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Sustained Pupil Responses Are Modulated by Predictability
of Auditory Sequences
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The brain is highly sensitive to auditory regularities and exploits the predictable order of sounds in many situations, from
parsing complex auditory scenes, to the acquisition of language. To understand the impact of stimulus predictability on per-
ception, it is important to determine how the detection of predictable structure influences processing and attention. Here, we
use pupillometry to gain insight into the effect of sensory regularity on arousal. Pupillometry is a commonly used measure of
salience and processing effort, with more perceptually salient or perceptually demanding stimuli consistently associated with
larger pupil diameters. In two experiments we tracked human listeners’ pupil dynamics while they listened to sequences of
50-ms tone pips of different frequencies. The order of the tone pips was either random, contained deterministic (fully pre-
dictable) regularities (experiment 1, n= 18, 11 female) or had a probabilistic regularity structure (experiment 2, n= 20, 17
female). The sequences were rapid, preventing conscious tracking of sequence structure thus allowing us to focus on the auto-
matic extraction of different types of regularities. We hypothesized that if regularity facilitates processing by reducing proc-
essing demands, a smaller pupil diameter would be seen in response to regular relative to random patterns. Conversely, if
regularity is associated with heightened arousal and attention (i.e., engages processing resources) the opposite pattern would
be expected. In both experiments we observed a smaller sustained (tonic) pupil diameter for regular compared with random
sequences, consistent with the former hypothesis and confirming that predictability facilitates sequence processing.
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Significance Statement

The brain is highly sensitive to auditory regularities. To appreciate the impact that the presence of predictability has on per-
ception, we need to better understand how a predictable structure influences processing and attention. We recorded listeners’
pupil responses to sequences of tones that followed either a predictable or unpredictable pattern, as the pupil can be used to
implicitly tap into these different cognitive processes. We found that the pupil showed a smaller sustained diameter to pre-
dictable sequences, indicating that predictability eased processing rather than boosted attention. The findings suggest that the
pupil response can be used to study the automatic extraction of regularities, and that the effects are most consistent with pre-
dictability helping the listener to efficiently process upcoming sounds.

Introduction
The sensory environment is laden with regularities. The brain
readily exploits this predictable information, using it to drive
perceptual experiences (de Lange et al., 2018), guide attention
(Zhao et al., 2013), and influence decision-making (Soltani and
Izquierdo, 2019). In the domain of hearing, our ability to use
these statistics plays many important roles, from auditory scene
analysis (Bendixen, 2014; Heilbron and Chait, 2018) to discover-
ing regularities in the speech signal (Erickson and Thiessen,
2015).

Accumulating work demonstrates that listeners automatically
detect predictable structure in unfolding sound sequences. In a
seminal demonstration, Saffran et al. (1996) showed that infants
are able to segment a continuous stream of syllables based only
on the statistical relationships (frequency of co-occurrence)
between adjacent elements. This paradigm has since been
expanded to a variety of statistical structures and behavioral tasks
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to reveal robust “statistical learning” across the life span (Conway,
2020). Sensitivity to statistical regularities is also exhibited in the
brains of naive listeners during passive exposure to sound patterns
(Barascud et al., 2016; Southwell et al., 2017) and in other species
(Milne et al., 2018).

A key question pertains to understanding how the detection of
predictable structure influences processing and attention. The link
between regularity and attention has been contentious. On the one
hand it is argued that regularity automatically biases attention
(Mackintosh, 1975; Feldman and Friston, 2010; Zhao et al.,
2013; Alamia and Zénon, 2016). This is consistent with the pre-
mise that regular structure in the environment carries important
information about behaviorally relevant elements within our sur-
roundings, and should therefore receive perceptual priority and
attentional resources. On the other hand, a large body of work
demonstrates that the brain exhibits reduced responses to regular,
predictable stimuli (Itti and Baldi, 2009; de Lange et al., 2018;
Richter et al., 2018), interpreted as reflecting the fact that the
detection of regular structure facilitates the conservation of proc-
essing and computational resources. Indeed, it has been shown
that regular patterns are easier to process (Rohenkohl et al., 2012)
and also, critically, easier to ignore (Andreou et al., 2011;
Southwell et al., 2017; Makov and Zion Golumbic, 2020), which
has been taken as evidence that regularity does not draw on atten-
tional resources.

Here, we use pupillometry to tap into these different cognitive
processes. Pupil diameter is a commonly used measure of bot-
tom-up driven salience and processing effort. Non-luminance-
mediated pupil dynamics are controlled by a balance between
norepinephrine (NE), reflecting the activation of the arousal sys-
tem (for reviews see Joshi et al., 2016; Larsen and Waters, 2018)
and acetylcholine (ACh), hypothesized to correlate with the
processing load experienced by the individual (Sarter et al.,
2006). By studying pupil responses to structured versus random
auditory patterns we sought to determine how sustained pupil
diameter, and by proxy the listener’s arousal and processing
load, change as a function of regularity.

If regularity facilitates processing, a smaller pupil diameter
would be predicted in response to regular relative to random pat-
terns. Conversely, if the emergence of regularity is associated
with an increased demand on attention, we expect the opposite
pattern, a larger pupil diameter associated with more predictable
stimuli, reflecting increased salience-evoked arousal and a conse-
quent draw on processing resources.

We studied two types of predictable
acoustic structure: in experiment 1, we
used deterministic (i.e., fully predictable;
Fig. 1) sequences, as described in
Barascud et al. (2016), to study the pupil
response to regular, relative to randomly-
ordered, tone pip sequences. These
sequences were generated anew on every
trial, tapping into processes that rapidly
detect, and exploit, the predictable struc-
ture. In experiment 2, we used a more
complex probabilistic structure similar to
the classic Saffran paradigm (Fig. 2).
These sequences did not follow a deter-
ministic order, instead the transitional
probabilities (TPs) between tones allowed
the stream to be segmented into triplets.
Listeners were preexposed to such sequen-
ces, and pupil responses were measured
subsequently to quantify responses to the
preacquired statistical pattern.

Materials and Methods
Results from two experiments are reported. We continuously tracked
pupil diameter while participants listened to 9-s-long sequences of con-
tiguous tone pips, that either contained a predictable structure or did
not. To control participants’ attention, and to make sure it was broadly
focused on the auditory stimuli, an incidental, easy gap detection task
was used; listeners were required to monitor the stream of tones and
indicate when they noticed a silent “gap” within the sequence. The gaps,
generated by the removal of several consecutive tones, were placed at a
random position in ;25% (experiment 1) and 20% (experiment 2) of
the sequences. Participants were kept naive to the presence of an under-
lying pattern to enable the study of implicit sequence learning. This
study was not preregistered.

Stimuli and procedure
Participants sat with their head fixed on a chinrest in front of a monitor
(24-inch BENQ XL2420T with a resolution of 1920� 1080 pixels and a
refresh rate of 60Hz), in a dimly lit and acoustically shielded room (IAC
triple-walled sound-attenuating booth). Sounds were delivered diotically
to the participants’ ears with Sennheiser HD558 headphones (Sennheiser)
via a Roland DUO-CAPTURE EX USB Audio Interface (Roland Ltd), at a
comfortable listening level that was adjusted by the participant during the
practice phase. Stimulus presentation and response recording were con-
trolled with Psychtoolbox (Psychophysics Toolbox version 3; Brainard,
1997) onMATLAB (The MathWorks).

