (Figs. 1, 2). SVs and DCVs share many other components of
their exocytosis machinery (van de Bospoort et al., 2012; Cao et
al., 2013; Südhof, 2013; Farina et al., 2015; Shimojo et al., 2015;
Arora et al., 2017; Persoon et al., 2019; Hoogstraaten et al., 2020);
however, several properties are strikingly different. DCVs require

Movie 1. NPY-pHluorin-labeled DCV exocytosis events in WT neuron. Neuron was stimu-
lated with two episodes consisting of eight bursts of 50 APs at 50 Hz. The first episode of
train-stimulation starts at 30 s, the second stimulation starts 30 s after the end of the first
stimulation (which is at 72 s). NPY-pHluorin-labeled DCV exocytosis events are visible as
appearing puncta, mostly during the train-stimulations. From 113 s, NH4

1 perfusion starts,
which dequenches all NPY-pHluorin in acidic compartments, labeling the total DCV pool.
[View online]

Movie 2. NPY-pHluorin-labeled DCV exocytosis events in Munc18-1 HZ neuron. Neuron
was stimulated with two episodes consisting of eight bursts of 50 APs at 50 Hz. The first epi-
sode of train-stimulation starts at 30 s, the second stimulation starts 30 s after the end of
the first stimulation (which is at 72 s). NPY-pHluorin-labeled DCV exocytosis events are visible
as appearing puncta, mostly during the train-stimulations. From 113 s, NH4

1 perfusion
starts, which dequenches all NPY-pHluorin in acidic compartments, labeling the total DCV
pool. [View online]
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a much higher number of APs to trigger exocytosis and fuse with
a much longer delay after the start of stimulation (Zucker, 1973;
Rosenmund et al., 1993; Murthy et al., 1997; Persoon et al.,
2018). Additionally, while SV exocytosis is generally confined to
specialized presynaptic release sites (active zones), DCVs exocy-
tosis frequently occurs at non-synaptic locations (Südhof and
Rizo, 2011; van de Bospoort et al., 2012; Persoon et al., 2018) and
synaptic DCV exocytosis may be outside the active zone. It is
puzzling that the only mechanistic difference for the final stages
of either pathways is the critical requirement of RAB3A in DCV
but not SV exocytosis (Schlüter et al., 2004, 2006; Persoon et al.,
2018). This seems insufficient to explain the strikingly different
properties of the two pathways.

Endogenous expression of Munc18-2 and Munc18-3 is insuf-
ficient to support neuronal viability, synaptic transmission or
DCV exocytosis in Munc18-1 null neurons (Fig. 1; Santos et al.,
2017; Verhage et al., 2000). Overexpression of MUNC18-2 or
MUNC18-3 in Munc18-1 null neurons compensates for the

absence of MUNC18-1 and restores via-
bility, but does not support synaptic
transmission or DCV exocytosis (Fig. 2;
He et al., 2017; Santos et al., 2017).
Hence, MUNC18-1 is the only MUNC18
paralog capable of supporting neuropep-
tide and neurotransmitter release in
mouse CNS neurons. Likewise, only one
SM-protein (MUNC18-2) mediates secre-
tion from several blood cell types (Côte et
al., 2009; Hackmann et al., 2013; Gutierrez
et al., 2018; Cardenas et al., 2019), and dif-
ferent MUNC18 paralogs support distinct
phases of secretion in the pancreas and
lung (Oh and Thurmond, 2009; Oh et al.,
2012; Lam et al., 2013; Jaramillo et al.,
2019). Conversely, overexpression of
MUNC18-2 inMunc18-1 null chromaffin
cells partly rescues DCV exocytosis
(Gulyás-Kovács et al., 2007). Hence, with
few exceptions, SM-proteins have highly
specialized roles in different forms of
regulated secretion, with little or no re-
dundancy among its paralogs. In contrast,
the (unknown) function of MUNC18-1 in
neuronal viability (Santos et al., 2017) as
well as its role in regulating the actin cyto-
skeleton (Pons-Vizcarra et al., 2019), show
ample redundancy among SM-proteins.

We previously showed synaptic as-
sembly of the brain and cortical layering
in the absence of synaptic transmission
in Munc18-1null mice (Verhage et al.,
2000). Our current data suggest that
in Munc18-1 null brains, secretion of
neuropeptides, neurotrophic factors,
and axon guidance molecules from
DCVs may be defective as well, implying
that synaptic assembly and cortical
layering do not require both secretory
pathways. However, we cannot exclude
that other, MUNC18-1 independent,
secretion pathways may play a role
during early brain development. Fur-
thermore, one study recently challenged
the conclusion that MUNC18-1 is dis-

pensable for cortical layering of the brain, using more transient
interference with MUNC18-1 expression in a small fraction of
developing neurons (Hamada et al., 2017). Such a role in brain
development may be supported by DCV exocytosis, e.g., by
BDNF release (Schwartz et al., 1997; Borghesani et al., 2002;
Medina et al., 2004; Zhou et al., 2007).