Experiment 1
Stimuli were 9-s-long tone sequences (Fig. 1A,B) of contiguous 50-ms
tone pips (ramped on and off with a 5-ms raised cosine ramp; 180 tone
pips per sequence). Tone frequencies were selected from a pool of 20
logarithmically spaced values between 222 and 2000 Hz. Sequences were
generated as previously described in Southwell et al. (2017). A unique
sequence was presented on each trial. Sequences were defined by two pa-
rameters: regularity (whether they consisted of a regularly repeating or
random pattern) and alphabet size, the number of frequencies compris-
ing the pattern (5, 10, or 15). In regular (REG) sequences, a subset of fre-
quencies (“alphabet size”) were randomly drawn from the full pool and
arranged in repeating cycles. Paired random (RAND) sequences were
generated for the same frequency subset by randomly arranging the
tones. Therefore, REG and RAND conditions were matched for the
occurrence of each frequency. Overall, six conditions were used (RAND/
REG � three alphabet sizes; REG5, RAND5; REG10, RAND10; and
REG15, RAND15).

Figure 1. Stimuli used in experiment 1. Stimuli were sequences of contiguous tone pips (50 ms) with frequencies drawn
from a pool of 20 fixed values. The tone pips were arranged according to frequency patterns, generated anew for each subject
and on each trial. REG sequences were generated by randomly selecting 5 (REG5), 10 (REG10), or 15 (REG15) frequencies from
the pool and iterating that sequence to create a regular repeating pattern. A, Example of a spectrogram for REG5, dotted lines
indicate the first three cycles. RAND sequences were generated by randomly sampling 5 (RAND5), 10 (RAND10), or 15
(RAND15) frequencies with replacement. B, Example of a spectrogram for RAND10. A subset of trials were target trials contain-
ing a gap generated by the removal of two (REG) or three (RAND) tones, indicated by the dark blue band in the spectrogram.

Milne et al. · Stimulus Predictability Modulates Pupil Diameter J. Neurosci., July 14, 2021 • 41(28):6116–6127 • 6117



Approximately 25% of the stimuli contained a single silent gap any-
where between 1 and 8 s after sequence onset. This was created by
removing two tones from REG sequences (100-ms gap) and three tones
from RAND sequences (150ms) to equate task difficulty (Zhao et al.,
2019b).

The experiment consisted of seven blocks (;8 min each) and a prac-
tice block. There were 24 trials per block (four trials per condition) for a
total of 168 trials (28 trials per condition). Intertrial intervals were jit-
tered between 2500 and 3000 ms. Stimuli were presented in a random
order, such that on each trial the specific condition was unpredictable.

Throughout the block a black cross was presented at the center of the
screen against a gray background. Participants were instructed to fixate
on the cross while monitoring the sequence of tones for gaps, and to
respond by button press as quickly as possible when a gap was noticed in
the tone stream. At the end of each trial, visual feedback indicated
whether gaps were detected correctly. Further feedback was given at the
end of each block, indicating the total number of correct responses, false
alarms, and average response time. The practice block contained six gap
trials (three REG, three RAND) to ensure participants understood the
task. In the main blocks only 25% of the trials contained gaps. The ex-
perimental session lasted ;2 h. A break of at least 3min was imposed
between blocks to reduce the effects of fatigue.

Previous work with MEG (Barascud et al., 2016) and EEG (Southwell
et al., 2017; Southwell and Chait, 2018) demonstrated that brain
responses in naive passive listeners rapidly differentiate RAND from REG
signals, with responses to REG diverging from RAND within two regular-
ity cycles. We expected pupil responses to also follow this pattern and
show a change in pupil size once the structure has been acquired. Further,
we expected the change in pupil size to occur later for larger alphabet sizes,
as more information is required to identify a longer pattern.

Experiment 2
Experiment 2 investigated sequences that contained a probabilistic
rather than deterministic structure. Sequences were based on the pure

tone version of the segmentation paradigm introduced by Saffran and
colleagues (Saffran et al., 1999), with the key modification, that instead
of the 333-ms-long tones in Saffran et al. (1999), we used 50-ms tones.

To generate the underlying probabilistic structure, 12 different tones
were arranged into four tone “words” made from the following musical
notes: AFB, F#A#D, EGD#, CG#C# (Fig. 2D), these corresponded to fre-
quencies: A=440Hz; A# = 466.16Hz; B=493.88Hz; C=523.25Hz; C# =
554.37Hz; D=587.33Hz; D# = 622.25Hz; E=659.25Hz; F=698.46Hz;
F# = 739.99Hz; G=783.99Hz; G# = 830.31Hz. As in Saffran et al. (1999),
the same tone “words” were used for each subject. Sequences were gener-
ated anew for each trial by randomly ordering the tone words, with the
constraint that the same word did not occur twice in a row, thus tone
words always transitioned to a different tone word. This created a proba-
bilistic structure where the transitional probability (TP; the probability
that tone “a” will be followed by tone “b” calculated as the frequency of a
to b/frequency of a) between tones within a word was 1, and the TP at
word boundaries was 0.33. RAND sequences were generated in the same
way as for experiment 1 but using the 12 frequencies listed above.

To formally demonstrate how this probabilistic structure emerged
over the course of a sequence we used a PPM (prediction by partial
matching) statistical learning model. The model, Information Dynamics
of Music (IDYOM; Pearce et al., 2010), uses unsupervised statistical
learning to acquire the TPs of tone pips within each sequence. The out-
put of the model shows the information content (IC) for each tone as
the negative log probability (-log P) of a tone pip, therefore the higher
the IC value the more unexpected the tone. The model output (Fig. 2C)
demonstrates that, following presentation of the first 12 tones (each of
the four tone “words”) the two types of sequence, regular (REGp, blue)
and random (RAND, red), rapidly diverge. While the random sequences
remain unpredictable, the tones in REGp gradually become more pre-
dictable as the model learns the sequence structure. In contrast to deter-
ministic regularities (see model in Barascud et al., 2016), these
probabilistic sequences have a much more gradual change in IC. As a
result, we would expect that for this, more complex, regularity listeners

Figure 2. Stimuli used in experiment 2. Stimuli were sequences of concatenated tone pips (50 ms) with frequencies consisting of 12 different values that correspond to the musical notes
shown in D. A, Spectrogram of RAND sequences where the tones do not follow a predictable pattern. A subset of trials was target trials containing a gap generated by the removal of three
tones, the gap is indicated by a dark blue band in the spectrogram of A, B. B, Spectrogram of the “regular” (REGp) condition that followed the probabilistic structure shown in D, top row; tones
were arranged into four three-item tone “words,” the four words are shown in different shades of gray. The tones within a word always occurred together giving them a TP of 1. Each word
could transition to any of the other words, giving tones at word boundaries a TP of;0.3. Therefore, these sequences do not have a regular structure in the same way as experiment 1, com-
pare with Figure 1A. C, Ideal observer model response to RAND (red) and REGp (blue) signals shows the IC [negative log probability (-log P); the higher the IC value the more unexpected the
tone] of each tone pip (averaged over 24 different sequences). This modeling confirms that while IC remains consistently high for unpredictable sequences (RAND, red), for REGp (blue) it begins
to drop on average after 12 tones. Evidence for the predictable structure then continues to accumulate throughout the sequences as indicated by the gradual separation between the REGp and
RAND ICs. Shading indicates61 SEM (D, bottom row). The random sequences presented the same tones as the regular sequences but in a random order.
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will exhibit more variability in learning rate. For this reason, we intro-
duced a familiarization phase to ensure listeners had ample opportunity
to become sensitive to the structure. This familiarization phase consisted
of only REGp sequences. Participants were then tested on REGp and
RAND sequences while recording the pupil response. Following pupill-
ometry measurements, a further behavioral test was administered to
more explicitly probe if the subjects had become sensitive to the regular-
ities. Therefore experiment 2 consisted of the following three phases.

Familiarization. The familiarization phase gave listeners ample op-
portunity to acquire the probabilistic structure. In this phase, trials con-
sisted of 27-s-long REGp sequences (540 individual tones in total) such
that each “tone word” was encountered 45 times within each sequence.
A gap detection task was used to ensure participants attended to the
sequence. Each sequence contained two gaps. The gaps were generated
by removing six tones, creating a 300-ms gap. The gap was intentionally
longer in the familiarization phase to make the task easy and reduce the
effects of fatigue for the next phase. Overall, the familiarization stage
lasted ;7.5 min consisting of 15 trials. Participants were instructed to
respond (key press) when they heard a gap. After each trial participants
received visual feedback on the number of correct responses and false
alarms. No pupil data were collected in this phase.

Pupillometry. Following a minimum 3-min break, participants com-
pleted the pupillometry phase. All trials contained a 9-s-long tone
sequence (180 tones in total, 60 tone words); 20% of trials (“target trials”;
REGp and RAND with equal proportion) contained a single gap that
occurred between 1 and 8 s postonset. In all conditions, the gap was
150ms long (removal of three tones). This phase consisted of two blocks
of 30 trials. This provided a total of 24 trials per condition.

Behavioral probe. This phase tested how much knowledge listeners
had gained about the structure of the sequence. Pupil responses were not
recorded. We conducted two separate probes designed to test familiarity
and sensitivity to sequence structure. In the familiarity probe, partici-
pants were presented with 60 3-s trials (REGp vs RAND; 50% of each
condition). They were instructed to listen carefully to the sounds and
decide whether the sequence felt “familiar” based on the initial exposure
phase. They were told to use a “gut” feeling if they were unsure. In the
structure probe, participants were instructed to listen and identify if the
sequence contained any sort of structure, or, appeared to be random. The
two probes were completed by the “main” group (those participants who
completed the Familiarization and Pupillometry stages), and by a “con-
trol” group that was recruited to only complete the behavioral probes. The
purpose of this control group was to establish the degree to which the
structure could be extracted without prior exposure. As these participants
had no prior exposure to the REGp and RAND stimuli in the familiarity
probe they were told to use a gut feeling to identify familiar sequences.

Participants
Sample size
We aimed for a sample size of ;20, based on previous data from a
related pupillometry study (Zhao et al., 2019a) where robust pupil
response effects were observed using as few as 10 participants.

All participants declared that they had no known otological or neu-
rologic conditions. Experimental procedures were approved by the
research ethics committee of University College London and written
informed consent was obtained from each participant.

Experiment 1
A total of 22 paid participants were recruited, four were excluded pro-
viding a final sample size of 18 participants (11 females, mean age 25.2,
range 19–35). In both experiments, exclusion occurred either during
data collection, e.g., because of difficulty tracking the eye or excessive
blinking or tiredness (eye closure), or because of a high blink rate that
was identified in preprocessing, before separating trials by condition.

Experiment 2
For the main group, 24 paid participants were recruited, four were
excluded providing a final sample size of 20 participants (17 females,
mean age 21.2, range 19–28). The control group consisted of 20 paid
participants (10 females, mean age 22.3, range 18–30).

Pupil diameter measurement
An infrared eye-tracking camera (Eyelink 1000 Desktop Mount, SR
Research Ltd.) was positioned at a horizontal distance of 65 cm away
from the participant. The standard five-point calibration procedure for
the Eyelink system was conducted before each experimental block and
participants were instructed to avoid head movement after calibration.
During the experiment, the eye-tracker continuously tracked gaze posi-
tion and recorded pupil diameter, focusing binocularly at a sampling
rate of 1000Hz. Participants were instructed to blink naturally during
the experiment and encouraged to rest their eyes briefly during intertrial
intervals. Where participants blinked excessively during the practice
block, additional instructions to reduce blinking were provided. Before
each trial, the eye-tracker automatically checked that the participants’
eyes were open and fixated appropriately; trials would not start unless
this was confirmed.

Statistical analysis
Statistical analysis was conducted in SPSS (IBM SPSS Statistics, version
27) and MATLAB (The MathWorks, 2017a).

Behavioral data
Gap detection task. For experiment 1, sensitivity scores (d’) were com-

puted using the hit and false alarm rate [z(hits) – z(false alarms)]. A key-
press was classified as a hit if it occurred ,1.5 s following a target gap.
Where hit rates (HRs) or false alarms were at ceiling (values of 1 and 0,
respectively; resulting in an undefined d’) a standard correction was applied
whereby 1/2t (where t is the number of trials) was added or subtracted. For
four out of six of the conditions d’ was not normally distributed, therefore
Wilcoxon signed-rank tests were used to compare REG versus RAND per-
formance. We first averaged d’ across alphabet sizes to test the main effect
of regularity (REG vs RAND). As there was a main effect of regularity, we
then conducted three pairwise comparisons (Wilcoxon signed-rank) to
test whether the effect was present for all alphabet sizes. We were not
interested in the effect of alphabet size independent of regularity therefore
did not test this as a main effect. p values were adjusted for multiple com-
parisons using the Holm–Bonferroni method. For experiment 2, no false
alarms were made, therefore only HR was computed and analyzed.
Because of normality-violating ceiling effects Wilcoxon signed-rank tests
were again used to compared REGp versus RAND performance.

Reaction times (RTs) were recorded from each “hit.” For experiment
1, these were analyzed with a repeated measures (RM) ANOVA with fac-
tors of regularity (REG vs RAND) and alphabet size (5, 10, 15). For
experiment 2, a paired-samples t test was used to contrast RAND and
REGp. RTs met the assumptions for parametric tests and a was a priori
set to p, 0.05. An additional exploratory RM ANOVA was conducted
to compare RTs that occurred early (,4.5 s) or late (.4.5 s) in the trial.
Regularity (REG vs RAND) and time (early vs late) were entered as fac-
tors. No post hoc tests were run for this analysis.