Neuropeptide/neurotrophin signaling is also associated with
at least two other aspects of brain development. First, NPY and
BDNF promote neural stem cell proliferation and differentiation
during development (Hansel et al., 2001; Zhang et al., 2011;
Chen et al., 2013). Second, BDNF signaling promotes layer-spe-
cific branching of callosal axons in vivo(Shimojo et al., 2015) and
self-amplifying BDNF signaling underlies axonal differentiation
and growth in vitro(Cheng et al., 2011). Therefore, it seems plau-
sible that neuropeptides/neurotrophins are released during early
brain development inMunc18-1 nullmice, potentially via consti-
tutive secretion.
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Figure 5. Meta-analysis: Munc18-1 HZ inactivation reduces DCV exocytosis. A, The histogram shows the average number of
DCV exocytosis events of Munc18-1 WT (black) and HZ (blue) neurons infected with NPY-pHluorin (sample size is indicated as
n/N), during the first eight bursts of high-frequency train-stimulation (combined meta-analysis of datasets from Figs. 3, 4).
Error bars are SEM. B, Cumulative representation of the data in A. Error bars are SEM. C, The Tukey/scatter plot shows that the
number of DCV exocytosis events is decreased in Munc18-1 HZ neurons during the first eight bursts of high-frequency train-
stimulation. Mann–Whitney U test: ***p, 0.001. D, The Tukey/scatter plot shows the total number of DCVs for Munc18-1 WT
and HZ neurons, revealed by NH4

1superfusion. Mann–Whitney U test: n.s. = non-significant. E, The Tukey/scatter plot shows
the total neurite length of Munc18-1 WT and HZ neurons. Mann–Whitney U test: n.s. = non-significant. F, The Tukey/scatter
plot shows that the number of DCV exocytosis events normalized by the poolsize (indicated as release fraction) is reduced in
Munc18-1 HZ neurons during the first eight bursts of high-frequency train-stimulation. Mann–Whitney U test: p, 0.001.
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BDNF-pHluorin and NPY-pHluorin label a largely overlap-
ping population of DCVs (De Wit et al., 2009; Persoon et al.,
2018), but NPY-pHluorin exocytosis events in WT neurons
occurred 50% less frequently than BDNF-pHluorin events on the
same stimulation (Figs. 4, 6). Numbers of NPY-pHluorin-labeled
or BDNF-pHluorin-labeled DCVs were similar (Figs. 4, 6). NPY
is inhibits synaptic transmission (Raposinho et al., 1999;
Tschenett et al., 2003), while BDNF stimulates spontaneous and
evoked synaptic transmission (Collin et al., 2001; Tartaglia et al.,
2001; Tyler and Pozzo-Miller, 2001; Shinoda et al., 2014). Our
data suggest that NPY and BDNF exert a similar effect on DCV
exocytosis.

We observed a different effect size between two datasets
obtained with NPY-pHluorin (Figs. 3, 4), possibly because of dif-
ferences in culture conditions (supplements, coatings). However,
meta-analysis on both data-sets shows clearly reduced DCV exo-
cytosis on HZ Munc18-1 inactivation (Fig. 5). To confirm this
conclusion with an independent line of evidence, we used DCV
exocytosis marker BDNF-pHluorin, and also observed reduced
DCV exocytosis in Munc18-1 HZ neurons (Fig. 6). Hence,HZ
Munc18-1 inactivation reduces DCV exocytosis almost propor-
tionally, by 36–56% (Figs. 6, 4, respectively), while protein levels
are 50% reduced (Verhage et al., 2000; Toonen et al., 2005,
2006b; Lee et al., 2019). In contrast, HZ Munc18-1 inactivation
barely affected chromaffin cell secretion, although docking was
;3-fold reduced (Toonen et al., 2006a), and hippocampal synap-
ses fromMunc18-1 HZ mice had a normal first evoked response
(Toonen et al., 2006b). This suggests that DCV exocytosis is gen-
erally more vulnerable to reduced MUNC18-1 protein levels
than other regulated secretion pathways. However, specific syn-
apses in the brains of Munc18-1 HZ mice did show substantial
impairments, a 40% reduction in synaptic transmission in synap-
ses between neocortical neurons and striatal fast spiking inter-
neurons (Miyamoto et al., 2019) and 45% in synapses between
PV interneurons and pyramidal neurons (Chen et al., 2020).