Behavioral probe (experiment 2 only). For the two probe tasks, sensi-
tivity scores (d’) were computed as described in the previous section. To
test whether d’ scores were higher in the main group relative to the con-
trol group, who were naive to the sequences, an independent samples t
test compared group (main vs control) for each probe task. Spearman’s
correlations were used to test whether performance (d’) for the two
probes (familiarity vs structure) was correlated across the two tasks. For
each probe, exploratory analysis also correlated d’ against pupil diameter
for each time point in the trial (down-sampled to 20Hz), using
Spearman correlation. We present the correlation coefficient at each
time point and indicate time points where p, 0.05, family-wise error
(FWE) uncorrected.

Pupillometry data. Trials containing a gap and trials where the par-
ticipant made a false alarm were excluded from the analysis. Most partic-
ipants made infrequent false alarms in experiment 1, and only three
subjects made more than one false alarm per condition. Between 17 and
21 trials were analyzed per participant per condition [(20–21) for REG5,
REG10, REG15; (19–21) for RAND5; (17–21) for RAND10]. There were
no false alarms in experiment 2.

Preprocessing. Where possible the left eye was analyzed. To measure
the pupil dilation response (PDR) associated with tracking the auditory
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sequence, the pupil data from each trial were
epoched from 1 s before stimulus onset to
stimulus offset (9 s postonset).

The data were smoothed with a 150-ms
Hanning window and intervals where full or
partial eye closure was detected (e.g., during
blinks) were treated as missing data and
recovered using shape-preserving piecewise
cubic interpolation. The blink rate was low
overall, with the average blink rate (defined
as the proportion of excluded samples
because of eye closure) at ;4% (experiment
1) and 2.6% (experiment 2).

To allow for comparison across trials and
subjects, data for each subject in each block
were normalized. To do this, the mean and
standard deviation across all baseline sam-
ples (1 s preonset interval) in that block were
calculated and used to z score normalize all
data points (all epochs, all conditions) in the
block. For each participant, pupil diameter
was time-domain averaged across all epochs
to produce a single time series per condition.

Time-series statistical analysis of pupil
diameter. To identify time intervals where a
given pair of conditions, REG5 versus
RAND5, REG10 versus RAND10, REG15
versus RAND15 exhibited differences in pu-
pil diameter, a non-parametric bootstrap-
based statistical analysis was used (Efron and
Tibshirani, 1994). Using the average pupil
diameter at each time point, the difference
time series between the conditions was com-
puted for each participant and these time se-
ries were subjected to bootstrap re-sampling
(1000 iterations: with replacement). At each
time point, differences were deemed signifi-
cant if the proportion of bootstrap iterations
that fell above or below zero was .95% (i.e.,
p, 0.05). Any significant differences in the
preonset interval would be attributable to
noise, therefore the largest number of con-
secutive significant samples preonset was
used as the threshold for the statistical analy-
sis for the entire epoch.

Pupil event rate analysis. In addition to
pupil diameter, the incidence of pupil dila-
tion events was also analyzed. Pupil dilation
events were defined as instantaneous positive
sign-changes of the pupil diameter derivative
(i.e., the time points where pupil diameter
begins to increase).

This activity was analyzed to focus on phasic pupil activity which has
been associated with corresponding phasic activity in the Locus
Coeruleus and the release of NE (Joshi et al., 2016; Reimer et al., 2016).
Following Joshi et al. (2016) and Zhao et al. (2019b) events were defined
as local minima (dilations; PD) with the constraint that continuous dila-
tion is maintained for at least 300ms. For each condition, each subject,
and each trial a causal smoothing kernel v (t ) = a2 � t � e-at was
applied with a decay parameter of a = 1/150ms (Dayan and Abbott,
2001). The mean across trials was computed and baseline corrected. To
facilitate the comparison between regular and random sequences, and
because pupil dilation events are quite rare (one to two events per sec-
ond), we collapsed across alphabet size to derive a single mean time se-
ries for REG and RAND. To identify periods in which the event rate
significantly differed between conditions, a non-parametric bootstrap-
based analysis was used. As for the diameter analysis, this involved com-
putation of a difference time series between conditions for each partici-
pant, that was then subject to re-sampling with replacement (1000

iterations). At each time point, differences were deemed significant if the
proportion of bootstrap iterations that fell above or below zero was
.99% (i.e., p, 0.01).

Regressing out behavioral performance. We conducted exploratory
analysis to examine whether performance on the incidental gap detec-
tion task affected the observed differences in pupil dynamics between
REG and RAND patterns. This was achieved by regressing out the var-
iance associated with the gap detection performance from the pupil data.
For both experiments each participant’s mean RT was used. RT is less
limited by ceiling effects and is therefore a good proxy for behavioral dif-
ficulty. Sensitivity score (d’) was used as a second performance metric
for experiment 1. For experiment 2, there were no false alarms and only
5/20 participants were not at ceiling. As a result, it was not appropriate
to attempt to model the pupil response to HRs, and only the RT data
were analyzed in this way.

Two analysis approaches were taken: the first used average pupil di-
ameter over the latter portion of the trial (4.5–9 s) where robust differen-
ces emerged between conditions (see Figs. 3D, 4E). Using mean pupil

Figure 3. Experiment 1, regularity modulated pupil size. A, B, The gap detection task showed worse performance for RAND
compared with REG sequences. Sensitivity (d’) to the gap was significantly higher, and RT shorter for REG relative to RAND
sequences. Circles represent individual data points. Error bar shows61 SEM. Plots (C–F) show averaged normalized pupil di-
ameter over time, baseline corrected (�1- to 0-s preonset). The shaded area shows 61 SEM. The horizontal bars show time
intervals during which significant differences (bootstrap statistics) were observed. The black bar shows the original results, the
gray bars show the significant time intervals after adjusting for the subject-wise difference (RAND-REG) in RT (mid-gray) and
d-prime (light-gray). C, Averaged pupil diameter for all conditions. D–F, Average pupil diameters separated by alphabet size 5,
10, and 15 (left to right) showed sustained larger pupil diameters for random conditions (red, orange, and yellow) than regular
conditions (shades of blue). D, Alphabet size 5 showed significant differences between REG5 and RAND5 from 2 to 3 s onwards.
E, For alphabet size 10, REG10 separates from RAND10 from 3 s onwards with a sustained significant difference from;7 to 8
s. F, For alphabet size 15, REG15 separates from RAND15 from 4 s, and is significantly different from 6 s onwards. For E, F, the
significant effects at onset are likely artefacts of regressing out the behavioral measures, resulting from low variability between
participants at the onset time points.
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diameter for this time window as the depend-
ent variable, we conducted a RM analysis of
covariance (ANCOVA), with a repeating fac-
tor of regularity (REG vs RAND) and the dif-
ference (RAND-REG) in RT and d’
(experiment 1 only) as covariates. In experi-
ment 1, this analysis was focused on alphabet
size 5 (REG5 vs RAND5), as this showed the
most robust effect of regularity on the pupil.
To increase power, we also combined the
datasets from experiments 1 and 2, entering
experiment as a between-subjects factor.

The second approach involved regressing
out the variance related to the behavioral
measures from the unfolding pupil diameter
data. For each subject, sample-by-sample dif-
ferences in pupil diameter (RAND-REG)
were regressed onto behavioral performance
(difference in RT or d’ between RAND and
REG) to remove variance attributable to this
potentially confounding factor. The residual
pupil data were then analyzed as described
above, Time-series statistical analysis of pupil
diameter. This analysis was conducted on all
conditions (REG5/RAND5; REG10/RAND10;
REG15/RAND15; REGp/RAND in experi-
ment 2). Because extreme values can skew the
regression, the behavioral data were checked
for outliers and one participant was removed
from the regression analysis with d’ for
REG15/RAND15.

Results
Experiment 1, deterministic
regularities
This experiment used sequences of
tone pips that were either regularly
repeating (REG) or random (RAND;
Fig. 1). Previous work showed that brain
responses, even from naive listeners, rap-
idly distinguished regular from random
patterns. The differences emerged as early
as 400ms for REG5, 700ms for REG10,
and 1050ms for REG15, consistent with
the prediction of an ideal observer model
which indicated that the emergence of
regularity should be detectable from
roughly one cycle and four tones after
the introduction of the regular pattern
(for details see Barascud et al., 2016;
Southwell et al., 2017). Using the same
regular sequence structure, we com-
pared the pupil response to regular
(REG), highly predictable deterministic

Figure 4. Experiment 2, probabilistic regularities modulate pupil size. A, HR analysis showed more gaps were detected in
REGp (blue) than RAND (red) sequences. There were no false alarms (data not shown). B, RTs for gap detection showed no sig-
nificant differences. Following the main experiment, two behavioral probes were separately conducted, in one, listeners were
asked to judge whether sequences were familiar (C), and in the other whether they contained a structure (D). D prime (d’) is
plotted for the main group (light green) and a control group who had not conducted the main pupillometry experiment (dark
green). Error bars show 61 SEM, circles show individual subjects. E, Average normalized pupil diameter over time, baseline
corrected (�1- to 0-s preonset). The shaded area shows61 SEM. The horizontal bars show time intervals during which signif-
icant differences (bootstrap statistics) were observed. The black bar shows the original results, the dark gray bar shows signifi-
cant time intervals when the five participants with below ceiling performance were removed from the analysis (see Materials
and Methods), the light gray bar shows the significant time intervals after adjusting for the subject-wise difference (RAND-
REGp) in RT. In all cases, the difference between RAND and REG persists suggesting that the main effects are not driven by
effort toward the gap detection task (F) Spearman correlation between the difference in pupil diameter (RAND – REGp) and d’
from the familiarity probe (light purple) and structure probe (dark purple) conducted sample-by-sample (20 Hz) over the entire
trial duration. Each purple bar shows the Spearman correlation coefficients at each time point for the two probe tasks. Gray
shaded areas indicate time intervals where a significant correlation (p, 0.05; FWE uncorrected) was observed, light gray corre-
sponds to the correlation with the familiarity probe, significant periods for the structure probe are in dark gray and plotted

/

only on the lower part of the y-axis. For the gray bars, the
relationship to the y-axis is for visualization purposes and
not meaningful. The plot on the right illustrates the link
between pupil size and subsequently assessed sensitivity to
regularity by displaying the correlation (Spearman r)
between pupil size differences (averaged across 4–6 s) and
individual familiarity (light purple) and structure judgments
(dark purple).
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sequences to matched random (RAND) sequences of the same
alphabet size.

Two factors were manipulated: (1) whether the sequence con-
tained a repeating pattern (REG vs RAND); (2) the alphabet size
(5, 10, or 15), reflecting the number of different tones in the
sequence, and thus its complexity in terms of draw on memory
and other perceptual resources.

Gap detection results
Sensitivity to the presence of gaps was analyzed using d’ (Fig. 3A).
However overall performance was high, with HR close to ceiling:
(median HR: REG5=1; REG10=1; REG15=1; RAND5=0.86;
RAND10=0.86; RAND15=0.86) and false alarm rates close to
floor (median all conditions=0). Parametric tests could not be
conducted on d’ because of normality violations, therefore, d’ was
initially averaged across alphabet sizes for REG and RAND and
compared using a Wilcoxon signed-rank test. This confirmed that
d’ was significantly higher for REG (mean=3.12, SD=0.50) than
RAND (mean=2.87, SD=0.48, Z=2.564, p=0.010; Fig. 3A).
Pairwise Wilcoxon signed-rank tests for each alphabet size
(Holm–Bonferroni correction was applied) indicated that the
effect may be driven by alphabet size 10, as there was a significant
difference between REG10 and RAND10 (Z=2.836 p=0.02) but
no significant difference between REG5 and RAND5 (Z=1.536,
p=0.25) or REG15 versus RAND15 (Z=1.26, p=0.25).

For RTs (Fig. 3B), a RM ANOVA with two factors, regularity
(REG vs RAND) and alphabet size (5, 10, 15) revealed a main
effect of regularity, with significantly faster response times in
REG (mean = 0.590 s, SEM=0.027) compared with RAND
(mean=0.677 s, SEM=0.031), F(1,17) = 41, p, 0.001, hp2 = 0.71.
There was no main effect of alphabet size F(2,34) = 0.263, p=0.771,
hp2 = 0.015, and no interaction F(2,34) = 1.786, p=0.183, hp

2 =
0.095.

As an exploratory analysis, we tested whether RTs varied
based on the timing of the gap relative to the sequence onset. As
will be demonstrated in the next section, the pupil response to
regular sequences emerged later in the trial, particularly for
larger alphabet sizes. As we show above, RTs were faster for REG
sequences, therefore we questioned whether there were faster
RTs in the latter portion of the trial in the REG condition that
were driving both the behavioral effects and pupil response. As
each condition only provided six target trials, and faster RTs and
smaller pupil sizes were observed for all regular conditions, we
collapsed across alphabet sizes and calculated the average RT for
gaps that occurred earlier (,4.5 s postsound onset) versus later
in the trial (.4.5 s posttrial onset). An RM-ANOVA was con-
ducted with repeating factor of Time (early vs late) and
Regularity (REG vs RAND). RTs showed a clear effect of regular-
ity (F(1,17) = 29.198, p = ,0.001, hp2 = 0.632) but no effect of
time (F(1,17) = 1.006, p=0.316, hp

2 = 0.059) and no interaction
(F(1,17) = 0.009, p=0.925, hp

2 = 0.001).

Sustained pupil dilation is modulated by sequence predictability
Figure 3C plots the average pupil diameter (relative to the preon-
set baseline) as a function of time. All six conditions share a simi-
lar PDR pattern. Immediately after scene onset (t=0), the pupil
diameter rapidly increased, forming an initial peak at ;0.6 s.
Over the next second, pupil diameter slowly increased again to
reach a broader peak around ;3 s after onset. Thereafter, the
response entered a sustained phase, which lasted until sequence
offset and was associated with a slow continuous decrease in pu-
pil diameter.