Normal MUNC18-1 expression levels are especially required
during the high initial rate of DCV exocytosis, which is;5 times
higher than in later phases (Fig. 3; Arora et al., 2017; Persoon et
al., 2018, 2019; Hoogstraaten et al., 2020). In contrast,Munc18-1
HZ chromaffin cells and synapses showed the largest effects dur-
ing later phases of release (Toonen et al., 2006a,b; Miyamoto et
al., 2019), albeit using different stimulation paradigms. It is
tempting to speculate that the MUNC18-1-dependent rate-limit-
ing step in the secretory pathway (probably docking/priming
and setting up trans-SNARE-complexes) has already taken place
before the onset of stimulation in chromaffin cells and synapses,
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Figure 6. HZ inactivation of Munc18-1 reduces exocytosis of BDNF-pHluorin-labeled DCVs.
A, The histogram shows the average number of DCV exocytosis events for Munc18-1 WT
(black) and HZ (magenta) neurons infected with BDNF-pHluorin (sample size is indicated as
n/N). The blue bars indicate the two stimulation paradigms (8 times 50 APs at 50 Hz). Error
bars are SEM. B, Cumulative representation of the data in A. Error bars are SEM. C, The
Tukey/scatter plot shows that the total number of DCV exocytosis events during the first
train-stimulation is decreased in Munc18-1 HZ neurons. Mann–Whitney U test: *p, 0.05.
D, The Tukey/scatter plot shows the total number of DCV exocytosis events during the second
train-stimulation for Munc18-1 WT and HZ neurons. Mann–Whitney U test: n.s. = non-signif-
icant. E, The Tukey/scatter plot shows that the ratio of the number of exocytosis events
between the second and first train-stimulation (potentiation) is higher in Munc18-1 HZ

/

neurons. Mann–Whitney U test: *p, 0.05. F, Normalized cumulative representation of the
data in A. Error bars are SEM. G, The Tukey/scatter plot shows the median delay of BDNF-
pHluorin-labeled DCV exocytosis events relative to the start of each train-stimulation for
Munc18-1 WT and HZ neurons. The delay within each train-stimulation is similar between
Munc18-1 WT and HZ neurons. In both WT and HZ neurons, the median delay of exocytosis
is decreased during the second train-stimulation compared with the first. Kruskal–Wallis
with Dunn’s correction: ***p, 0.001, n.s. = non-significant. H, The Tukey/scatter plot
shows that the total pool of DCVs per cell, revealed by NH4 application, is similar for
Munc18-1 WT and HZ neurons. Mann–Whitney U test: ns = non-significant. I, The Tukey/
scatter plot shows that the number of DCV exocytosis events normalized by the total pool
(indicated as release fraction) is decreased in Munc18-1 HZ neurons during the first train-
stimulation. Mann–Whitney U test: *p, 0.05. J, The Tukey/scatter plot shows the number
of DCV exocytosis events normalized by the total pool (indicated as release fraction) for
Munc18-1 WT and HZ neurons during the second train-stimulation. Mann–Whitney U test:
n.s. = non-significant.
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while for neuronal DCVs this occurs after the onset. Such a sce-
nario may help to explain why neuronal DCV exocytosis is so
much slower than SV exocytosis and why the initial secretion
response in synapses and chromaffin cells is hardly affected by
reduced MUNC18-1 expression.

In dual train-stimulated neurons (two episodes of 8� 50
APs), NPY-pHluorin and BDNF-pHluorin exocytosis events
were accelerated at the onset of the second stimulation compared
with the first (Figs. 4, 6). To our knowledge, such an acceleration
of neuronal DCV exocytosis has not been reported before.
Munc18-1 HZ inactivation did not affect this acceleration (Figs.
4, 6). Hence, normal MUNC18-1 expression levels are not
required for the acceleration of DCV exocytosis during a second
train-stimulation. However, neurons with a reduced MUNC18-1
level, but not WT neurons, show potentiation of DCV exocytosis
during the second train-stimulation (Figs. 4, 6). Potentiation of
DCV exocytosis during dual stimulation has also been observed
in (WT) Drosophila neuromuscular junctions, where ER-medi-
ated calcium release elevates neuropeptide release via CaMKII
during a second stimulation episode (Shakiryanova et al., 2007).
However, mouse neuronal DCV exocytosis is normal in the ab-
sence of both a and b CaMKII (Moro et al., 2020), suggesting
that a possible potentiation mechanism does not depend on
CaMKII in mouse neurons.

This study shows that neuronal DCV exocytosis is particu-
larly vulnerable to reduced MUNC18-1 expression levels. This
finding may be relevant for STXBP1 syndrome, which is caused
by mutations in the human STXBP1 gene (encoding for
MUNC18-1) and characterized by developmental delay, intellec-
tual disability, often epilepsy, motor abnormalities and some-
times also autistic traits (Saitsu et al., 2008; Stamberger et al.,
2016; Abramov et al., 2020). Haploinsufficiency, because of
impaired MUNC18-1/STXBP1 protein stability and conse-
quently reduced cellular levels, is considered to explain the dis-
ease in most cases (Guiberson et al., 2018; Kovacevic et al., 2018;
Verhage and Sørensen, 2020). Munc18-1 HZ mice recapitulate
the major hallmarks of STXBP1 syndrome (Kovacevic et al.,
2018; Miyamoto et al., 2019; Chen et al., 2020). Impaired neuro-
peptide secretion may contribute, in addition to reduced synaptic
transmission, to the behavioral and neurodevelopmental pheno-
types in Munc18-1 HZ mice and the pathogenesis of STXBP1
syndrome.
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