Regular sequences elicited a smaller pupil diameter than ran-
dom sequences, for all alphabet sizes. As can be seen in Figure 3,
the REG conditions were associated with a faster decrease in pu-
pil diameter (steeper reduction in the sustained response) than
the RAND conditions and this effect was modulated by alphabet
size. The comparison across matched REG and RAND pairs
(Fig. 3D–F) revealed that the separation between traces occurred
substantially earlier for alphabet size 5 (Fig. 3D), where a diver-
gence was observed from ;1.5 s after onset, than the other two
conditions. The average trace for REG diverged from RAND at
;3 s for REG10 and ;4.5 s for REG15 (Fig. 3E,F) and became
statistically significant later in the trial (.6 s). The staggered
divergence is consistent with larger alphabet sizes (i.e., longer
REG cycles) requiring more time before a regularity can be estab-
lished. A similar pattern of divergence latencies has been
observed in the brain (Barascud et al., 2016; Southwell et al.,
2017), albeit on a faster timescale.

The significant difference between conditions emerged sur-
prisingly late for alphabet size 10, although the conditions sepa-
rated much earlier. It is likely that a combination of noise and a
weaker signal impacted the results for this condition.

Experiment 2, probabilistic regularities
Experiment 2 investigated whether the effects observed in experi-
ment 1 extend to sequences that contain probabilistic rather than
deterministic structure. Toward this aim, we focused on a struc-
ture that has been extensively used to study statistical learning in
the context of language. Saffran et al. (1996) tested whether
infants could segment a continuous stream of syllables based
only on the statistical regularities between successive items. The
streams of syllables had high TPs within “words” consisting of
triplets of syllables, and low TPs at word boundaries. Infants
were found to spend longer looking at non-words that breached
the word boundaries, suggesting they had become sensitive to
the distributional cues of the syllable stream. Forms of the para-
digm have since been used in behavioral and neuroimaging stud-
ies (Batterink and Paller, 2017; Farthouat et al., 2017), in adults
(Saffran et al., 1997), infants (Saffran, 2020), and other species
(Hauser et al., 2001; Toro and Trobalón, 2005) using a variety of
stimuli (Saffran et al., 1999; Kirkham et al., 2002). The current
experiment uses the pure tone version of this segmentation para-
digm (Saffran et al., 1999), with a key modification. The original
study used a tone length of 333ms to model the length of sylla-
bles, in contrast we use 50-ms tones to study this structure at a
rate comparable with the sequences in experiment 1.

To generate the underlying probabilistic structure, twelve dif-
ferent tones were arranged into four tone “words” (see Materials
and Methods). Following Saffran et al. (1999) the same tone
“words” were used for each subject. Probabilistic regular sequen-
ces (REGp; 9 s long), generated anew for each trial, were created
by randomly ordering the four tone words, with the stipulation
that the same tone word could not occur twice in a row (i.e., tone
words always transitioned to a different tone word). This created
a probabilistic structure where the TP between tones within a
word was 1 and the TP at word boundaries was 0.33, see Figure 2
for more details. RAND sequences were generated in the same
way as for experiment 1, but using the pool of 12 frequencies
from which the tone “words” were created.

The experimental session consisted of three phases. First, partici-
pants were familiarized with the REGp sequences. Subsequently,
pupil responses were recorded as they listened to REGp or RAND
sequences. A gap detection task was used to ensure that participants
focused their attention on the sound stream. In a final phase, the
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same subjects and a control group were asked to make decisions
about the familiarity and underlying structure of the different
sequence types.

Gap detection results
No false alarms were made but there were significantly more
gaps detected in REGp compared with the RAND (Wilcoxon
signed-ranks test: Z=2.07, p= 0.038; Fig. 4A). RTs showed no
significant difference between conditions (paired samples t test,
t(19) = –0.772, p=0.450, d = –0.173; Fig. 4B). Therefore, although
the effects are weak and most participants performed at ceiling,
the gap detection data demonstrate, similar to experiment 1, that
performance was facilitated in REGp relative to RAND
sequences.

Exposure to REGp sequences improved subsequent sensitivity to
structure
Following the main pupillometry task, participants completed
two further tasks, in the first identifying whether a 3-s-long
sequence was familiar and in the second identifying whether the
sequence had a “structure” (see Materials and Methods). These
tasks were also completed by a control group who had not par-
ticipated in the previous phases. The results are shown in Figure
4C,D. In both tasks, the majority of participants in the control
group showed d’ . 0. This indicates that for some listeners 3 s
(60 tones) of exposure to the sequence were sufficient to detect a
structure, which the listener then interpreted as feeling familiar.
This is in line with previous statistical learning paradigms that
show a “familiarity” decision can reflect implicit sequence learn-
ing (Forkstam et al., 2008). However, sensitivity in the control
group still remained low (d’ , 1) suggesting poor sensitivity
overall. Importantly, as expected, the main group showed signifi-
cantly higher sensitivity than the control group in both tasks (inde-
pendent samples t test, familiarity: t(38) =2.8, p=0.008; structure:
t(38) =3.2, p=0.003), demonstrating that previous exposure im-
proved sensitivity. Unsurprisingly, performance across the familiar-
ity and structure tasks was correlated for the main (Spearman’s
r =0.797, p, 0.001) and the control group (Spearman’s r =0.570,
p=0.009), confirming that both tasks probed sequence learning.

Sustained pupil dilation is modulated by sequence predictability
Figure 4E shows the normalized pupil diameter to REGp (blue)
and RAND (red) sequences. As in experiment 1, both conditions
showed an increase in diameter after sound onset, followed by a
sharp decrease in pupil diameter for REGp but not RAND. Since
listeners were preexposed to the regular stimuli, we expected that
the pupil response to the REGp condition should rapidly diverge
from RAND, as soon as it is statistically possible to differentiate
the two sequences (i.e., within two to three “words” after
sequence onset). Indeed, a sustained difference between condi-
tions emerged from ;2 s poststimulus onset, roughly at the
same time as that observed for REG5 (repeating cycle of five
tones) in experiment 1. We interpret that as indicating that
REGp was differentiated from RAND at a similar latency as
REG5 (approximately nine tones; see Barascud et al., 2016;
Southwell et al., 2017). Although, relative to the neural effects,
the pupil response to regularity exhibits a delay linked to slower
modulatory pathway effects (i.e., the time it takes for the signal
to travel from the cortical network which tracks the regularity, to
the LC and from there to the pupil musculature). However, the
extent of divergence between REGp and RAND was smaller than
that observed for REG5 (compare Figs. 4E and 3D), this was also
expected as the probabilistic structure in experiment 2 (Fig. 2D)

retains some degree of unpredictability, i.e., at tone word boun-
daries. In contrast, REG5 can be predicted with 100% certainty
once the tone order has been established.

This results pattern was maintained when the five participants
who performed below ceiling were excluded from the analysis
(Fig. 4E, dark gray shading).

Pupil size correlates with (subsequently obtained) explicit identi-
fication of structure
An exploratory analysis was conducted into the relationship
between pupil dynamics and sensitivity to sequence structure.
We correlated the instantaneous PDR difference between REGp
and RAND at every time sample (20Hz), with the d’ for each
participant (separately for the familiarity and structure tasks).
For this analysis we re-ran the preprocessing to remove blinks
without subsequent interpolation to ensure the accuracy of the
point-by-point correlations.

As shown above, performance on the two probe tasks was
highly correlated, therefore we expected the two measures to
have a similar relationship to pupil diameter. In Figure 4F,

Figure 5. Sequence regularity was not associated with differences in incidence of dilatory pu-
pil events. Experiment 1 (A) and experiment 2 (B). Solid lines show pupil dilation event rate.
Events were defined as the onset of each pupil dilation with a duration of at least 300ms. These
were collapsed across alphabet sizes for REG (blue) and RAND (red). Gray markers at the bottom
of the graph indicate time intervals where bootstrap statistics showed a significant difference
between the two conditions. Dotted lines show the pupil diameter REG (blue) and RAND (red)
collapsed across alphabet size. Shading indicates 6 1 SEM. The black bar indicates intervals
where bootstrap statistics showed a significant difference between the two conditions. Only the
pupil diameter data showed a sustained difference between REG and RAND conditions.
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correlation coefficients (Spearman) are plotted in dark purple
(correlation with structure probe) and light purple (correlation
with familiarity probe) significant time samples (FWE uncor-
rected) are marked in gray (light gray = familiarity, dark gray =
structure). Significant correlations are observed partway through
the epoch, between ;4 and 6 s after onset, revealing that those
participants who later indicated high sensitivity to sequence
structure were also those exhibiting a larger PDR regularity
effect. That correlations appear to be confined to this interval
may be because of the fact that the PDR regularity effect stabil-
izes around that time. The disappearance of correlations toward
the end of the trial is consistent with previous observations
(Zhao et al., 2019a) and may be because the expectation of trial
offset affects pupil dynamics in a manner that interferes with the
correlation with behavior.

Pupil dilation rate is not modulated by predictability
Event rate (instantaneous positive sign-changes of the pupil di-
ameter derivative) was analyzed to focus on phasic pupil activity
which has been associated with corresponding phasic activity in
the locus coeruleus and the release of NE (Joshi et al., 2016;
Reimer et al., 2016). To determine whether the observed pupil
response is driven by tonic (sustained) or phasic changes in pupil
dynamics, we also analyzed the pupil dilation event rate over the
course of the trial (see Materials and Methods). Figure 5 plots
both the event rate (solid lines) and dilation response (dotted
line) to show how the two measures evolve over time for experi-
ment 1 (top panel) and experiment 2 (bottom panel). To
improve power in experiment 1, we collapsed across alphabet
size, providing a single time series for REG and RAND.

For both experiments the dilation event rate data revealed a
series of onset peaks, followed by a return to baseline, with no
substantial difference between REG and RAND conditions, in
contrast to the robust difference observed for pupil diameter.
This suggests that the difference in pupil dynamics between REG
and RAND signals is driven largely by tonic rather than phasic
pupil activity.

Behavioral performance is not driving the pupil effects
Both experiments used a gap detection task to ensure that listen-
ers focused their attention on the tone sequence. The task was
deliberately easy so as to reduce possible effects of task difficulty
on pupil data. However, at the group level regularity was found
to modulate performance, increasing sensitivity to gaps (Figs.
3A, 4A) and reducing RT (experiment 1 only; Fig. 3B). We there-
fore conducted additional analyses to confirm that the regular-
ity-linked difference in pupil diameter persists after the variance
associated with gap detection performance is regressed out.

Regressing out behavioral performance
Two approaches were taken to regress out performance on the
gap detection task. First, pupil diameter was averaged over the
latter portion of the trial (4.5–9 s) where robust differences
emerged between conditions (see Figs. 3D–F, 4E). A RM
ANCOVA was conducted on pupil size, with a repeating factor
of regularity (REG vs RAND) and the difference (RAND – REG)
in RT and dprime (d’; experiment 1 only) as covariates. This
analysis on experiment 1 data confirmed that the effect of regu-
larity remained significant, F=7.307, df=1,15, p=0.016, hp2 =
0.328, with no interaction with either covariate, regularity � RT:
F(1,15) = 1.635, p=0.220, hp2 = 0.098; regularity versus d’:
F(1,15) =0.001, p=0.977, hp

2 = 0. For experiment 2, the ANCOVA
could only be conducted with RT as a covariate (see Materials and

Methods). Results confirmed that the effect of regularity persisted:
F(1,18) = 0.4.983, p=0.039, hp2 = 0.217 and there was no interaction
between regularity and RT: F(1,18) =0.069, p=0.796, hp

2 = 004. As
a further analysis we also collapsed the data across experiment 1
(REG5/RAN5) and experiment 2. As detailed in the previous sec-
tions these data yielded similar behavioral effects and pupil dynam-
ics. The ANCOVA confirmed a robust effect of regularity:
F(1,35) =15.347, p, 0.001, hp2 = 0.968 and no interaction between
regularity and RT or experiment (ps. 0.2).

A second approach was based on a point-by-point regression
analysis. We focused on the subject-wise point-by-point pupil di-
ameter difference between conditions (RAND-REG) and
regressed out the behavioral difference between conditions, this
was done separately for RT and performance. For experiment 2,
HR could not be regressed out because of ceiling effects (see
Materials and Methods), we therefore focus on RT only.

Statistical analysis (see Materials and Methods) was then con-
ducted on the resulting time series. The results are plotted in
Figures 3D–F, 4E, gray horizontal bars, and demonstrate that the
main effects of regularity remain after the variance associated
with the behavioral measures has been removed.

This experiment was designed to involve a task that ensured
the tone sequences were behaviorally relevant. Therefore, there is
likely to be a degree of shared variability between performance
on the gap detection task and the pupil response to regularity.
However, the demonstration that the pupil effects remain after
accounting for task performance suggests that effort toward the
gap detection task is not driving the pupil effects.

Discussion
Over two experiments, we show that pupil diameter is modulated
by the statistical structure of rapidly unfolding auditory stimuli,
be they deterministic structures that developed anew on each
trial, or more complex statistical structures to which the listener
had been preexposed. In line with our prediction, we consistently
observed a smaller sustained pupil diameter to regular compared
with random sequences.

The pupil effects were not correlated with incidental task per-
formance but did reveal a link with subsequently administered
familiarity and structure judgements. This demonstrates that pu-
pil dynamics were driven by sequence structure per se, and its
draw on processing resources, rather than just effort to perform
the incidental task.

Predictability of deterministic sequences modulates
sustained pupil size
Previous work has studied pupil responses to deviant stimuli em-
bedded in a predictable structure (Liao et al., 2016; Marois et al.,
2018; Quirins et al., 2018; Bianco et al., 2020). Zhao et al. (2019b)
showed a transient pupil dilation in response to an unexpected
transition from a regular to random pattern. Quirins et al. (2018)
used a local-global paradigm, also with rapid tone pips. They
found that a deviation from the global but not local structure eli-
cited an increase in pupil diameter, but only when actively
attending to the deviants, and only in subjects who subsequently
showed an awareness of the global regularity. In contrast, the
current study examined the dynamics of the pupil response to
ongoing regularity.

Participants performed a task that ensured they were broadly
attending to the sound sequences. By manipulating the predict-
ability of the tone pip patterns, we were able to assess the extent
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to which the processing of each sequence type affects pupil-
linked arousal.

Based on previous work that demonstrated increased pupil di-
ameter to salient or behaviorally engaging stimuli (Nieuwenhuis et
al., 2011; Wang and Munoz, 2015; Liao et al., 2016), we hypothe-
sized that a larger pupil size in response to regular sequences
would indicate that attentional resources were engaged to a greater
degree by regular relative to random patterns (Zhao et al., 2013).
Conversely, a reduction in pupil diameter would indicate that reg-
ularity reduces the draw on processing resources by facilitating
sequence processing (Southwell et al., 2017). In both experiments
reported here, pupil diameter rapidly decreased once the brain
had established the predictable structure of the tone pip sequence,
thus supporting the latter hypothesis. In contrast, matched ran-
domly ordered sequences were associated with a largely sustained
pupil diameter, suggesting that processing of these stimuli
remained more resource demanding.

For highly predictable, deterministic sequences (experiment
1), the pupil response showed a rapid divergence between regular
and random sequences, reflecting the quick detection of the reg-
ular structure. The emergence of regularity was associated with a
sustained decrease in pupil size, relative to that evoked by
sequences of the same tones presented in a random order. The
effect was modulated by alphabet size, with the simplest regular
sequences (REG5) showing the more rapid change in pupil
diameter.

The pupil response to regularity was consistent with previous
neuroimaging work that revealed a rapid change in neural activ-
ity following the emergence of regularity (Barascud et al., 2016;
Southwell et al., 2017; Herrmann and Johnsrude, 2018).
However, the effects seen here arose substantially later than those
observed in the brain responses, consistent with a slower path-
way (i.e., delays incurred between the cortical network that
detected the regularity and the pupil). The mechanisms driving
the neural response to regularity are poorly understood, but
emerging work (Barascud et al., 2016; Auksztulewicz et al., 2017)
has implicated an interplay between auditory cortical, inferior
frontal and hippocampal sources in the discovery of regularity. A
similar network has also been implicated in detecting more com-
plex predictable structure (for a summary, see Milne et al., 2018;
and also Abla and Okanoya, 2008; Schapiro et al., 2012; Ordin et
al., 2020).

Probabilistic sequence structure modulates pupil size
A clear difference between REGp and RAND conditions was also
observed for sequences comprised of probabilistic transitions
(Saffran et al., 1996, 1999). The relationships between items in
the sequence transform it from a stream of individual elements
to a series of larger integrated items, in this case triplets of ele-
ments, some argue this perceptual shift is a critical component of
statistical learning (Batterink and Paller, 2017).

Exploiting this feature of statistical learning, Batterink and
Paller (2017) found that as listeners became exposed to the statis-
tical structure they exhibited neural entrainment to not only the
rate of individual syllables but also the “words” that were gener-
ated using TPs (also, for a similar study, see Farthouat et al.,
2017). Furthermore, there was a correlation between entrain-
ment to the words and RT to targets that could be predicted by
the structure, supporting a relationship between neural signa-
tures of sequence learning and the influence of sequence learning
on subsequent behavior.

To our knowledge, the present study is the first to apply this
extensively used probabilistic paradigm to rapid sequences. Our

demonstration that the probabilistically structured sequences are
associated with reduced pupil size relative to matched random
sequences reveals that the statistical structure of these rapidly
unfolding sequences was discovered by listeners and facilitated
more efficient processing of the regular patterns.

Critically, similar to Batterink and Paller (2017), we also observed
a correlation between modulation of pupil size by sequence type and
offline sequence classification (familiarity/structural judgment made
after pupillometry measurements), suggesting a relationship between
the pupil response to the unfolding sequence and the acquired statis-
tical knowledge; those listeners who showed a larger pupil response
difference between REGp and RAND patterns were also those who
were better at subsequently discriminating statistically structured
from random sequences.

Predictability modulates tonic rather than phasic pupil
activity
Phasic pupil responses (pupil dilation events) have been linked
with phasic firing in the LC-NE system (Joshi et al., 2016) and
hypothesized to reflect activation of the arousal system. In contrast,
slow (tonic) modulation of pupil diameter has been linked to states
of perceptual uncertainty (Nassar et al., 2012; Krishnamurthy et al.,
2017) and increased demand on processing resources (Sarter et al.,
2006). Here, the analysis of pupil dilation event rate demonstrated
no difference between conditions, suggesting that the observed pu-
pil effects arise from tonic rather than phasic pupil dynamics.

Krishnamurthy et al. (2017) created sequences of sounds
played from different locations and asked listeners to make deci-
sions about the locations of upcoming sounds. Over the course
of the experiment, they manipulated how well the previous
sounds could be used to predict the location of an upcoming
sound. Where prior information was reliable, the upcoming
sound could be accurately predicted. Analysis of baseline pupil
dilation, before decision-making, showed smaller tonic pupil
sizes when there were more reliable priors. In other words, as
with our data, more predictable stimuli were associated with
smaller pupil diameters. Unlike these studies (Nassar et al., 2012;
Krishnamurthy et al., 2017), the present results demonstrate sus-
tained changes without perceptual judgements related to stimulus
likelihood, and with sequences that were too fast for conscious
tracking of predictability.

While it may be premature to discuss the underlying brain
machinery, the basal forebrain (BF)-ACh system (Joshi and Gold,
2020) could be hypothesized as a possible underpinning for the
observed effects. The BF has extensive projections in the brain,
including to auditory cortex (Guo et al., 2019). Cholinergic signal-
ing has been implicated in the representation of sensory signal vol-
atility (Marshall et al., 2016), and in supporting the rapid learning
of environmental contingencies, for example, by boosting bottom-
up sensory processing (Yu and Dayan, 2005; Bentley et al., 2011).
In the current paradigm, the rapid decrease in pupil size during
predictable sequences is consistent with a reduction in ACh-
driven learning once the sequence structure has been established.
A related but mechanistically different proposal is that lower levels
of ACh for predictable sequences reflect a decrease in processing
demands (Witte et al., 1997; Phillips et al., 2000; Sarter et al.,
2006). For REG relative to RAND sequences there is a streamlin-
ing of processing that is possible when upcoming tones can be
accurately predicted. This contrasts with unpredictable sequences
(RAND) where learning cannot take place and thus the resources
required to process upcoming tones will remain high.

In conclusion, we demonstrate that sustained changes in pu-
pil size can be used to identify the emergence of regularity in
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rapid auditory tone sequences. The results were robust even
with a small number of trials (,25 per condition) and consistent
across both deterministic and probabilistic sequences. Furthermore,
the effects persisted after regressing out performance on the inciden-
tal task, although future studies may wish to further probe the inter-
actions between the pupil, regularity, and task-related effort. Finally,
the speed of sequences used in this paradigm prevented conscious
sequence structure tracking, and the task did not require decision-
making or analysis of the sequence structure. As a result, our find-
ings establish pupillometry as an effective, non-invasive, and fast
method to study the automatic extraction of different types of regu-
larities across different populations and even different species.
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